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Abstract
We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene
(MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of
frequencies, and assuming equally doped graphene layers with a large enough separation d
between them to neglect interlayer electron hopping, we use the Drude model for two-
dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon
polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include
excitation of hybridized DPPs (HDPPs), we have found for N=3 that the middle HDPP
eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the
excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer
that is first traversed by the charged particle. While the angular distribution of transition radiation
emitted in the far field region also shows asymmetry with respect to the traversal order by the
incident charged particle at supra-THz frequencies, the integrated radiative energy loss is
surprisingly independent of both d and N for N�5, which is explained by a dominant role of
the outer graphene layers in transition radiation. We have further found that the integrated ohmic
energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by
exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent
peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG
structures that are not optically thin. The magnitude of those peaks is found to scale with N for
N�2, while their shape and position replicate the peak in a double-layer graphene (N= 2),
which is explained by arguing that plasmon hybridization in such MLG structures is dominated
by electromagnetic interaction between the nearest-neighbor graphene layers.

Supplementary material for this article is available online
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1. Introduction

Both experimental and theoretical investigations of the col-
lective electron excitation modes in doped graphene have
played important roles over the past decade in the subfield of
photonics research concerned with the range of frequencies
from terahertz (THz) to mid-infrared (MIR) [1–3]. Namely,
single layer of heavily doped graphene with large area sup-
ports a low-frequency mode known as Dirac plasmon polar-
iton (DPP), which exhibits several technologically attractive
features in that frequency range [4, 5]. Specifically, the DPP
dispersion relation can be conveniently tuned via changing
the chemical potential in graphene by applying potential to
external gates, while the associated electric fields exhibit
superior confinement perpendicular to graphene, as well as
long propagation distances along graphene [6].

While the main effort of research in this area is aimed at
designing optoelectronic and plasmonic devices with optimal
functionalities, interactions of graphene with externally
moving charged particles have also attracted substantial
interest in recent years, e.g., in the context of using electron
energy loss spectroscopy (EELS) to explore plasmonic
properties of both single-layer graphene (SLG) and multi-
layer graphene (MLG) in a broad range of frequencies [7–9].
On the other hand, joining global effort to design a stable,
highly tunable source of THz radiation, there have been
several recent proposals to use electromagnetic radiation from
graphene induced by a fast electron beam, moving either
parallel [10, 11] or normal to graphene [12], where the
electron velocity may be used as tuning parameter. Moreover,
in order to elucidate the role of retardation effects in EELS,
we have recently developed a fully relativistic treatment of the
energy losses and transition radiation (TR) from doped gra-
phene probed by a fast electron in a transmission electron
microscope (TEM) [13, 14]. In that context, it may be
worthwhile mentioning that the experimental setting of a
TEM allows for measurements of cathodoluminescence light
emission from a target [15, 16], which could be adapted
to perform angle-resolved measurements of TR from
graphene [17].

Over the past several years, growing effort has been
invested in developing optoelectronic devices using layered
structures that contain stacks of multiple layers of graphene
[18–24]. Other examples of applications of MLG include
radiation absorbers at sub-THz frequencies [25] and ultra-
sensitive THz biosensors [26, 27]. Graphene layers in such
applications are usually well separated, so that so the only
interaction between their electronic systems is due to
electromagnetic fields. As a result, a key novel mechanism
arises in the optical response of such MLG based devices due
to strong hybridization among the DPP modes of individual
graphene layers, which opens the possibility of using the
geometric design of such structures to achieve eigenmodes
with various dispersion relations and oscillator strengths in
the THz to MIR frequency range.

Theoretical investigation of such MLG structures was
initially concerned with plasmon hybridization in double-
layer graphene (DLG), first studied by Hwang and Das Sarma

[28], followed by other authors [29–31]. Plasmon hybridiza-
tion in MLG systems with N�2 layers was theoretically
studied by Zhu et al [32], Stauber [33], and Rodrigo et al
[23], among other authors. Those authors have found that, for
an MLG with N layers, there exist N hybridized DPP (HDPP)
modes with eigenfrequencies ωj(k), for j=1, 2, K N, where
k is an in-plane wavenumber. The spread among those fre-
quencies was found to generally increase with decreasing
interlayer distance(s), so that the highest-lying hybrid mode
with frequency, say, ωN merges with the light line, ω=ck, at
long wavelengths and approached the typical w µ kN

dependence of a two-dimensional (2D) electron gas at shorter
wavelengths [4], whereas the remaining N−1 hybrid modes
with lower frequencies exhibit quasi-acoustic dispersions at
long wavelengths [32]. Thus, while the highest mode is
always strongly affected by retardation effects at the wave-
lengths of interest in the THz range [34], the lower lying
modes are pushed further below the light line ω=ck by
decreasing interlayer distance, and are therefore less affected
by retardation.

Several applications of MLG rely on the properties of the
highest HDPP mode in optically thin structures, such that
their thickness is much smaller than the characteristic wave-
length of that mode. In that limit one may represent the
conductivity of an MLG as a sum of conductivities of inde-
pendent graphene layers [18, 22–24, 26, 27]. As a result, it
was shown that an optically thin MLG may exhibit con-
siderably higher effective doping density than in an SLG,
which could give rise to a larger oscillator strength, as well as
a higher eigenfrequency of its highest HDPP mode in com-
parison to the DPP mode in a SLG [23]. On the other hand,
there has also been an increasing interest in the past several
years to exploit dispersion relations associated with the
acoustic plasmon modes in graphene for various applications
[35, 36]. For example, it was recently shown that radiation
sources could be developed at THz frequencies based on
excitation of the low-frequency quasi-acoustic HDPP hybrid
modes in an MLG by an electron beam moving parallel to
graphene at a moderate speed [37, 38]. We remark that such
acoustic modes can be produced, not only in an MLG
structure with electronically decoupled graphene sheets
[28, 32, 33], as discussed above, but also in an SLG in the
presence of a nearby metal gate [35], or in a structure that
combines those two designs, namely, an MLG on a condu-
cing substrate [36].

With all the above mentioned intricacies regarding the
dispersion relations and oscillator strengths of the HDPP
modes in MLG structures, and in view of a diverse range of
their applications, we find it timely to expose some new
features of MLG at THz frequencies when such structures are
traversed by a fast external charged particle. Since we are
interested in the limit of extremely long wavelengths asso-
ciated with those frequencies, we adopt the Drude model,
which was shown to describe rather well the DPP mode in a
doped graphene by means of an in-plane optical conductivity
[5, 39]. Specifically, in this work we analyze the effects of the
number of layers N and the interlayer distance on the energy
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loss of a fast charged particle traversing the MLG, as well as
the resulting TR from those layers in the THz range of fre-
quencies. We only consider a somewhat idealized system
represented by a stack of graphene layers suspended in free
space in order to emphasize the role of plasmon hybridization
between graphene layers by eliminating screening, or possible
additional hybridization with collective modes due to the
presence of a substrate or dielectric spacer layers [40]. By
choosing such a system we also focus on TR from graphene
layers, while eliminating Cherenkov radiation in a substrate
[41], as well as TR arising when the charged particle traverses
a dielectric boundary.

While fully relativistic formulation of the N-layer pro-
blem was presented in our previous paper, results were dis-
cussed for the case of a DLG only [14]. Specifically, we have
found strong asymmetries with respect to the order in which
graphene layers are traversed by the external charged particle
that are manifested in the angular distributions of TR in the
half-spaces defined by the DLG, as well as in the amounts of
energy deposited in individual graphene layers, which mostly
goes into the excitation of two HDPP modes. Those asym-
metries were found to be accentuated by increasing interlayer
distance and by increasing asymmetry between the doping
densities of the two graphene layers in a DLG [14]. In this
work, we add the number N of layers as a critically important
parameter for all MLG structures, and investigate how the
above mentioned physical observations change with N in the
range 1�N�5 for equally doped graphene layers with a
broad range of interlayer distances.

In the following section we briefly outline the elements
of theoretical modeling, while referring to [13, 14] for more
details, and in section 3 we discuss several representative
results of our calculations, which will enable us to draw
conclusions about MLG in the section 4.

Unless otherwise stated, Gaussian units of electro-
dynamics are used throughout the paper [42].

2. Theory

We first provide brief outline of a theoretical framework for
obtaining various energy loss distributions for a general MLG
structure, which was detailed in [14]. Those distributions take
the in-plane, 2D conductivity for each graphene layer as input
functions, which may be available in an analytical form from
empirical models or can be obtained in tabulated form from
ab initio calculations [39]. We then discuss a range of para-
meters, which renders Drude model an adequate description
of graphene’s conductivity for the use in this work [5].

2.1. Energy loss distributions

We consider an MLG structure consisting of N parallel gra-
phene sheets of large area placed in the planes z=zl with
l=1, 2, K, N of a three-dimensional (3D) Cartesian system
with coordinates = { }x y zR , , . An external point charge Ze
is assumed to move along the z-axis with constant speed v.
Performing the two-dimensional (2D) spatial Fourier

transform ( =  ={ } { }x y k kr k, ,x y ) and a Fourier trans-
form with respect to time (t→ω), one may express the
external charge current density as w =

w( ) ˆz ZeJ k z, , e z
ext

i v ,
where ẑ is a unit vector in the direction of the z-axis. Due to
dynamic polarization of charge carriers in graphene layers by
the external electromagnetic fields, each layer supports the in-
plane current density, jl(k, ω), which yields the total induced
current density as w d w= å -=( ) ( ) ( )z z zJ k j k, , ,l

N
l lind 1 . We

assume that the lth graphene layer is characterized by an
equilibrium density of charge carriers, nl, giving rise to an in-
plane, scalar conductivity σl(k, ω), which is independent of
the conductivities of other layers, and is generally dependent

on both the wavenumber = +k k kx y
2 2 and frequency ω.

Then, the polarization current in that layer may be expressed
via the Ohm’s law as w s w w= ( ) ( ) ( )k zj k E k, , , ,l l ltot , where

w ( )zE k, ,ltot is the tangential, or the in-plane component of
the total electric field, Etot(k, z, ω), evaluated at z=zl.

As discussed in [14], the key step in obtaining a self-
consistent solution of the problem at hand is a system of N
equations for the longitudinal components of the in-plane
electric fields, wº ˆ · ( )E zk E k, ,l ltot , where =ˆ kk k , which
is given by
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Using the solution of the system equation (1) in the Ohm’s
law for each graphene layer enables us to find the induced
current density in those layers and ultimately obtain the
induced electric and magnetic fields, Eind(k, z, ω) and Hind(k,
z, ω), throughout the structure, given in [14]. Moreover, the
eigenvalues of the system in equation (1) yield N eigen-
frequencies ωj(k), with j=1, 2, K, N, of the HDPP modes,
satisfying 0<ωj(k)<ck.

Physically, one expects that the energy loss of the
external charged particle is distributed into TR and ohmic
loss, describing the energy emitted in the form of electro-
magnetic radiation in the far field region and the energy going
into electronic excitations that remain confined to individual
graphene layers, respectively. It should be mentioned that, by
adopting the Drude model when these processes take place in
the THz frequency range, the ohmic energy loss only involves
excitation of the HDPP modes, followed by the dissipation of
their energy into Joule heat. In our previous work, we used
physical definitions for the total energy loss of the external
charged particle, Wext, ohmic energy loss in graphene layers,
Wohm, and the radiation energy loss,Wrad, and verified that the
energy balance of the system composed of the incident
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particle and the MLG is explicitly upheld in the form
= +W W Wext ohm rad for an SLG [13] and a DLG [14]. In the

following we give the corresponding expressions to extend
this analysis for an arbitrary number of layers.

Invoking the parity properties of the Fourier transformed
quantities, we may express the energy loss for each of those
channels as the integrals

ò òw w w w w wº º
+¥ ¥∬ ( ) ( )

( )

W F k Pkd d , d ,

4

L
2

0
L

2

0
L

where L= ext, ohm, rad. The above expressions define the
corresponding joint probability densities, FL(k, ω), associated
with the transfer of energy  w 0 and the transfer of in-plane
momentum  k from the incident electron to graphene layers,
as well as the corresponding integrated probability densities,
PL(ω). Specifically, we find for the energy loss of the external
charged particle,

*

òw
p w

w

w

=-
-¥

+¥{( ) ( )·

( )} ( )

RF k z z

z

J k

E k

,
1

4
d , ,

, , 5

ext 3 ext

ind

åp w
s=

=

- w{ } ( )R E
1

4
e . 6

l

N

l l
z

3
1

i l v

Using the definition of the total ohmic loss we obtain a layer-
wise decomposition in the form

*
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where

w
p w
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1

4
9l l lohm, 3

2

is the ohmic energy loss contained in the lth graphene layer.
Similarly, the integrated ohmic loss may also be decomposed into
contributions from separate layers, w w= å =( ) ( )P Pl

N
lohm 1 ohm, .

The joint probability density of the radiation energy
losses satisfying ω>ck, which occur in the upper and lower
half-spaces, may be obtained from the induced Poynting
vector as
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where k wº -( )c k2 2 . The total joint probability density
for the radiation energy loss, w w= +( ) ( )F k F k, ,rad rad

w ( )F k,rad , may be related to the spectral angular distribution
of radiation,  q w( ), , where θ is the angle of the emitted
radiation with respect to the direction of motion of the
external charged particle (z axis), via the relation
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In the above equation, we used spherical coordinates to
express q f f= = w{ } { }k kk , sin cos , sinx y c

and define the

differential solid angle q q fW =ˆd sin d d2 , with 0�θ�π
and 0�f<2π. In a similar manner to the ohmic energy
loss, we may express the directional decomposition of the
total integrated radiation loss as w w w= + ( ) ( ) ( )P P Prad rad rad ,
with the integrated radiation loss in the upper/lower half-
space defined by

 
w w

w
q w= = W 

 

∬ ∬( ) ( ) ˆ ( )

( )

P F kk
1

d ,
1

d , ,

13

rad 2
2

rad 2
,

2

where the last integral goes over 0�θ�π/2 in the upper
(∨) and π/2�θ�π in the lower (∧) half-space.

2.2. Conductivity model

We assume that graphene layers within an MLG are elec-
tronically decoupled from each other, i.e., they are spatially
separated far enough that the electronic band structure of each
layer is unaffected by the presence of other layers. Therefore,
we adopt the Drude model for the conductivity of each layer,
which was shown to be an adequate description of its
dynamic polarization in the THz range of frequencies [5, 39].
This model is accurate enough for k=ω/vF=kF, where
vF≈c/300 is the Fermi speed in graphene and p= ∣ ∣k nF is
the Fermi wavenumber in a graphene layer doped with the
charge carrier density n [4]. In the THz range, it is convenient
to work with nondimensionalized wavenumber and fre-
quency, defined as =k k kc and w w w= c, respectively,
where = ( )k e v k cc F F

2 2 and ωc=ckc [13]. We note that for
the doping density of = ´∣ ∣n 2.36 1013 cm−2, with the
corresponding Fermi energy of εF=ÿvF kF≈0.57 eV that is
easily achieved in experiments with MLG, one obtains
λc=2π/kc≈300 μm and νc=ωc/(2π)≈1 THz. Thus,
defining the reduced conductivity by s s= c, the Drude
model gives

s w
p w g

=
+

( ) ( )i 1

i
, 14

where g g w= c is the reduced damping rate.
Clearly, the Drude model neglects nonlocal effects in the

graphene conductivity, which may become critical for
theoretical modeling of the quasi-acoustic HDPP modes in an
MLG [31–33, 35]. Namely, the lowest-lying of those modes
may be pushed close to the boundary line ω=vFk of the
continuum of the low-energy, single electron excitations
within graphene’s π electron bands [4]. Defining the reduced
distance between graphene layers as =d k dc (assuming
equally spaced layers), one may use equation (9) in [32] to
show that the condition  ( )d v cF

2 guarantees that the
dispersions of the lowest-lying HDPPs are well above the line
ω=vFk, thereby rendering the Drude model adequate for all
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HDPP modes in an MLG. In order to test the role of nonlocal
effects, we have performed calculations using a wavenumber
dependent conductivity based on the random-phase approx-
imation given in [43]. We have found no difference in com-
parison with the results obtained from the Drude model in
equation (14), even down to = -d 10 5. We adopt here the
range of interlayer distances  - d10 13 , corresponding to
the physical distances of 48 nmd48 μm for the doping
density of = ´∣ ∣n 2.36 1013 cm−2. We note that, even for the
shortest distance of d=48 nm considered in this work, which
is comparable to distances used in the experiments in [18, 22],
one may safely assume that graphene layers are electronically
decoupled and their only interaction is due to the electro-
magnetic fields.

It should be mentioned that theoretical modeling of
optical experiments using MLG at THz frequencies often
invokes an approximation that the conductivity of N equally
doped graphene layers is given by σN(ω)=Nσ(ω), where σ

(ω) is the optical conductivity of an SLG [18, 22, 24]. This
approximation is expected to work well if the interlayer dis-
tances are not too large, so that the MLG may be considered
as optically thin, but also not too small, so that the graphene
layers are electronically decoupled. The validity of this
approximation was confirmed in experiments using plasmonic
devices with two graphene layers separated by a 80 nm
polymer layer [22], stacks of up to N=5 graphene layers
separated by 20 nm thick spacers [18], periodic lattices of
graphene nanoribbons in two parallel planes a distance 1 nm
apart [23], and even stacks of randomly oriented graphene
layers with d∼0.3 nm [24]. Accordingly, we shall verify the
range of applicability of the above approximation for opti-
cally thin MLG in the present context by using an analytical
result obtained in [13] for the integrated ohmic energy loss in
an SLG, s w w[ ( ) ]P ,ohm

SLG , where the conductivity of an SLG is
replaced by σN(ω)=Nσ(ω).

3. Results and discussion

In our previous work we have shown that there are strong
effects of variations in the charged particle speed v and the
damping rate γ on both the ohmic and radiation energy losses
in an SLG [13] and a DLG [14]. Moreover, we have found
strong effects due to differences in doping densities of gra-
phene layers in a DLG [14]. However, in order to decrease the
size of the parameter space in this work, we keep the reduced
particle speed fixed at β=v/c=0.5 (corresponding to a
typical electron energy in a TEM) and the reduced damping
rate fixed at g = 0.05, while assuming that all graphene
layers are doped with equal densities. For the same reason, we
assume equal spacing d between the nearest graphene layers
in an MLG. Thus, with the conductivity of each layer being
described by equation (14), we concentrate on the effects of
variations in the number of layers N and the interlayer dis-
tance d for the energy loss and radiation spectra when a fast
charged particle traverses an MLG.

In figure 1, we use reduced units to show the joint
probability densities of the total ohmic energy loss,

w w=( ) ( )F k F k F, , cohm ohm (panel (a)), and the total radia-
tion energy loss, w w=( ) ( )F k F k F, , crad rad (panel (b)),
where pw= ( ) ( )F Ze k4c c c

2 2 , as well as the dispersion curves
for three HDPP modes, w w= ( )kj , with j=1, 2 and 3 (panel
(c)), for a TLG structure with =d 0.1. Besides the exact
dispersion curves, for the sake of comparison we also show in
figure 1(c) three approximations to the exact dispersion
curves, w w= ( )kj

appr , as well as the DPP dispersion curve for

an SLG with w = - + +( ) ( )k k2 1 1SLG
2 .

By comparison with the panel (c), it is clear that the main
contribution to the ohmic energy loss in panel (a) of figure 1
occurs predominantly in the regions close to the three HDPP
dispersion curves. Those regions exhibit different amounts of
broadening, such that the largest width occurs along the
middle dispersion curve, w w= ( )k2 , and the smallest width
occurs along the lowest dispersion curve, w w= ( )k1 . One
notices that the three broadened curves merge in figure 1(a),
giving rise to a relatively broad and structureless background
of ohmic energy loss in a region of very small w and k values,
which is a consequence of finite damping rate that governs
dissipative processes at low frequencies. It should be stressed
that, even though part of this background extends above the
light line, w > k , the associated processes do not give rise to
any radiation, but rather produce Joule heat that remains in
graphene. On the other hand, we display in the panel (b) of
figure 1 the energy loss density due to the TR, which is seen
to be broadly distributed in a region that is located strictly
above the light line.

In the panel (c) of figure 1, one notices that all three
dispersion curves lie below the light line, w = k , and that the
highest dispersion exhibits a transition to the w µ k3 form,
whereas the two lower lying curves exhibit quasi-acoustic
dispersions. Besides the dispersion curves with the exact
eigenfrequencies, w ( )kj , we also show in figure 1(c)
their corresponding long wavelength approximations with
frequencies w ( )kj

appr for j=1, 2, 3. The highest-lying dis-
persion is approximated with w ( )k3

appr , which is evaluated
by making the assumption that an N-layer MLG may be
treated as an SLG with an effective conductivity given by
s w s w=( ) ( )NN . This assumption yields a dispersion
relation with the approximate eigenfrequency w =( )kN

appr

- + +
⎛
⎝⎜

⎞
⎠⎟N 2 1 1 k

N

2

2 , shown for N=3 by the dotted line

in figure 1(c). This relation reproduces well the exact dis-
persion curve w w= ( )k3 for sufficiently long wavelengths,
but deviations are already observed for k 2. On the
other hand, the two lower-lying dispersion curves that behave
as quasi-acoustic modes at long wavelengths, may be
approximated to the leading order in k by the eigen-
frequencies w = +( ) ( )k k d d4 1 42

appr and w =( )k1
appr

+( )k d d4 3 4 , which are obtained from equation (1) in the
limit k 0. Similarly to w ( )k3

appr , one notices in figure 1(c)
that the lower-lying approximations w ( )k1,2

appr are quite close
to the corresponding exact modes w ( )k1,2 for wave-
numbers k 1.

For further reference, it is worthwhile commenting on the
behavior of the exact dispersion curves with w ( )kj in the
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range of large k values, well beyond those shown in
figure 1(c). While those curves are seen in figure 1(c) to
diverge with increasing k , one can see in figure S1 of the
supplementary material (SM) available online at stacks.iop.
org/NANO/29/225201/mmedia that they start converging
for ~k 15. For still larger wavenumbers, say k 30, all
three dispersion curves are found in figure S1 to approach the
dispersion relation of a SLG, with an eigenfrequency that is
well approximated at such short wavelengths by its non-
retarded limit, w = k2SLG . Thus, we expect that hybridi-
zation among the DPP modes in a TLG with =d 0.1
becomes negligible at frequencies w 10.

In figure 2, we show a decomposition of the total ohmic
energy loss from figure 1(a), w w= å =( ) ( )F k F k, ,l lohm 1

3
ohm, ,

with contributions to the top (l= 3, panel (a)), middle (l= 2,
panel (b)), and the bottom (l= 1, panel (c)) graphene layers.
In the insets to the panels in figure 2, we display the cross
sections of the corresponding ohmic energy losses

w( )F k ,lohm, for =k 0.5, along with three vertical bars
showing the positions of the corresponding HDPP mode
frequencies w ( )kj , evaluated from figure 1(c) at =k 0.5 for
j=1, 2, 3. It is remarkable that the widths of the peak regions
in the spectra w( )F k ,lohm, corresponding to the three HDPP
dispersions, are differently distributed in different graphene
layers. So, for example, in the panel (a) we see that in the top
layer (l= 3) the widest contribution occurs along the middle
dispersion curve w2, a somewhat narrower contribution
occurs along the highest dispersion curve w3, and the nar-
rowest contribution occurs along the lowest lying dispersion
curve w1. A similar distribution of widths is seen in the panel
(c) for the bottom layer (l= 1), with two important differ-
ences: the contribution in the region above the light line is
more abundant than in the top layer for small w and k values
and, more interestingly, there exists a dip near the position of
the dispersion curve w w= ( )k1 , which is clearly discernible
on the nearby diffuse background for small w and k values
below the light line. A closer inspection of that dip in the inset
to the panel (c) shows that the contribution of the lowest lying
HDPP mode to ohmic energy losses in the bottom graphene
layer has the characteristics of a Fano resonance [26, 34, 44].
This may be tentatively explained by an assertion that the
resonance due to the HDPP mode with w2 is broad enough
and the resonance due to the HDPP mode with w1 narrow
enough, so that destructive interferences between them cause
diminishing ohmic losses at frequencies w w w<( ) ( )k k1 2

in the bottom graphene layer. It should also be noticed in the
panel (c) that the strongly asymmetric shape of the Fano
resonance near w w= ( )k1 in the bottom layer effectively
pushes the contribution of the ohmic loss in that layer towards
somewhat lower frequencies than w1 when compared to the
regions below the broadened resonances along the dispersion
w w= ( )k1 in the middle and top layers. On the other hand,
the reason for the lack of a Fano shape in the top graphene
layer, as observed in the inset to the panel (a), is not obvious,
but may be guessed to be due to insufficient difference
between the widths of resonances corresponding to the HDPP
modes with w1 and w2 in that layer. In any case, those two

Figure 1. The total ohmic energy loss density, =F F Fcohm ohm (panel
(a)), and the total radiative energy loss density, =F F Fcrad rad (panel
(b)), are displayed in reduced units with pw= ( ) ( )F Ze k4c c c

2 2 , as
functions of the reduced wavenumber =k k kc and the reduced
frequency w w w= c, for a three-layer graphene with reduced
interlayer distance = =d k d 0.1c . Panel (c) displays with white
solid lines the dispersion curves for three hybridized Dirac plasmon
polariton modes, w w= ( )kj for j=1, 2, 3, along with the
corresponding long-wavelength approximations (white dotted lines),
a dispersion curve for single-layer graphene (black dashed line), and
the light line w = k (gray solid line).
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differences between the ohmic energy loss distributions in the
top and bottom layers signal an asymmetry with respect to the
order in which graphene layers are traversed by the external
charged particle, pointing to the retardation effects as their
common cause.

However, the most striking behavior of the three HDPP
modes is observed in the panel (b) of figure 2 for the middle
graphene layer (l= 2), where the ohmic energy loss in the
region corresponding to the mode with the middle dispersion
curve w2 is completely missing, whereas the widths of the
resonant modes with w1 and w3 are similar to the corresp-
onding widths in the top layer in the panel (a). This may be
tentatively explained by the nature of charge carrier oscilla-
tions in the three graphene layers, which give rise to the
HDPP modes with eigenfrequencies w w,1 2 and w3 (see, e.g.,
figure S1(b) in [23]). Namely, the mode with the highest-lying
w3 is characterized by an in-phase oscillations of charges in
all three layers, whereas the mode with the lowest-lying w1 is
characterized by an in-phase oscillations of charges in the
outer layers and the out-of-phase oscillations of charges in the
middle layer. On the other hand, the mode with the middle
eigenfrequency w2 is characterized by the out-of-phase
oscillations of charges in the outer layers, whereas the charges
in the middle layer oscillate in phase with charges in either the
upper or in the lower graphene layer. Owing to this double
degeneracy of charge configurations at the middle eigen-
frequency in a symmetric structure of equally spaced and
equally doped graphene layers in a TLG, one may surmise
that, on average, there is no charge carrier polarization in the
middle layer for the HDPP mode with w2.

In figure 3, we show the angular distributions of the
spectral density for TR in reduced units,  q w =( ) S, c with
 = ( )Ze cc

2 , for a TLG system with (a) =d 0.1 and (b)
=d 1. One notices in the panel (a) that the angular patterns in

the upper and lower half-spaces are largely similar in shape,
but slight asymmetry starts appearing for frequencies w 1.
On the other hand, one sees in the panel (b) that an increase of
the interlayer separation to =d 1 gives rise to an asymmetry
between the angular patterns emitted in the upper and lower
half-spaces already for w 0.1, which becomes quite strong
with increasing frequency. A similar effect was observed for a
DLG in [14], albeit for somewhat larger interlayer separa-
tions. One may surmise that, for the MLG systems, which
may not be considered optically thin, as is likely the case in
figure 3(b), there are strong interferences in the TR emission
patterns due to retardation effects. These interferences can be
ascribed to products of the oscillatory factors

k - ¢[ ( )]z zexp i l l and -w
¢⎡⎣ ⎤⎦( )z zexp i

v l l in equation (11),
which give rise to the observed asymmetry in the radiation
energy loss for increasing wd values.

Figure 4 shows several integrated probability densities in
reduced units, w =( )P P Pc with =

p e
Pc

4 1

F
, for a TLG system

with (a) =d 0.1 (studied in figure 1) and (b) =d 1. In
addition to the total ohmic energy loss and the total radiation
energy loss, we show their decompositions into the con-
tributions to different graphene layers, = å =P Pl lohm 1

3
ohm, ,

Figure 2. A decomposition of the ohmic energy loss,
w w=( ) ( )F k F k F, ,l l cohm, ohm, , is displayed in reduced units with

pw= ( ) ( )F Ze k4c c c
2 2 , as a function of the reduced wavenumber

=k k kc and the reduced frequency w w w= c, for a three-layer
graphene with reduced interlayer distance = =d k d 0.1c . Con-
tributions to the top (l= 3), middle (l= 2), and bottom (l= 1) layers
are shown in the panels (a), (b) and (c), respectively. The insets
display the corresponding cross-sections of w( )F k ,lohm, for =k 0.5,
with the red vertical bars showing the values of the hybridized Dirac
plasmon polariton eigenfrequencies, w ( )kj for j=1, 2, 3, evaluated
from figure 1(c) at =k 0.5.
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and contributions to the upper and lower half-spaces,
= + P P Prad rad rad, respectively. We also display a result for

the total energy loss of the external charged particle evaluated
from the definition in equation (6), showing the conservation
of energy in the form w w w= +( ) ( ) ( )P P Pext ohm rad .

One notices in the panel (a) of figure 4 that the radiation
contributions to the upper and lower half-spaces, Prad and

Prad, are practically identical for =d 0.1 at all frequencies,
which is not surprising given the similarity of the angular
patterns in figure 3(a). On the other hand, the two radiation
contributions in the panel (b) of figure 4 are quite close to
each other, with somewhat higher values of the radiation
emitted in the upper than in the lower half-space, > P Prad rad
for w < 1. However, it is surprising that, for the case of a
TLG with =d 1, which is not optically thin, the strong
asymmetry between the angular patterns observed in
figure 3(b) at frequencies w > 1, does not give rise to any
detectable asymmetry between Prad and Prad in figure 4(b) in
the same range of frequencies, except for a small ‘bump’ at
w » 2.5. It should be noted, however, that the radiation

Figure 3. Angular distribution of the spectral density for transition
radiation,  q w =( ) S, c, shown in reduced units with
 = ( )Ze cc

2 , for a three-layer graphene with reduced interlayer
distances: (a) =d 0.1 and (b) =d 1, for several values of the
reduced frequency w.

Figure 4. Integrated probability density, w w=( ) ( )P P Pc, shown in
reduced units with =

p e
Pc

4 1

F
, for a three-layer graphene with reduced

interlayer distances: (a) =d 0.1 and (b) =d 1. In addition to the
total ohmic energy loss, w( )Pohm (blue solid lines), and the total
radiation energy loss, w( )Prad (blue dashed lines), we show their
decompositions into different graphene layers, w( )P lohm, with l=1,
2, 3 for the bottom, middle and top layers (solid lines), and radiation
emitted in the upper/lower half-spaces, w ( )Prad

, (dashed lines),
respectively. Also shown by dotted blue lines is the total energy loss
of the external charged particle from equation (6), confirming the
conservation of energy as w w w= +( ) ( ) ( )P P Pext ohm rad . The black
vertical bars at (a) w = 13.3 and (b) w = 4.2 indicate frequencies
below which w( )P lohm, exhibit large differences.
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energy losses are heavily suppressed for frequencies w > 1 in
figure 4, but they give a dominant contribution to the total
energy losses of the external charged particle at frequencies
w < 0.5 and w < 0.1 in the panels (a) and (b), respectively. It
is remarkable that the radiation energy losses at those fre-
quencies show no significant differences when the interlayer
distance changes from =d 0.1 to =d 1 in going from the
panel (a) to (b) in figure 4. This may be rationalized by
asserting that only charge carrier oscillations in the outer
graphene layers give rise to the emission of electromagnetic
energy in the far field regions, whereas the integration over
the angles in equation (13) causes a massive cancelation in the
Poynting vector for radiative components of the electro-
magnetic fields due to destructive interferences in the regions
between graphene layers.

In view of the above discussed similarity between the
radiation contributions Prad and Prad, it is remarkable that in
figure 4 the layer contributions to the total ohmic energy loss,

w( )P lohm, , show large differences at frequencies w < 13.3 and
w < 4.2 in the panels (a) and (b), respectively. We suggest
that, in the case of a TLG with the interlayer separation

=d 0.1, differences seen in figure 4(a) at w 3 may be
related to different distributions of the weights for the three
HDPP modes in the joint distributions w( )F k ,lohm, for each
graphene layer, as implied by different widths of those modes
in the panels (a)–(c) of the figure 2. Namely, the largest dif-
ference among those distributions is that w( )F k ,ohm,2 for the
middle graphene layer is missing a contribution from the
HDPP mode with the middle dispersion w2, whereas that
mode makes the largest contribution to the ohmic losses in the
bottom and the top graphene layers. Accordingly, one sees in
figure 4(a) that the integrated ohmic losses in the outer layers,

w( )Pohm,1 and w( )Pohm,3 , have similar values for  w0.5 3,
which exceed the value of the integrated ohmic loss in the
middle layer, w( )Pohm,2 . On the other hand, at frequencies
w < 0.1, one observes that w( )Pohm,2 and w( )Pohm,3 take
similar values for the middle and top graphene layers, which
are mostly determined by the resonant contributions of the
HDPP with the lowest lying dispersion, w1. Those values are
seen to be smaller than the value of w( )Pohm,1 at frequencies
w < 0.1, which may be tentatively ascribed to increased
contribution to the ohmic energy loss at frequencies lower
than w1 due to the strongly asymmetric Fano resonance near
w w= ( )k1 for the bottom layer, as displayed in the inset to
figure 2(c).

In the panel (a) of figure 4, one notices that the integrated
ohmic energy losses w( )P lohm, exhibit peculiar and rather
different structures in the frequency range  w3 13. It is
interesting that a superposition of those structures gives rise to
a well defined and broad peak at w » 8 in the total integrated
ohmic energy loss distribution w( )Pohm . When the interlayer
separation is increased to =d 1 in the panel (b), those
structures become even more complex and they move to a
lower frequency range of  w0.5 5. In that case, the total
integrated ohmic energy loss distribution exhibits two peaks
at w » 1 and w » 3. This behavior of the layer decomposition
and the total ohmic energy loss distributions for the TLG is

surprisingly similar to the behavior of those distributions for a
DLG with the same interlayer separations, discussed in figure
5 of [14]. We shall demonstrate below that this similarity is
not coincidental, but is rather universal for MLG with N>2
in a regime of intermediate optical thickness. Namely, we
argue that the DPP hybridization in such MLG is governed
mostly by the electromagnetic interaction between the near-
est-neighbor graphene layers, which should be similar to the
hybridization taking place in a DLG. This assertion is further
tested in the SM. In that respect, it is worthwhile mentioning
that an analysis of the modal decomposition of the total
energy losses in a DLG showed that single- and double-peak
structures in w( )Pohm result from an onset of interference in
the excitation of the two HDPP modes at frequencies
w pb~ d (see figure 6 in [14]). We suggest that a similar
mechanism may be responsible for the single- and double–
peak structures observed in w( )Pohm for the TLG in the panels
(a) and (b) of figure 4.

From the features seen in the distributions in figures 3
and 4, one may conclude that large qualitative differences
may arise when the interlayer distance increases from a suf-
ficiently small value for which the MLG may be considered
as optically thin, at least in a range of small frequencies, to a
large value, ~d 1, for which the retardation effects should be
strong. Therefore, we next explore the effect of increasing the
number of graphene layers and analyze changes in the inte-
grated energy loss spectra as we decrease the interlayer dis-
tance further into the regime of optically thin MLG. So, in
figure 5 we show the total ohmic loss, w( )( )P N

ohm , and the total
radiation loss, w( )( )P N

rad , for N=1, 2, 3, 4 and 5 graphene
layers and for =d 0.001, 0.01, 0.1 and 1. Also shown (by
dotted lines) are the results for the integrated ohmic energy
loss in an SLG, s w w[ ( ) ]P ,Nohm

SLG , where the effective con-
ductivity is given by s w s w=( ) ( )NN , with s w( ) given by the
Drude model in equation (14). Those results are expected to
provide a good approximation for w( )( )P N

ohm in an optically thin
N-layer graphene structure [18, 22, 24].

In order to quantify the criterion for an optically thin MLG
regarding the ohmic loss, we note that the approximation
σN≈Nσ follows from equation (1) when all the exponential
factors can be replaced by unity, i.e., when - ( )N qd1 1.
In order to estimate relevant values of the factor =q

w-k 2 2 , we may temporarily neglect the role of damping
and use the approximate expressions for the HDPP dispersion
relations obtained from the approximation σN≈Nσ itself.
Thus, for the highest lying mode, using w w» ( )kN

appr gives a

criterion for an optically thin MLG in the form w  d2 ,
independent of N. A rough estimate of the same criterion for
lower-lying, quasi-acoustic dispersion relations may be
obtained, at least for sufficiently thin MLG, such that d 1.
With that assumption, an expansion of the exponential factors
in equation (1) to the leading order in d gives w f~ d kj j in
the limit of long wavelengths, where fj is a numerical factor of
order one for all j=1, 2, K N−1. Thus, replacing

w~k d in - ( )N qd1 1 gives a criterion for optically

thin MLG in the form w  ( )N d1 . Accordingly, one
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notices in figure 5(a) that the distribution s w w[ ( ) ]P N ,ohm
SLG

provides a very good approximation to w( )( )P N
ohm at frequencies

w 10 for all N values. This seems to be consistent with the

criterion w  d2 , showing that the HDPP mode with the
highest-lying eigenfrequency likely dominates in the case of
the thinnest MLG with =d 0.001 studied in figure 5(a). We
remark that the corresponding physical distance of d=48 nm
is commensurate with the interlayer distances used in experi-
ments [18, 22]. However, a gradual deterioration of the
approximation w s w w»( ) [ ( ) ]( )P P N ,N

ohm ohm
SLG is observed in the

panels (b) and (c) of figure 5 for frequencies above some cri-
tical value, which decreases when both d and N increase. This

seems to be consistent with the criterion w  ( )N d1 ,
indicating an increasing role of the N−1 quasi-acoustic
HDPP modes with increasing inter-layer distance, which start
affecting the ohmic energy loss at shorter wavelengths and
hence higher frequencies.

A close inspection of the low-frequency dependence
of the w( )( )P N

ohm distributions in figures 5(a) and (b) shows

that the integrated ohmic energy loss decreases in an
inverse proportion to N for frequencies w g = 0.05 for
optically thin MLG. The reason for this behavior is not
immediately obvious, but it may be conjectured by recal-
ling that the ohmic energy loss at low frequencies is
dominated by dissipative processes in graphene [13, 14].
Namely, the dc resistivity of a SLG may be represented, in
reduced units, as r s pg= =( )1 0 , so that the dissipative
processes in an optically thin MLG with N graphene layers
may be represented by a parallel connection of N resistors
with the effective resistivity given by r r pg» =N NN .
This argument may be made more quantitative by con-
sidering the analytical result for s w w[ ( ) ]P N ,ohm

SLG for SLG
obtained in [13], which we have used in this work to
calculate the dotted curves in figure 5 with s w( ) given by
the Drude model with finite damping rate g in
equation (14). Since w s w w»( ) [ ( ) ]( )P P N ,N

ohm ohm
SLG to a very

good approximation at low frequencies in figures 5(a) and
(b), an analysis of the w  0 behavior of s w w[ ( ) ]P N ,ohm

SLG

Figure 5. The total integrated ohmic energy loss, w( )( )P N
ohm (solid lines), and the total radiation loss, w( )( )P N

rad (dashed lines), both normalized

with =
p e

Pc
4 1

F
, are shown for multi-layer structures with N=1, 2, 3, 4 and 5 graphene layers, having several interlayer distances:

(a) =d 0.001, (b) 0.01, (c) 0.1 and (d) 1. Also shown (by dotted lines) is the integrated ohmic energy loss in a single-layer graphene,
s w[ ]P ,Nohm

SLG , evaluated with an effective conductivity s s= NN for N=1, 2, 3, 4 and 5 with s given in equation (14). The thin dashed–
dotted lines show the high-frequency asymptotics of the total integrated ohmic energy loss, w p bw~( ) ( )( )P N2N

ohm
2, with β=v/c=0.5.
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shows that
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to the leading order in g . This result exposes the pre-
dominantly 1/N dependence of the integrated ohmic
energy loss at frequencies w g = 0.05 for optically
thin MLG.

Turning our attention to the regime of higher frequencies
and larger d values, we recall from figure 4 that interferences
among the HDPP modes give rise to the peak structures in the
ohmic energy loss spectra for N=3 with =d 0.1 and 1 in a
regime that may be considered as intermediate between
optically thin and optically thick TLGs. Considering the MLG
in figure 5, peak structures are barely visible at high fre-
quencies for =d 0.001 in the panel (a), whereas they seem to
gradually increase in magnitude with increasing d and N
values, as seen in the panels (b)–(d) of that figure. Specifi-
cally, single-peak structures appear for N�2 in the range

 w10 20 for =d 0.01 in the panel (b) and at w » 8 for
=d 0.1 in the panel (c), whereas a double peak structure

appears at w » 1 and w » 3 for =d 1 in the panel (d). While
the peak position in the panel (b) increases in the interval

 w10 20 with increasing N values, it is remarkable that
the peak structures in the panels (c) and (d) exhibit both the
shape and position, which are rather independent from the
number of layers for N�2. This may be qualitatively
explained by an argument that, for thicker MLG with =d 0.1
and =d 1, the interferences giving rise to the peak structures
are mainly governed by the distance between neighboring
graphene layers, so that the effect of increasing N is merely to
increase the magnitude of the peaks. More specifically, it
seems that the peaks in the panels (c) and (d) for N>2 are
replicas of the peak structure of a DLG, with their magnitudes
that scale with the number of layers N. (These notions are
further tested in the SM by using a nearest-neighbor
approximation in solving equation (1) to generate the curves
in figure S2.)

Such scaling of the total ohmic energy loss with N at high
frequencies may be deduced by considering the limit of an
optically thick MLG consisting of N independent graphene
layers, which formally arises when the exponential factors in
equation (1) may be set to zero, i.e., when qd 1 for suf-
ficiently short wavelengths. Given that in this limit the dis-
persion relations of all N HDPP modes in an MLG approach
the dispersion of a SLG, as shown in figure S1 of the SM, one
may use the non-retarded form of the SLG dispersion,
w = k2 , to obtain a criterion for an optically thick MLG as
w  d2 . Because in that regime we may write

w s w w»( ) [ ( ) ]( )P P ,l
N

ohm, ohm
SLG for each graphene layer with the

conductivity s w( ) given in equation (14), the total integrated
ohmic energy loss in an MLG becomes w »( )( )P N

ohm

s w w[ ( ) ]NP ,ohm
SLG for w  d2 . Using the analytical result

for s w w[ ( ) ]P ,ohm
SLG obtained in [13] for SLG in the limit of

zero damping, we can easily deduce that the asymptotic
behavior of the total ohmic energy loss in an optically thick

MLG with N>1 at large frequencies has the form given by
w p bw~( ) ( )( )P N2N

ohm
2, which is indicated by the thin

dashed–dotted curves in figures 5(c) and (d).
Finally, it is remarkable to observe in figure 5 that the

total integrated radiation energy loss w( )( )P N
rad in an MLG with

N layers is largely independent of the interlayer distance and
is only weakly increasing with increasing N at sub-THz fre-
quencies. As in figure 4, this may be explained by the fact that
only the charge carrier oscillations in the outer layers give rise
to the radiation emitted in the far field region, whereas the
energy flux due to radiating fields experiences destructive
interference in the regions between graphene layers within
an MLG.

4. Conclusion

We have studied the ohmic and radiation energy losses in an
MLG with N layers traversed by a fast charged particle under
normal incidence. Assuming equal interlayer distances d and
equal doping densities n of the constituent graphene layers,
we have explored the limits of both optically thin MLG and
optically thick MLG in terms of plasmon hybridization
among the constituent graphene layers in the THz range of
frequency ω. By adopting the Drude model for the optical
conductivity of each graphene layer, σ(ω), we found that an
optically thin/thick MLG is roughly defined by values of the
ohmic energy loss ÿω being much smaller/larger than the
parameter e~e dF , where εF is the Fermi energy in indi-
vidual graphene layers.

Performing a layer-wise decomposition of the ohmic
energy loss in a TLG (N= 3), we have found that the
hybridized plasmon mode with the middle eigenfrequency is
not excited in the middle graphene layer, which was
explained by a double degeneracy of the corresponding
charge oscillation patterns in that layer. This observation may
be of technological interest, as the excitation of such mode in
the middle layer appears to be efficiently prevented by the
presence of the outer graphene layers in a TLG, thereby
providing a protected plasmonic channel.

On the other hand, we have observed important differ-
ences between the distributions of the ohmic energy losses in
the outer graphene layers in a TLG, as well as between the
angular distributions of the transition radiation emitted in the
half-spaces on either side of the TLG. Such differences
indicate asymmetry of those processes with respect to the
order in which graphene layers are traversed by the external
charged particle, pointing to the retardation effects as the
likely cause of the asymmetry. As a possible manifestation of
those effects in a TLG, we have found that the ohmic energy
loss distribution in the graphene layer, which is first traversed
by the external charged particle, exhibits a Fano resonance
near the lowest-lying hybridized plasmon eigenfrequency,
whereas such resonance is not observed in the graphene layer
that is traversed last.

Whereas the observed asymmetry in the angular dis-
tributions of the transition radiation should be detectable by
using parabolic mirrors in a TEM setting, we have found that
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the integrated distribution of the radiative energy loss is rather
independent of both the interlayer distance and the number of
graphene layers in an MLG. This is explained by the fact that
only charge carrier oscillations in the outer layers in an MLG
give rise to the radiation emitted in the far field region,
whereas the energy flux due to radiating fields experiences
cancellation due to destructive interference in the interior
regions of the MLG.

We have further observed that prominent peak structures
develop in the integrated ohmic energy loss distributions at
the supra-THz frequencies due to interferences between
hybridized plasmon modes in MLG systems with N�2.
Those peaks were found to be very similar in shape and
position to the peak structures in a DLG (N= 2), but with
their magnitudes that scale with the number of graphene
layers for N>2. This is explained by asserting that, in an
MLG that is intermediate between the optically thin and
optically thick systems, plasmon hybridization is governed
mostly by the electromagnetic interaction between the near-
est-neighbor graphene layers.

For an optically thin MLG with N layers, we have con-
firmed that representing its structure as a single layer with the
effective conductivity Nσ provides a very good approx-
imation to the distribution of the integrated ohmic energy loss
at low frequencies. Moreover, the magnitude of that dis-
tribution was found to decrease in an inverse proportion to N
at low frequencies, which was explained by recalling that
graphene’s response at such frequencies is dominated by
dissipative processes. Given that the plasmon damping is
generally unwanted process in graphene-based nano-photonic
and nano-plasmonic devices, whereas the damping rate is
largely unknown parameter in modeling of such devices, it is
therefore remarkable that the effects of damping may be
efficiently suppressed, at least at sub-THz frequencies, by
using optically thin MLG with increasing number of graphene
layers [40, 41].

We remark that the above conclusions are deduced for a
system represented by a stack of graphene layers suspended in
free space. In most experimental setups, there is a substrate,
which would probably affect the observed asymmetry with
respect to the traversal order of graphene layers by the incident
charged particle. Moreover, a possible presence of dielectric
spacers between graphene layers would affect the hybridization
between their plasmon modes, not only via screening provided
by their dielectric constant(s), but also by additional hybridi-
zation of graphene plasmons with phonon modes in those
layers [40]. On the other hand, the presence of a substrate and
dielectric spacers would also strongly affect the radiation
spectra due to Cherenkov radiation in those materials at suf-
ficiently large particle speeds, as well as transition radiation
arising when this particle traverses a boundary between mate-
rials with different dielectric constants.
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