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Bond-Slip in Reinforced Concrete Elements

Bibiana Marfa Luccioni'; Daniel Ernesto Lépez?; and Rodolfo Francisco Danesi®

Abstract: A model for fiber reinforced composites that takes into account the fiber slipping is presented in this paper and applied to the
analysis of reinforced concrete elements. The model is formulated within the framework of the plasticity theory and the mixtures theory,
considering two phases corresponding to the matrix (concrete) and the fibers (reinforcing bars) and modifying the behavior of the last to
take into account the relative displacement between the two phases. An elasto-plastic interface model developed by other writers is used
to describe the bond-slip mechanism. The resulting model is attractive for the analysis of reinforced concrete problems at the macro-
structural level since the explicit discretization of reinforcing bars and interface is not required, with the consequent computational cost
reduction. The paper concludes with application examples and comparisons with experimental results of reinforced concrete elements that

show the capacity of the model developed.
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Introduction

When a reinforced concrete structure is progressively loaded, the
stresses in the interface between concrete and steel are increased
and the capacity of the interface to transmit stress begins to de-
teriorate at certain load levels. This damage gradually spreads to
the surrounding material. With the evolution of this process, the
capacity of the interface to transmit stresses is seriously affected
and important displacements between steel and concrete can take
place.

A great effort has been made in order to understand the main
mechanisms of stress transfer between steel and concrete through
experimental tests. As a result, reinforced concrete is one of the
composite materials for which more experimental information re-
lated to the slipping phenomenon is available (Campi et al. 1982;
Eligehausen et al. 1983; Gambarova et al. 1989; Malvar 1992;
Cox and Yu 1999; Soh et al. 1999).
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The main stress transfer mechanisms between concrete and
steel in reinforced concrete elements are represented by adhesion,
mechanical interaction, and friction. Adhesion is constituted by
chemical bonds and stresses developed during the curing process
of concrete. This transfer mechanism, schematically represented
in Fig. 1, is prevailing in the case of bars of smooth surface and
its failure is characterized by the initiation and propagation of
cracks in the concrete/steel interface.

In the case of corrugated bars, the described mechanism is
secondary and the stress transfer is mainly due to the interaction
between ribs and the surrounding concrete. Adhesion is relatively
soon exhausted in the global response and consequently, the
transfer force is transmitted by friction and mechanical interaction
between ribs and the adjacent concrete.

As the force in the reinforcing bar is increased, the transfer
forces are dominated by the mechanical interaction concentrating
at the faces of the ribs. In this state, the term ‘“adhesion stress”
refers to the mean force per unit of surface. At increased loading,
the concrete begins to fail near the ribs with two different modes
of failure; by failure of the concrete adjacent to the contact area,
as illustrated in Fig. 2 and by transverse cracking.

Transverse cracking initiates at the ribs presenting a character-
istic cone shape, also called secondary cracking or adhesion
cracking. The bond zone, constituted by a damaged zone with
finite depth surrounding the steel bar, is defined by the extension
of the transverse cracking (Fig. 3).

With the stable propagation of transverse cracking, the con-
crete next to the bar seems to form inclined struts that are known
as compression cones (Fig. 4). The adhesion stiffness is usually
characterized by the stiffness of these struts.

When the load is further increased, radial splitting forces can
be developed. This phenomenon is due to the rotation of the in-
clined struts (Fig. 4) that produces a considerable radial compo-
nent of the contact force, the increase of the radial force that is
produced by the increase of the effective contact angle between
ribs and concrete due to the deposition of the crushed concrete at
the faces of the ribs, the wedge action of the ribs, and the radial
component of the contact forces. Without an accurate confine-
ment, a splitting failure can occur, spreading the effect of bond
outside the bond zone.
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Fig. 1. Schematic representation of adhesion between concrete and
steel and its failure

The bond zone dilation, due to the longitudinal cracking, takes
place when the adhesion stress reaches values next to the limit
one. Following this moment, a stress softening is observed in the
response. This stress softening, characteristic of the bond—slip be-
havior, is frequently interpreted as a progressive shear failure of
concrete between the ribs. When the confinement stresses are low,
the geometric variation in the contact occurring between the ribs
and concrete can also contribute to the stress softening. Both the
progressive shear failure of concrete and the contact zone geo-
metric variation are stimulated by the reduction of the confine-
ment stresses produced by the propagation of longitudinal crack-
ing. In both cases, the stress softening reveals a strong
discontinuity between the reinforcing bar and the surrounding
concrete.

Although the phenomena that govern the stress transfer
mechanisms between concrete and steel are developed at the mi-
cromechanical scale, they strongly condition and influence the
global behavior of the structure, both under service loads and
ultimate loads. This situation has been recognized by many re-
searchers like Bresler and Bertero (1968), Takeda et al. (1970),
Ma et al. (1976), Ghandehari et al. (1999), Chaboche et al.
(1997), and Soh et al. (1999). Experimental tests on reinforced
concrete subassemblages have documented the drop of initial
structural stiffness due to the reinforcing bar slips above the foun-
dations and in the beam-column connections (Spacone and
Limkatanyu 2000).

Many researchers have tried to numerically model the main
mechanisms of stress transfer between steel and concrete at dif-
ferent scales. Nevertheless, many of the proposed models that are
able to reasonably reproduce the phenomenon encountered
present the disadvantage of not being for complete structures
analysis due to the elevated computational cost required. Re-
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Fig. 3. Stress concentration: transverse cracking

cently, some researchers (Ayoub and Fillippou 1999; Monti and
Spacone 2000; Salari and Spacone 2001) have introduced the
possibility of slipping and the nonlinearity of the material in the
formulation of bar elements. This approach presents advantages
over the preceding ones since it does not require the previous
determination of the sectional strength—deformation relations and
at the same time includes the possibility of discarding the as-
sumption of perfect bond between steel and concrete. Neverthe-
less, all the models proposed are uniaxial models, strongly depen-
dent on the loading history defining the uniaxial adhesion—
displacement relation incorporated into their formulation.
Furthermore, they cannot take into account the important and ex-
perimentally observed influence of the transverse confinement
stresses (Gambarova et al. 1989; Malvar 1992). In view of the
limitations of bar elements, other researchers (Pijaudier-Cabot et
al. 1991; Cox and Herrmann 1998; Soh et al. 1999; Guo and Cox
2000) have proposed damage models and interface models. These
models can overcome the previously mentioned limitations but
they have the inconvenience of requiring the explicit discretiza-
tion of the interface with the consequent additional computational
cost involved which may prohibit the analysis of a complete re-
inforced concrete structure.

One way to reproduce the behavior of reinforced concrete
from the constitutive equations of its components and without the
explicit discretization of the reinforcing bars is through the appli-
cation of the mixtures theory. This theory has the limitation as-
sumption of strain compatibility among the different components.
This limitation can be overcome through a modification intro-
duced at the bar constitute level (Car 2000). A model for rein-
forced concrete based on a modification mixtures theory taking
into account reinforcement slipping is presented in this paper. A
general way to introduce the bond—slip mechanism in the consti-
tutive equation of the reinforcing bars is proposed (Luccioni and
Lépez 2002). Within this general framework, local effects belong-
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Fig. 4. Change of direction of struts: longitudinal cracking
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ing to the scale of the superficial configuration of the bars can be
taken into account without using a fine discretization. This fact
makes the model particularly attractive for the finite element
analysis of macrostructural problems.

Proposed Model

The theory of mixtures is based on the following assumptions
(Truesdell and Toupin 1960): (1) the set of component substances
is present in each infinitesimal volume of the composite; (2) each
component contributes to the behavior of the composite in pro-
portion to its volumetric participation; (3) the volume occupied by
each component is lesser than the volume occupied by the com-
posite; and (4) all the components have the same strain (compat-
ibility condition). For small strains, this last assumption is written
as

€E=g,=¢€,=...=¢, (1)

where € and €, represent the strain of the composite and of nth
component.

The strain compatibility assumption constitutes a strong limi-
tation of the theory of mixtures. In particular, the slipping of
reinforcing bars represents a strong discontinuity in the strain
field inside the composite that cannot be simulated with this
theory. When slipping occurs, the stress transfer between the ma-
trix and the fibers is affected and a stress reduction results in the
fibers. This stress reduction can be assimilated to a strain reduc-
tion related to the interface deformation (Luccioni and Lépez
2002).

For the case of a composite formed by two components, ma-
trix and fibers, the strain compatibility Eq. (1) can be replaced by
the following equation:

g=¢,-€e'=g—¢ (2)

where subindexes f and m refer to fibers or steel reinforcement
and concrete matrix respectively; while €*=strain tensor that rep-
resents a measure of the interface deformation or slipping. This
deformation depends on the stress state and is composed of an
elastic component and an irrecoverable component. In general,
the elastic component can be neglected when compared with the
inelastic deformation, the latter being interpreted as an irrecover-
able deformation which takes place as a result of the fiber
slipping.

If an elasto-plastic behavior is assumed for steel, the fiber’s
secant constitutive equation can be written as follows:

("f:Cf:Se:Cf:(Sf—Ep) (3)

where o =reinforcing steel stress tensor; €° and €” represent the
elastic and permanent strains, respectively; and C,=secant con-
stitutive tensor.

Combining Eq. (3) with the strains compatibility Eq. (2) the
following equation is obtained:

0,=C;:(e-g"-¢) (4)

Eq. (4) can be used within the framework of theory of mix-
tures to obtain the stress state in the reinforcing bars from the
strain of the composite. For this purpose, it should be assumed
that two dissipative mechanisms take place in the set formed by
the reinforcing bars together with the interface. One dissipative
mechanism is due to the inelastic strains of the steel and the other
is due to slipping of the steel bars. Associated with these two

mechanisms, two sets of internal variables are defined. The fol-
lowing flow rules are defined for the inelastic strains of the bars
and the slipping:

gr=\,—"
Jo
!

p=\h (5)
| =0itF (o.p) <0 ©
"1 >0for F (o;,p) =0

.. - 0G
g =\

S

s

§=\h’ (7)
- |=0itFaps) <0 .
*>0for F(o/.5)=0

where p and s represent sets of internal variables associated with
plasticity and slipping mechanisms and h” and h*=tensors
defining the flow of each of the internal variables. G, and G,
represent convex potential functions; Xp and \,=plastic and
slipping consistency parameters; and F,(o;,p)<0 and F (o ,s)
<(=plasticity and slipping threshold functions, respectively,
which should also be convex functions (Maugin 1992).

The loading/unloading conditions are derived from the Kuhn
Tucker’s equations and are written as:

\,=0
plasticity: { F, <0
NF,=0

=0
slipping:| F, <0 9)
NF=0

The model previously defined can be introduced in mixture
theory, considering two components: a concrete matrix and the
steel fibers or reinforcing bars with bond-slip effect, to simulate
the behavior of reinforced concrete. The free energy density per
unit of volume of the composite can be written as follows:

\I,(F“’q) = km\I,m(e’pm) + ](_f\If_f's(ee’p’s) (10)

where k,, and k; represent the volume ratios of the concrete matrix
and the steel bars respectively; W, and W ,=free energy densities
of the concrete and the steel bars considering the interface; and
p,, represents a set of internal variables of the matrix.

The secant constitutive equation for the composite results

&\P(s’q) aq’m(e’pm) aq’fs(sevp’s)
g = = km + kf
e e %3

=k, 0, + ko,
(11)

where o =stress tensor for reinforced concrete and o, and o/
represent the stress tensor for the concrete matrix and the rein-
forcing bars respectively.
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Table 1. Parameters for Interface Model

Parameter Value used
a, 0.27
a, 0.45
M 0.42
dy 0.38L,/L,gp
d, 0.53L,/L,gp
d, 0.30L,/L,gp,
(o) 2.25
B 2.7

Elasto-Plastic Model for Interface

The elasto-plastic interface model developed by Cox and
Hermann (1998) is used to simulate the slipping effect. The origi-
nal model was modified in order to make it suitable to be included
in the composite model described in the paper for a finite element
analysis. The main changes were the definition of a strain due to
slipping and the definition of the hardening variable in order to
ensure objectivity in the softening response when the model is
used in combination with the finite element method. Most of the
constant parameters were recalibrated based on experimental
results.

The model relates the average local displacement and the ra-
dial dilatation with the average tangential adhesion stress and the
radial confinement stress. The components of the model have
been empirically obtained and qualitatively reflect the kinematic
of the mechanical interaction between the ribbed steel bars and
the surrounding concrete for monotonic loading, as previously
described. The model is based on the following assumptions:

e The tangential stresses are uniformly distributed at the inter-
face and
e The slipping is concentrated at the interface.

Additionally, the following simplifying assumptions are con-
sidered in this work: the elastic deformation of the interface is
neglected and the interface deformation orientation is assumed to
correspond to the direction of the bars.

A measure of the length of the adhesion zone d is chosen as an
internal variable of the interface. This length cannot exceed the
distance between ribs, S,, since for higher values the interaction
between concrete and steel is purely frictional and the yield sur-
face does not evolve. This internal variable d represents a mea-
sure of the interface damage and is defined as follows:

Confinement stress

2222222222 22222 220

—> S>> > > > > —> —> S

- DA = ;

= > >> > > > > >
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stress at the
e sse support
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Fig. 5. Schematic representation of Malvar’s tests—(68° ribs)

d =min[(8%/8,),1]=min[(£/S,) Lygn. 1] (12)

where min=minimum function; S;i:relative displacement be-
tween steel and concrete in the longitudinal direction of the bar;
L,q,=adhesion length; and &j=strain component due to the slip-
ping in the longitudinal direction of the bar

& =8YL,y,=a’ . €. a, (13)

a, represents a unit vector in the longitudinal direction of the bars.

In order to achieve objectivity of the softening response with
respect to the size of the finite element mesh, a characteristic
length is included in the model and the hardening variable is
defined as follows:

d* = d(Le/Ladh) (14)

where L,=characteristic length that represents the length of the
finite element in the longitudinal direction of the steel bar.

The slipping threshold function is described through the func-
tion of Eq. (15) that transits between two types of functions:
potential and exponential. The change in the slipping threshold
function reflects the change in the dominating mode of failure.
For low values of damage, the inelastic behavior is mainly due to
the mechanical interaction of the ribs. For relatively high values
of damage, friction becomes important in the behavior and most
of the slipping is due to a strong discontinuity in the displacement
field between concrete and steel bars

Table 2. Mechanical Properties of Concrete and Steel [adapted from Malvar (1992)]

Compression Compression/tension
Elasticity modulus elastic threshold elastic thresholds
(MPa) Poisson coefficient (MPa) ratio Yielding criteria Plastic flow
(a) Concrete
3.724 % 10% 0.20 34.32 10 Mohr Coulomb Associate
(b) Steel
2.058 X 10 0.20 412.00 1 Von Mises Fiber
(c) Interface
D), (mm) S, (mm) Lygn (mm)
20 12.2 61
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Fig. 6. Tests 1 and 6 (confinement pressure: 3.45 MPa)

Fond)=[1/f|- Cd)WUd") +{1 - expl- o, (- a"/f,+ 6(d) ]}

— C(dYM(1 = W (d"))|= "I, + G(d)|*

Xsign[— o”"/f, +6(d)]=0 (15)
exp=exponential function; expx=e*, ¢ base of natural loga-
rithms; e=2.71828; sign=sign function; and f,=concrete uniaxial
tension strength. M, a,, and «, are supposed to be constant. These

values were obtained from calibration tests with experimental re-
sults (Malvar 1992) and are presented in Table 1. ¢'=longitudinal
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Fig. 8. Tests 4 and 9 (confinement pressure: 24.14 MPa)

stress of the steel bars and o”=transversal confinement stress

o'=al.o;. 2, (16)

(r"=a,{.0'f.a,, (17)

where a,=unit vector in the direction transversal to the bars.
7 is the adhesion stress defined as

7=0'Dy/(4L,qn) (18)

D,=reinforcing bar diameter and W,(d")=weight function or
transition function defined as

0 d* e [0,dy]
W,(d")=\3[(d" - dp)/(d, - dp) P - 2[(d" - dp)/(d, - dp) d" € (dy.d,) (19)
1 d" e [d1]

w,(d") e C'[0,1]

The limits of the interval (d,,d,) obtained by calibration with
experimental results (Malvar 1992) are defined in Table 1 taking
into account the definition of the hardening variable.

G(d")=kinematic strain softening function mainly associated
with the geometrical dilation. This function is defined in order to
capture the brittle nature of the adhesion mechanism that domi-
nates the behavior for low confinement pressures

G(d") = {6 ol(dy=d)d P d € [0,d,]

0 d eldy1] (20)

where d, represents the ending of the kinematic strain softening
threshold and its value is presented in Table 1. 3 > 1=calibration

Adhesion stress [N/

Displacementd [mm]

Fig. 7. Tests 3 and 8 (confinement pressure: 17.24 MPa)

constant. The value used for 3 in the present paper was obtained
by calibration with experimental results (Cox and Yu 1999) and is
presented in Table 1.

Go=parameter that defines the magnitude of the kinematic
strain softening. The value obtained from the analysis of a thin
walled cylinder the value of Cox and Yu (1999) is presented in
Table 1. C(d") is obtained adjusting experimental results and rep-
resents the isotropic strain hardening (Cox and Yu 1999)

C(d) ==3.30e"" 16,002 4170 (21)

The flow rule is written as follows (Luccioni and Lépez 2002):

Confinement — — | | | |
pressure

150 M

84/mm

wm—
Pull out

force

o

Fig. 9. Schematic representation of Eligehausen’s tests

150 mm
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Table 3. Mechanical Properties of Concrete and Steel [adapted from Eligehausen et al. (1983)]

Compression Compression/tension
Elasticity modulus elastic threshold elastic thresholds
(MPa) Poisson coefficient (MPa) ratio Yielding criteria Plastic flow
(a) Concrete
3.43x10* 0.20 30.0 10 Mohr Coulomb Associate
(b) Principal and secondary steel
2.058 X 10° 0.20 412.0 1 Von Mises Fiber
(c) Interface
D,,(mm) S,(mm) Lygn (mm)
(c1) Principal steel
254 12.2 127
(c2) Secondary steel
12.4 12.2 127
. 9G (Malvar 1992) are presented in Figs. 6—8. The numerical results
&= )\ST; =a,- ¢ (22) show good agreement with the experimental ones even though a

Application Examples

Malvar’s Tests (Malvar 1992)

In this section the pullout tests performed by Malvar (1992) are
simulated using a coarse element mesh. Malvar performed extrac-
tion tests with strain control from cylindrical concrete specimens
with constant confinement stress and different surface patterns of
the steel bars. The main geometrical characteristics of the speci-
mens tested are presented in Fig. 5.

The numerical simulation of the tests is made with one plane
stress finite element with four nodes and two integration points in
each direction. So coarse mesh can be used because the bond—slip
phenomenon is implicitly included in the constitutive equation of
the bar that is introduced in the theory of mixtures to consider
concrete and steel as a composite considering the properties of
each material and the interface.

Concrete is modeled as an elasto-plastic material and the
model presented in this paper is used for the steel and interface.
The main mechanical properties of the materials are presented in
Table 2.

The curves obtained with the model for the mean adhesion
stress—displacement relationship for different values of the con-
finement pressure and their comparison with experimental results

—&— Experimental results

—— Present model

Adhesion Stress [N/mn]
& -

0 1 2 3 4 5
Displacement d[mm]

Fig. 10. Comparison with experimental results by Eligehausen et al.

coarse finite element meshed was used.

Eligehausen’s Tests (Eligehausen et al. 1983)

The results obtained with the model presented are compared with
experimental results by Eligehausen et al. (1983) for the adhesion
stress—slipping relation (Fig. 9).

One element of a composite material formed by concrete and
the horizontal steel bar is used to model the test. The main me-
chanical properties of the materials are resumed in Table 3.

The adhesion stress—slipping curve obtained is compared with
the curve by Eligehausen for unconfined concrete. The model
response is close to experimental results although it has been
calibrated with results of other experimental series. The response
of the model is more brittle than the experimental curves for
confined concrete (Eligenhausen et al. 1983). The difference is
due to the confinement effect of secondary reinforcement that
results in a ductility and strength increment. This effect cannot be
modeled with only one finite element (see Fig. 10).

Reinforced Concrete Column with Bar Slipping

The analysis of a reinforced concrete column anchored in a con-
crete prism and subjected to controlled horizontal displacements
at its free end, according to Low and Moehle (1987) tests, is
presented in this section (Fig. 11). First, the case of perfect an-

Horizontal 44.5kN
N2

load ;

! y & #3 bar
° o[ Dy=9.52mm

£ g
g g s | 2%
s = . dY
: x
e o * + o #2 bar

E D,=6.35mm
5 92.0 mm
E s 127.0 mm

Fig. 11. Schematic representation of Low and Moehle’s tests
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Fig. 12. Finite element meshes

chorage is simulated and the results are compared with experi-
mental ones (Low and Moehle 1987).

Then, the same problem with different anchorage lengths is
analyzed allowing slipping of the reinforcement bars. The results
are compared with numerical results by Spacone and Limkatanyu
(2000).

The numerical results by Spacone and Limkatanyu (2000)
were obtained with a reinforced concrete beam finite element that
explicitly accounts for the slip between the reinforcing bars and
the surrounding concrete. The reinforced concrete beam element
is made of a two-node concrete beam and n two-node bars that
can slip with respect to the concrete. The nodal degrees of free-
dom of concrete beam and of the reinforcing bars are different to
allow slip. The plane section is assumed to remain plane in the
concrete beam formulation. The Kent and Park (1971) law is used
for concrete assuming linear elastic behavior in tension up to
cracking stress and rapid linear stress degradation for increasing
tensile strains. The Menegotto and Pinto’s (1973) law is used for
steel reinforcing bars. The relative slips between concrete beam
and steel bars are related to the bond stresses with the Elige-
hausen et al. (1983) law for confined concrete.

The numerical simulation using the model presented in this
paper is performed with three different meshes (Fig. 12) in order
to prove the objectivity of the results with respect to the element
size. In all cases, plane stress elements with eight nodes and two

30
£25 e S P
s -
9 s
= 15 \\
§ 10
§ o MeshA ——MeshB
———-MeshC —=— Experimental
0 10 20 30 40

Displacement [mm]

Fig. 13. Load—displacement curve for perfect anchorage

integration points in each direction are used. Reinforced concrete
(in gray) is modeled as a composite material with different vol-
ume ratios of concrete and steel.

The mechanical properties of concrete, steel and the interface
are resumed in Table 4.

All the models are first subjected to a vertical compression
load of 44.5 kN. Then a controlled monotonically increasing hori-
zontal displacement, in the global direction y, is applied at the
free end of the column.

Fig. 13 shows the results obtained for the case of perfect an-
chorage of the reinforcing bars and the comparison with experi-
mental results (Low and Moehle 1987). A good agreement is
achieved between numerical and experimental results for the finer
meshes. The differences among the results of Meshes A and B are
due to discretization errors of the finite element method (Zienk-
iewicz and Taylor 2000). It is clear that numerical results con-
verge to experimental ones as the mesh is refined. Mesh C is too
coarse, principal reinforcement is spread in a too wide zone and
this fact alters the maximum strength.

The results obtained for Meshes A and B allowing slipping of
the reinforcement and different anchorage lengths are presented in
Fig. 14 and compared with those numerically obtained by Spa-
cone and Limkatanyu (2000) with a fiber element.

In general, the results present a good agreement with those
numerically obtained by Spacone and Limkatanyu (2000). The
curves by Spacone and Limkatanyu (2000) present the same ap-
pearance as the envelope of Eligehausen et al. (1983) on which
their bond-slip model is based. Comparison of the results ob-
tained for the two finite element meshes analyzed show that the
softening response is objective with respect to the size of the
finite elements.

Table 4. Mechanical Properties of Concrete and Steel [adapted from Low and Moehle (1987)]

Compression Compression/tension
Elasticity modulus elastic threshold elastic thresholds
(MPa) Poisson coefficient (MPa) ratio Yielding criteria Plastic flow
(a) Concrete
220 10* 0.20 36.5 10 Mohr Coulomb Associate
(b) Steel
2.058 X 10° 0.20 440.0 1 Von Mises Fiber
(c) Interface
D, (mm) S, (mm) Lygy (mm)
9.52 12.2 127.0-76.2-25.4
6.35 12.2 127.0-76.2-25.4
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Fig. 14. Load—displacement curve for different anchorage lengths

Conclusions

The model presented in this paper for reinforced concrete allows
the slipping of the reinforcing bars without requiring the explicit
discretization of the reinforcing bars and the steel/concrete inter-
face. This fact makes it attractive for numerical simulation of
concrete structures at the macrostructural level.

In addition to the satisfactory simulation of uniaxial processes,
the proposed model can take into account many facts that cannot
be simulated by uniaxial models like the effect of confinement
pressure, the surface pattern of the reinforcing bars, the dilation of
the adhesion zone and the associated cracking.

With respect to other models that do not require the explicit
discretization of the interface, the proposed model has the advan-
tage of capturing the influence of the confinement pressure inde-
pendently from other damage or plastic processes that can take
place in the concrete matrix.

The application examples and comparisons with experimental
results presented show the ability of the model to reproduce nu-
merical and experimental results from different researchers.
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Notation

The following symbols are used in this paper:
a, = unit vector in direction transversal to bars;
a, = unit vector in longitudinal direction of bars;
Cf = secant constitutive tensor of steel fibers;
) = isotropic strain hardening function;
D, = bar diameter;
d = internal variable of interface that represents
measure of length of adhesion zone;
d" = hardening variable for bond—slip mechanism;
d, = calibration parameter;
d; = calibration parameter;
d, = ending of kinematic strain softening threshold;
e = base of natural logarithms, e=2.71828;
F, = plasticity threshold function;
F, = slipping threshold function;
f; = concrete uniaxial tension strength;
G, = plasticity potential function;
G, = slipping potential function;

ky = volume ratio of steel bars;
k,, = volume ratio of concrete matrix;
L,q, = adhesion length;

L, = characteristic length that represents length of
finite element in longitudinal direction of steel
bar;

M = calibration parameter;

p = set of internal variables associated with
plastic process;

P, = set of matrix internal variables;

q = set of internal variables of composite;
separation between ribs;
s = set of internal variables associated with
slipping process;
W,(d") = weight function or transition function;
calibration constant;
calibration constant;
B = calibration constant;
3¢ = relative displacement between steel and
concrete in longitudinal direction of bar;
€ = composite strain tensor;
€¢ = fibers elastic strains;
g = fibers strain tensor;
€, = matrix strain tensor;
€, = strain tensor of nth component;
e’ = fibers permanent strains;
€’ = tensor that represents measure of interface
deformation;
g; = strain component due to slip in longitudinal
direction of bar;
= plastic consistency parameter;
s = slipping consistency parameter;
= composite stress tensor;
o, = fibers stress tensor;

|92
Il

R 2
I

ke
(.

q
|

o, = matrix stress tensor;
o’ = transversal confinement stress;
o' = longitudinal stress of steel bars;

G, = parameter that defines magnitude of cinematic
strain softening;
6(d”) = kinematic strain softening function mainly
associated with geometrical dilation;
7. = adhesion stress;
Wy, = free energy densities of steel bars considering
interface; and
V¥, = free energy densities of concrete matrix.

Subscripts
adh = adhesion;

b = bar;

e = elastic;

f = fibers;

m = matrix;

n = transversal;

p = plastic;

r = rib;

s = slipping; and

t = longitudinal.
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