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H I G H L I G H T S

• The Lambert function is used to predict the remaining discharge-time in batteries.

• A simple electrochemical model is developed for batteries and compared with electrical circuits.

• The Lambert approach outperforms the electrical circuit runtime prediction.

• An upper bound of the error between both methods is obtained.

• A method to predict future demand is proposed.
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A B S T R A C T

The prediction of the remaining discharge-time in real-time is an important Battery Management System in-
dicator in many engineering applications. It is the time in which the battery satisfies the load demanded until the
voltage reaches its admissible lower limit. It is often obtained by the difference between the current and final
charge scaled by a constant discharge current. The final charge can be obtained using a simple battery model like
a pure integrator which leads to a simple but inaccurate solution. A more precise estimation is obtained by
running models that take into account the Rate Capacity Effect but they are time consuming.

In this paper we propose to use the Lambert function for an accurate and fast prediction of the remaining
discharge-time using a simple electrochemical model. We demonstrate that the errors in the prediction are
similar to that obtained by running the well known electrical circuit. In order to illustrate the method, ex-
perimental parameter identification and remaining discharge-time predictions are carried out using a com-
mercial Lithium-ion battery type.

1. Introduction

The Remaining Discharge-Time (RDT) is the period of time in which
the battery, starting at a given initial condition, is able to satisfy the
demand profile of current until the voltage reaches its admissible lower
limit, Emin. Therefore, it becomes important for Battery Management
Systems. The methods reported are based on the knowledge, in real-
time, of the remaining discharge capacity which is proportional to the
difference between present State of Charge, SoC (0) and final SoC (Δ )t ,
where Δt is the RDT of the battery. For example the RDT of a battery
with capacity Q for a constant discharge current of amplitude I is given

by,

= −Q
I

SoC SoCΔ ( (Δ ) (0))t t (1)

There are several and diverse reported methods to estimate SoC (0).
It can be obtained in real-time using model-based observers [1], Cou-
lomb Counting [2], or the differential voltage analysis [3]. But, the case
of predicting SoC (Δ )t is more difficult because it depends on the dis-
charge load profile and the dynamics of the battery. Methods for ob-
taining SoC (Δ )t can be grouped in two sets, those based on model si-
mulation and those obtained by characteristic maps.

A model-based approach consists in obtaining the states responses
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by model simulation. Since the dynamics of a battery is governed pri-
marily by mass diffusion processes, precise electrochemical models are
computationally intensive. In order to avoid running the model,
Rakhmatov and Virudhula [4], developed an analytical expression as-
suming planar diffusion processes of the electro-active species inside
the battery. However, due to the complexity of the model, the solution
of the equations must be approached using iterative methods. Thus,
considering the limited computational power of the BMS, reducing the
model order to a minimum becomes necessary. A widely used reduced-
order model (ROM) is the electrical circuit. In case of known discharge
current profiles, the predicted SoC (Δ )t is obtained by simple simulation
of the ROM, often called runtime prediction, until the voltage Emin is
reached, [5]. For unknown current profiles, the same idea is used
coupled with current predictions, [6]. Thus, the main drawback of
obtaining the Predicted Remaining Discharge-Time (PRDT) by simula-
tion in real-time is the computational cost and time consumption.

Other methods are based on considering the battery as a pure in-
tegrator and the errors are corrected by means of lookup tables. The
advantage of using lookup tables is their simplicity but the prediction
has poor accuracy because part of the battery internal dynamic is ne-
glected. To improve the accuracy, several adhoc calibrations are pro-
posed in [2], [3], [7].

In this paper, based on an electrochemical approach, we present a
simple electrochemical model composed by the cascade of a pure in-
tegrator, a high pass-filter (HPF), and the Electromotive Force (EMF ).
All these components are related to explicit important electrochemical
states like the SoC and the electrode surface charge concentration,
which is a key variable for describing the concepts of the Rate Capacity
Effect. Using this electrochemical model we present a closed solution
for PRDT using the Lambert function.

The rest of the paper is organized as follows: in section 2 the elec-
trochemical model is presented and their equations in terms of transfer
function and state-space representation are obtained. In section 3, the
explicit direct solution of PRDT for constant load profile using the
Lambert function is presented. Using this approach, two different cases
of discharge current are analysed: known constant current and un-
known profile. In case of unknown profiles a prediction based on the
moving averaged past values is proposed. In section 4 the model
parameters identification using a periodic pulse of discharge current is
developed. In section 5 the experimental results obtained with a com-
mercial Lithium Ion (Li-ion) battery are used to illustrate the proposed
method. Finally, in section 6, the conclusions are presented.

2. Electrochemical model

A battery is an electrochemical system composed of two electrodes
immersed in an electrolytic media with an adequate porous separator.
During discharge, the negative electrode is oxidized, while the positive
electrode is reduced. The process is reversed during charge, being this
global process responsible of the stored or released energy. At each
electrode, the overall electrochemical processes involve a charge
transfer reaction that takes place at the active material/electrolyte in-
terface. This mechanism is coupled to the mass transfer process that
could be occurring in the active material solid phase and/or the elec-
trolyte.

The charge transfer process: The electrochemical reactions that take
place at the electrochemical interface of the positive electrode (and
simultaneously in the negative one) give rise to the battery current, I.
Considering the kinetics follows a one-step reaction mechanism, and
neglecting the capacitive currents related to the double layer, the cur-
rent can be described by the Butler-Volmer equation as follows [8]:

= − −− −I k X e k X e(1 )r
β ψ η

o
βψ η(1 ) (2)

where = −+η E Eeq is the positive electrode overpotential; +E is the
voltage of the positive electrode and Eeq is the equilibrium constant

voltage; ∈X (0,1) is the surface-fractional concentration with respect to
the saturation of the reactant at the interface; kr and ko are constants
that depends on the concentration of the reactants; ψ is a constant given
by the quotient of the Faraday constant divided by the universal gas
constant and the temperature and ∈β (0,1) is the symmetry factor.

The battery terminal voltage, E, is given by the difference of the
electrode potentials and the voltage loss due to the internal resistance,
r, as follows:

= − −+ −E E E Ir (3)

= + − −−E η E E Ireq (4)

where −E is the constant voltage of the non-limiting electrode. By re-
placing η from (4) in (2) the Butler-Volmer equation can be written as,

= − −+ − +I K X e K X e(1 )r
ψ E Ir

o
ψ E Ir( ) ( ) (5)

Where = −−K k er r
E E( )eq ; = − −−K k eo o

E E( )eq and at room temperature,
= −ψ V19.7 1. When =I 0, the terminal voltage becomes the Open

Circuit Voltage (OCV ) as follows:

− = −K X e K X e(1 )r
ψ OCV

o
ψ OCV (6)

Taking logarithm on both sides of (6) the OCV is,

= + ⎛
⎝ −

⎞
⎠

OCV K K X
X

ln
1a b (7)

where =K ψ1/2b and =K K K Kln( / )a b o r . The relation described by (7) is
called Electro-Motive Force, (EMF ). Due to the relaxation of the system,
in steady state, the electrode concentration X in both electrodes are
homogeneous and equal to the SoC , therefore, the EMF can be obtained
experimentally by measuring the OCV , in steady state, for different SoC
levels.

On both electrodes there are secondary reactions that makes the
EMF , although similar, not exactly the same as the ideal Butler-Volmer
equation (7). Then, denoting the EMF generically as f X( ), the re-
lationship between concentration, current, and terminal voltage of the
battery, denoted here by F X E I( , , ), has the following expression:

= − + =F X E I E f X Ir( , , ) ( ) 0 (8)

The mass transfer process: The concentration X is determined by the
dynamics of the mass transport, essentially diffusional processes of the
reactants either in the electrolyte or in the electrode active materials.
The diffusional processes governed by Fick's laws constitute the second
part of the model. The transport processe is a distributed parameter
system formulated in terms of the Laplace Transform with the following
general expression:

=S S S( ) ( ) ( )   (9)

where S is the Laplace complex variable; S( ) is the Laplace Transform
of the diffusional process; and S( ) and S( ) are the Laplace Transform
of X t( ) and I t( ), respectively. In Ref. [9], the expression of S( ) for
finite diffusion in planar, cylindrical and spherical geometry with a
Nernstian or impermeable diffusion layer boundary conditions is ob-
tained. Multiplying and dividing by SQ in (9) the diffusional process
can be written as a product of a pure integrator and the impedance G s( )
as follows:

=S G S S( ) ( ) ( )  (10)

=S S SQ( ) ( )/  (11)

where, =G S S SQ( ) ( ) and S( ) is the Laplace Transform of SoC t( ).
In Ref. [10] it is shown that G S( ) is a HPF with unitary steady-state gain
and model the Rate Capacity Effect (RCE) of the battery. The RCE is the
phenomenon of the battery by which the capacity depends on the
charge/discharge profile. Great charge demands reduces excessively the
voltage. In Ref. [9], the transfer functionG S( ) for the planar, cylindrical
and spherical electrode particle geometries were devised and they are
depicted in Table 1.
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Models as those depicted in Table 1, are infinite dimensional and
cannot be used for real-time applications, instead ROMs are used. We
consider a unitary gain first order pole-zero approximations of RCE,
named G S( )1 as follows:

= +
+

< <G S aS
ps

p a( ) 1
1

; 01

(12)

We use the notation =G 10 for ideal batteries modelled as a pure
integrator without RCE. In order to compare the performance of the
reduced-order approximation respect to the full order model listed in
Table 1, the energy of the difference between the concentration X of the
full order model and the corresponding of the ROM is computed. The
square root of this energy is the RMSE of the difference and can be
obtained in frequency domain using the Parseval Theorem. Using
equation (10), the RMSE of the difference between full and reducer
order approximation of X is given by:

∫= ⎡
⎣⎢

− ⎤
⎦⎥−∞

∞
RMSE G jω G jω jω dω( ( ) ( )) ( ))i 2 2

1/2


(13)

The substitution =S jω in equation (10) was used to obtain the
expressions in frequency domain. Using a pulse load of current as in
Fig. 1 and G S( ) from Table 1, the RMSE for spherical and planar dif-
fusions as a function of the pulse duration, T, is shown in Fig. 2 for =i 0
and =i 1. Instead of pulse duration, in these figures we use the C-Rate.
The C-Rate (C T/ ) means that a completely charged battery is entirely
discharged in T-hours. Adopting a typical value of the time constant
diffusion of G S( ), = −sΓ 37.5 1, the parameters a and p of the G S( )1 are
optimized for each value of the C-Rate in the range [0.1–10]C in order
to obtain the lower bound, named GLB

1 in Fig. 2, of the RMSE. The error
when the parameters are identified using pulses of 0.1C, denoted as G0.1

1 ,
and 1C, denoted as G1

1, are also depicted in Fig. 2 in order to show that
the error performs very close to the lower bound no matter the specific
value of C-rate of the pulse. It can also be observed that the first order
approximation reduces the error significantly with respect to the zero
order approximation, =G 10 and the error becomes zero when C-Rate is
lesser than one.

2.1. Step response of the reduced-order electrochemical model

The complete model of the battery is formed by the cascade of the
pure integrator, with gain − Q1/ , the high pass filter representing the
RCE and the charge transfer equation (8). A schematic representation of
the electrochemical model is depicted in Fig. 3. The reduced order
electrochemical model (ECHM) is obtained using G S( )1 . From this
ECHM, the time step response of a current with amplitude I, for >t 0, is
given in matrix time-domain formulation as follows:

= +ζ t A t ζ B t I( ) ( ) (0) ( )q q q q (14)

= −E t f X t Ir( ) ( ( ))q q (15)

where = ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢ −

⎤
⎦⎥

= ⎡
⎣⎢

−
− − −

⎤
⎦⎥

− −

−

ζ t
SoC t

X t
A t

e e
B t

t
p a e t

( )
( )

( )
; ( ) 1 0

1
; ( )

( )(1 )

q q t p t p q

t p Q

/ /

/
1

;

This expression will be useful for the determination of the remaining
time in next section.

3. PRDT using the ECHM

Given arbitrary initial values of the SoC and X at time t we distin-
guish two different scenarios for the PRDT, 1) Constant-current load
and 2) Unknown future piecewise load.

3.1. PRDT for constant-current

Assuming a constant load of amplitude I, starting at time =t 0, the
concentration X at time Δt is obtained from (14) as,

= − +

+ − − −

− −

−

( )
( ( ) )

X e SoC e X

p a e I
Q

(Δ ) 1 (0) (0)

( ) 1 Δ

t
p p

p
t

Δ / Δ /

Δ /

t t

t
(16)

it can be written in a compact form as

+ + =−ρ e ρΔ 0t
p

1
Δ /

2
t (17)

Where ρ1 and ρ2 are given by:

= − − −ρ X SoC Q
I

p a( (Δ ) (0)) ( )t1 (18)

= − + −ρ SoC X Q
I

p a( (0) (0)) ( )2 (19)

Both ρ1 and ρ2 are known quantities that depend on the initial
conditions and X (Δ )t is a priori known using (15),

= +−X f E Ir(Δ ) ( )t min q
1 (20)

Multiplying by +p e(1/ ) ρ p(Δ )/t 1 both sides of (17) yields

=we yw (21)

where = +w ρ p(Δ )/t 1 and = −y ρ p e( / ) ρ p
2

/1 . The value of w is obtained
solving equation (21) using the Lambert function =w yw[ ], [11]. Fi-
nally, the RDT is obtained at any time by,

= −w p ρΔt 1 (22)

Although the Lambert function, has not an explicit expression, it can
be well approximated using closed expressions or accessed via lookup
table (see figure in the supplementary material).

Remark 1. In case of an ideal battery, =G 10 , =a p and the system
fulfils =SoC X . Thus, =ρ 02 , =w 0, = =SoC X(Δ ) (Δ ) 0t t , and the RDT
gives, as expected:

= − =ρ SoC Q
I

Δ (0)
t 1 (23)

Table 1
The analytical expressions of G S( ) for different geometries, where =ϕ SΓ , Γ
is the time constant diffusion also known as the characteristic length of the
electrode; where I 0 and I1 are the first kind modified Bessel functions of zero
and first order.

Planar Spherical Cylindrical

=G S ϕ ϕ( ) coth , =
−

G S( ) ϕ ϕ
ϕ ϕ

2

3
tanh

(tanh )
=G S( ) ϕI ϕ

I ϕ

0 ( )
1( )

Fig. 1. Pulse of current and diffusional time-response.
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This is often called SoC-based method for PRDT.

3.2. PRDT for unknown future piecewise load

In cases where the future load is unknown, based on the past data, it
is possible to predict an equivalent more probable constant-current that
will discharge the battery. Then, the PRDT is obtained using equation
(22) with the equivalent constant discharge load I . This current can be
recursively obtained at each step k as a mean value of the historical data
as follows:

=
∑

∑
=

−

=
−

I k
λ I i

λ
( )

( )i
k k i

i
k k i
1

1 (24)

where λ is an scalar in the interval (0,1] called the forgetting factor. It
performs an exponential windowing over the previous current ampli-
tudes depending on the value of λ. If <λ 1, previous prediction con-
tributes only marginally to the present estimation of I k( ). The window's
width is reduced as λ decreases. In case of =λ 1, all past data are
equally weighted and the classical averaged value is obtained. Thus, the
value of λ determines the memory of the past data, which is a suitable
parameter to take into account for time-variant mobility dynamics. A
recursive formulation for numerator n k( ) and denominator d k( ) of
equation (24) is convenient to reduce the computational cost as follows:

∑ ∑= = +
−

= + −

≥
=

−

=

− −n k
k

λ I i I k λ
k

λ I i I k λn k k( ) ( ) ( )
1

( ) ( ) ( 1);

1
i

k i

i

k i

1 1

1

(25)

∑ ∑= = +
−

= + − ≥
=

−

=

− −d k
k

λ λ
k

λ λd k k( ) 1
1

1 ( 1); 1
i

k i

i

k i

1 1

1

(26)

Finally, given initial values =n I(0) (0) and =d (0) 1 the time-var-
iant mean value at each k estimated over the exponentially-weighed
past samples is:

= + −
+ −

I k I k λn k
λd k

( ) ( ) ( 1)
1 ( 1) (27)

4. Electrical circuit model

For comparison performances we use the electrical circuit model
depicted in Fig. 4. The impedance of the RC-parallel circuits represents
the RCE and it is obtained using the voltage loss Z t( ), with Laplace
Transform S( ) . The first order approximation of the impedance has
the following expression:

= =
+

S
S

H S R
RCS

( )
( )

( )
1



 (28)

Using the Laplace Antitransform of equation (28), the time response
of the reduced-order electrical circuit model (ECM) to a current step of
constant amplitude I for >t 0 is given in matrix time-domain for-
mulation as follows:

= +ζ t A t ζ B t I( ) ( ) (0) ( )c c c c (29)

= − −E t f SoC t Z t Ir( ) ( ( )) ( )c c (30)

where

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

−
−

⎤
⎦⎥

− −ζ t
SoC t

Z t
A t

e
B t

t Q
R e

( )
( )

( )
; ( ) 1 0

0
; ( )

/
(1 )

;c c t RC c t RC/ /

Different from the case of the ECHM, the state variables SoC and Z
of the ECM are decoupled, thereby, PRDT requires the knowledge of
SoC (Δ )t which is impossible to obtain explicitly. Then, for the ECM is
not possible to obtain a direct PRDT calculation. Instead, recursive
numerical methods or discrete-time model simulations are needed.

Assuming the load-current is represented by a piecewise constant
load I t( ) during constant periods of time hs as it is shown in Fig. 5 and
using equations 29 and 30 the discrete-time response at sampling time

= +t k h( 1) s, where k is an integer, is given by the initial conditions of
the states at =t khs as follows:

+ = +ζ k A ζ k B I k( 1) ( ) ( )c c c c (31)

= − −E k f SoC k Z k I k r( ) ( ( )) ( ) ( )c c (32)

where khs was replaced for k for simplicity, =A A h( )c c s and =B B h( )c c s
are a matrix and a vector of constants. A working algorithm to obtain
the RDT, starting at present known values of SoC k( ) and Z k( ), consists

(a) (b)
Fig. 2. Performance evaluation of zero, G S( )0 , and first, G S( )1 order approximations of RCE, G S( ), for a) spherical diffusion and b) planar diffusion.

Fig. 3. Schematic representation of the electrochemical model.

Fig. 4. Electrical circuit model.

F. Quiñones et al. Journal of Power Sources 400 (2018) 256–263

259



of iterating equation (31) until the voltage of equation (32) reaches its
minimum admissible value, + ≤E k M E( )c min. The PRDT is an integer,
M, such as − < ≤M h Mh( 1) Δs t s. Note that the accuracy increases as hs
becomes smaller. The main advantage of this discrete-time approach is
the simplicity and straightforward implementation. However, this
method has a large consumption of time and computational cost due to
the simulation between samples.

Remark 2. In case of EMF was a linear function, say =f X αX( ) for
ECHM or =f SoC αSoC( ) for ECM, where α is a constant, both models
ECHM and ECM are equivalents under the following equalities

= −SH S Q α G S( ) ( ( ) 1)1 , and = −Z α SoC X( ). However, the EMF is
a nonlinear function and will lead to differences in the PRDT depending
on which model is used.

Remark 3. In the Appendix, a formal proof of the upper bound for the
differences between the PRDT obtained by ECHM and by ECM is given.
In short it is,

− ≤ =
′

C C
γ

f
Q
I

Δ Δ ; where
(Δ )tc tq B B

t (33)

Where Δtc is the PRDT of ECM using the discrete-time model si-
mulation described above and Δtq is the PRDT of ECHM calculated using
equation (22); γ is a bound given by the absolute maximum of the
voltage difference between both models; and ′ = ∂ ∂f f SoC(Δ ) /t is the
partial derivative of the EMF with respect to the SoC evaluated at true
RDT, Δt. For example using the reasonable value of ′ =f (Δ ) 2t and
supposing that the voltage difference between both models is bounded
by =γ 0.02 V, the upper bound of the difference between both PRDT,
for 1C, is lower than h0.01 . In summary, the difference between the
PRDT using both models is proportional to the upper bound of the
voltage difference of both models.

5. Experimental results

The first step is the identification of the EMF and the capacity Q of
the battery. After obtaining these results we proceed to the identifica-
tion of parameters a p, and rq of the ECHM, and R C, and rc of the ECM
according to the following procedure: with the battery fully charged at
E0 voltage, intermittent pulses of current are applied until the battery is
fully discharged reaching the steady voltage Eend as depicted in
Fig. 6(a). We call this periodic pulses of current, I t( )Δ . The period is N T
, where T is the duration of each pulse and N is the number of pulse
intervals until the transient of the RCE vanishes. The capacity is ob-
tained by adding all the charge decrements, = ×DQ I T from battery
fully charged to fully discharged. Since at the end of each period the
SoC is equal to X, the EMF is obtained by measuring the OCV and
computing the SoC by Coulombing Counting. The number of samples
obtained for the EMF is equal to the amount of pulses used to discharge
the battery. The discrete values of SoC depends on the amount of charge
that each pulse extracts. We consider equal pulse amplitudes for sim-
plicity but they can be different. All these operations are made by using

discrete-time sampled values of I t( )Δ at =t khs for = …k K1, , , where
Khs is the final time of the load profile.

We will show experimental results at room temperature on a com-
mercial lithium battery Samsung (EB-BG900BBC) with nominal capacity

=Q Ah2.8nom , and nominal voltage V3.8 . Starting in steady state with
=SoC 0.98 and =E V4.40 , regular intermittent 55 discharge current

pulses of A0.15 amplitude, each during =T h0.25 , were applied until
=SoC 0.12 and voltage equal to V3.4 was reached. The rest time be-

tween discharge pulses was h1.75 ( =N 7 times T), see Fig. 6(b). The
sampling period was =h s20s and the total experiment takes

× =K h h110s . The identified capacity was =Q Ah2.7 and the EMF is
shown in Fig. 6(d).

The parameters a p, and rq of the ECHM and R C, and rc of the ECM
are identified using the same load profile I t( )Δ with the EMF and Q
obtained before. The model parameters are obtained by minimizing the
Mean Squared Error, MSE , given by equation (34). The terminal vol-
tage error, ε k( ), = …k K1, , , is the difference between the measured
and the model-voltage valued at every =t k hs. The identification
procedure was made using the standard optimization algorithm Sim-
plex.

∑=
=

MSE ε k( )
k

K

1

2

(34)

In Fig. 6(c) the measured voltage and the ones obtained from the
numerical minimization from both models are shown. The identified
values are listed in Table 2.

Using the two identified models, we will evaluate the errors be-
tween PRDT through the Lambert solution in the ECHM and by running
a simulation of the ECM as described in section 4 for constant current
profile. For this purpose we use a set of six experiments of several
charge and discharge cycles each with constant current of random
amplitudes (see figure in the supplementary material). In all the ex-
periments, the battery was discharged until the voltage =E V3.43min
was reached. From this experimental set we obtain the real RDT values,

iΔ ( )t , and the PRDT iΔ ( )tq and iΔ ( )tc for both the ECHM and ECM re-
spectively, for =i 1 to 33. In the six experiments, the battery was
started from its steady state condition. The initial condition of the state
variables was obtained using the EMF . Thus, the states at actual time
are known by running recursively equations 31 and 32 for the ECM and
(14)–(15) for the ECHM. Using the values of the states at each k, the
PRDT is obtained using equation (22) for the ECHM and by running the
discrete-model equations 31 and 32 for the ECM until the voltage-
model fulfils the condition + ≤E k M E( )c min.

It must be noticed that for the case of ECM, the total error when
running the model is the sum of the modelling error plus the dis-
cretization error that depends on the selected sampling period hs as
described in section 4. Thus, large sampling periods means fewer
number of recursions but large uncertainty error and viceversa. Con-
trary to the ECM, the predictions using the Lambert approach is not
affected by the sampling error.

In Fig. 7, the PRDT errors obtained from the six experiments by
using the Lambert function versus the error by running the ECM are
depicted. In Fig. 7(a) the sampling period used was =h s10s . The black
line represents the case where both error are equal, =Δ Δtq tc. The red
line is the linear regression fitted using the error data set where the
slope lesser than one indicates a better performance of the Lambert
approach with respect to ECM recursions. In the figures, the bound of
the difference between both estimations obtained by equation (33) is
also depicted. In Fig. 7(b) the same is shown but in this case using

=h s60s .
To evaluate the performance in the case of predicting the future

current, a new load profile was tested. In Fig. 8(a) the current profile
and the predicted mean value using equations 25–27 with =λ 0.985,

=λ 0.99 and =λ 1 are shown. The PRDT using equation (22) with the
current I calculate for each value of λ are shown in Fig. 8(b). It can be

Fig. 5. Arbitrary constant piecewise current, at constant intervals of hs dura-
tion.
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seen that it is possible to calculate the PRDT with an appropriate value
of λ, using the Lambert equation considering I instead of I.

6. Conclusions

The remaining discharge-time prediction using the Lambert func-
tion together with an electrochemical reduced-order model for re-
chargeable batteries was presented. Two possible load discharge sce-
narios were analysed: the known constant discharge current and the

unknown future discharge current. The predictions obtained were sta-
tistically evaluated showing bounded errors for different prediction
horizons. The proposed method has been compared to the well-known
procedure of estimating the remaining discharge-time by running in
real-time a reduced-order electrical circuit model. It was analytically
demonstrate and experimentally tested that the two models have a si-
milar performance with small bounded errors. However, using the
Lambert function, the latency time and the energy consumption of the
electrical circuit model approach are avoided.
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Appendix

The error between the true and ECM voltage, for constant current I, at time Δt is,

− = − + + =E E E f SoC Z Ir ε(Δ ) ( (Δ )) (Δ ) (Δ )min c t min t t c c t (35)

and at time Δtc is,

Fig. 6. (a) Schematic test signal I t( )Δ formed by periodic pulses of current with small area. (b) I t( )Δ signal of current applied to a commercial Li-ion battery in order to
identify the parameters of the ROMs. (c) Battery and ECHM and ECM voltage responses to I t( )Δ signal. (d) EMF curve obtained through I t( )Δ test.

Table 2
Optimal parameters obtained by minimizing the MSE
of the voltage error using the I t( )Δ profile.

ECHM ECM

= −a h0.591 1 =R 0.085 Ω

= −p h0.436 1 =C F13900
=r 0.152 Ωq =r 0.144 Ωc
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− = − + + =E E E f SoC Z Ir(Δ ) ( (Δ )) (Δ ) 0min c tc min tc tc c (36)

By substracting (36) to (35) we obtain,

− − − =f SoC f SoC Z Z ε[ ( (Δ )) ( (Δ ))] [ (Δ ) (Δ )] (Δ )tc t tc t c t (37)

Assuming that Δt is close to Δtc the left side of the equation can be approximated by the first term of the Taylor series expansion around time Δt as
follows:

≈ ′ ′ − ′ −ε f SoC Z(Δ ) ( )(Δ )(Δ Δ )c t s t tc t (38)

where ′ = ∂ ∂f f SoC/ , ′ = ∂ ∂SoC SoC t/ and ′ = ∂ ∂Z Z t/ are partial derivatives evaluated at =t Δt.
Using a similar reasoning for ECHM at time =t Δtq, the following holds:

≈ ′ ′ −ε f X(Δ ) ( )(Δ )(Δ Δ )q t t tq t (39)

where ′ = ∂ ∂ = ∂ ∂f f SoC f X/ / and ′ = ∂ ∂X X t/ . Taking into account the linear approximation around =t Δt and using Remark 2, both models are

Fig. 7. Blue: Lambert versus running-time PRDT error data set. Black: =Δ Δtq tc

line; Red: linear regression of data; Orange: error bound; (a) =h s10s . (b). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.) =h s60s .

Fig. 8. (a) Unknown load profile and online estimated mean current for different values of λ. (b) PRDT using the Lambert function for different values of λ.
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locally equivalents and ′ ′ − ′ ≈ ′ ′f SoC Z f X holds.Thereby, by subtracting (39) from (38) and taking absolute value we obtain the bound of the
difference between both PRDT as follows:

− ≈
−

′ ′
ε ε

f X
Δ Δ

(Δ ) (Δ )
( )(Δ )tc tq

c t q t

t (40)

≤
′ ′

γ
f X( )(Δ )T (41)

≤
′ ′

=
′

γ
f SoC

γ
f

Q
I( )(Δ ) (Δ )t t (42)

where γ is the upper bound of voltage error −E t E t( ) ( )c q , ∀ t . The inequality (42) was obtained using the fact that ′ =SoC I Q/ for constant discharge
current and ′X is greater than or equal to ′SoC , ∀ t , see Fig. 1.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jpowsour.2018.07.121
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