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Abstract

There are many situations in which it is necessary to increase the capacity of structures in use. This need maybe

either for a change of use or because the structures have suffered some damage or have shown little resistance in case

of extreme loads such as earthquakes. The most common methods for repair and retrofit of reinforced concrete columns

are concrete jacketing, steel jacketing and fiber wrapping. This last type of reinforcement has many advantages as it

offers a high-strength, low-weight and corrosion-resistant jacket with easy and rapid installation. The reinforcement

with composite materials improves shear and compression strength and ductility as a result of concrete core confine-

ment. The present analytical and numerical ability to quantify the efficiency of fiber confinement is rather limited, espe-

cially with respect to ductility.

A constitutive model that approximately reproduces the behavior of structural concrete elements under confinement

is developed in this paper. The model allows the assessment of concrete columns and bridge piles repaired and/or rein-

forced with fiber reinforced composites (FRP). The model presented is a modification of an existing coupled plastic

damage model. A new definition for the plastic hardening variable and a new yielding surface with curved meridians

are proposed. Both improvements enable the adequate reproduction of concrete behavior in high confinement

conditions.

The comparison of numerical and experimental results shows the model capacity to simulate concrete behavior

under triaxial compression conditions like the ones present in concrete columns confined with fiber reinforced

composites.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There are a number of situations where it may be-

come necessary to increase the load-carrying capacity

of a structure in service. These situations include change
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of loading or usage, and the cases of structures that have

been damaged. Deterioration of reinforced concrete

(RC) columns due to corrosion of the reinforcing steel

and spalling of concrete has been a major problem for

the aging infrastructure [1].

The most common methods for repair and retrofit of

RC columns are concrete jacketing, steel jacketing

and fiber wrapping. FRP reinforcement has many

advantages, as it offers a high-strength, low-weight and
ed.
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corrosion-resistant jacket with easy and rapid installa-

tion and minimal change in the column geometry. In

particular, carbon FRP, of all the composites, shows

high durability and an E-modulus comparable to steel

or even higher. Also, fiber wrapping does not require ac-

cess for heavy vehicles such as cranes, contrary to the

other two methods [2].

The wrap enhances shear strength, axial strength and

ductility of the column. It produces lateral strain restric-

tions that react to the Poisson-type lateral expansion

tendencies of the concrete core, and generates side pres-

sures, i.e. confinement. For flexural strengthening, fiber

reinforced polymer (FRP) sheets or near-surface-

mounted FRP rods can be bonded to the column in

the axial direction [2].

During the past decade efforts have been increasingly

concentrated on the replacement of the conventional

steel reinforcement in concrete elements by fiber rein-

forced polymer (FRP) reinforcement. Since the first

application of fiber wrapping on concrete chimneys in

Japan [2], there has been a number of studies on the

use of this technique. The method has been put into

practice with great success in several states such as Cal-

ifornia, Nevada and New York. Both carbon and glass

fibers have been used in a variety of forms such as fabric,

straps, cable and pre-cured forms.

The structural effectiveness of FRPs in the rehabilita-

tion of existing structural systems has repeatedly been

demonstrated with full or large-scale structural tests at

the University of California, San Diego (UCSD) [3].

Carbon fabric overlays have been used to strengthen

and retrofit reinforced and unreinforced masonry walls

for seismic loads, as well as to restore and more than

double the displacement capacity in the repair of a

full-scale five-story reinforced masonry building tested

to failure under simulated seismic loads. Carbon fiber

overlays and strips have also been used to strengthen

reinforced concrete slabs (with and without openings)

and to strengthen large diameter prestressed concrete

pipelines to restore loss of load (water pressure)-carrying

capacity due to corrosion of the prestressing wires.

Bridge columns have been seismically retrofitted and re-

paired with fiberglass, carbon and hybrid composite

jackets, which were shown to be as effective as conven-

tional steel jackets.

The experimental investigation of the performance of

FRP sheet confinement shows that it can effectively en-

hance the strength and ductility of concrete as well as en-

ergy absorption, even at low volumetric ratios [4]. FRP

reinforcement exhibits an almost linear elastic behavior

up to failure that ensures an ever-increasing confining

pressure on the concrete core. The stiffness of the con-

finement constitutes one of the most important design

parameters. Recently, Shao and Mirmiran [5] evaluated

the implications of using FRP as primary and sole rein-

forcement for concrete structures in seismic regions
through an experimental and analytical investigation

on the cyclic response of two different types of laminated

glass FRP tubes filled with concrete. The study showed

that concrete-filled tubes can be designed with an appro-

priate laminate structure for a ductility level comparable

to that of conventional reinforced concrete columns.

The present analytical ability to quantify the behav-

ior of FRP confined concrete columns is rather limited,

especially with respect to ductility. As a result, code

requirements on reinforcement may be too conservative

in most cases, and may still be insufficient for some sit-

uations of extensive deformations caused by severe

earthquake loads [6].

Concrete under stress is probably among the least

understood (until a few years ago) and most extensively

modelled structural materials. At present the mechanical

behavior of concrete demonstrates a wide range of unu-

sual features that cannot be completely described by

classical constitutive theories of elasticity and plasticity

and make concrete a difficult material to model.

The objective of this paper is to present a constitutive

model for concrete under triaxial stresses that predicts

the load-deformation material response under different

load combinations fairly accurately. The use of this

model in a nonlinear finite element program in combina-

tion with an orthotropic elastic brittle model for FRP

sheets allows for more reliable quantitative calculations

of the strength and ductility of FRP confined concrete

columns.

The model is based on a coupled plastic damage the-

ory [7] that can accurately reproduce the behavior of

confined concrete. The model takes into account the

specific characteristics of the dilatational response of

confined concrete. The predictions of the model are

compared against the experimental data of different

strength concretes under triaxial compression and FRP

confined concrete columns. From the comparison it

can be concluded that the predicted behavior of concrete

and that of the composite system is accurate enough for

a wide range of materials strength and amount of

confinement.
2. Behavior of concrete confined with fiber composites

2.1. Behavior of concrete under triaxial compression

Concrete is a non-homogeneous, anisotropic material

whose response is nonlinear even under small stress lev-

els. Furthermore, concrete exhibits a different behavior

under tension and compression stresses. In compression,

the response hardens up to a peak stress value that de-

pends on the level of lateral confinement. The post-peak

behavior depends in general on the level of lateral con-

finement. Under low confinement, the post-peak re-

sponse is brittle softening. For increasing confinement
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stresses, the response of concrete changes to ductile

hardening. Under tensile stresses, concrete cracks and

eventually loses strength entirely [8].

Fig. 1 shows the stress–strain curves for two different

strength concretes [9]. The initial slope of the stress–

strain curve that represents the stiffness in the undam-

aged concrete under uniaxial compression increases with

an increase in the nominal compressive strength. It

seems that these differences in the initial stiffness can

be linked directly to the differences in internal structure,

the most descriptive and prominent measure of which is

the degree of porosity. This suggests the concept of an

upper-bound strength, associated with a virtual zero-

void condition [10,11].

As imposed axial strain increases, damage starts to

accumulate in the material structure, manifested by a

deviation from the linear elastic response in the strain–

stress plot. Although no linearity is delayed in all aspects

of the behavior of higher-strength concretes, once it

starts, it occurs at a much faster rate than for lower

strength material. The post-peak response is, therefore,

characterized by a sudden decay [10,11].

Fig. 2 shows the curve relating volumetric strains

with axial stress for a normal strength concrete [12].

The idealized elastic behavior would predict a net con-

traction. However, the post-peak range of the stress–

strain response is characterized by the complete reversal

of volumetric strains into the range of volumetric expan-

sion (dilation). This point, which marks the onset of a

dramatic loss of resistance, is a critical milestone in the

behavior of concrete because it also identifies the onset

of uncontrolled crack propagation and growth that

under normal testing of high-strength materials is

almost instantaneous [10,11].

Confinement is known to delay loss of stiffness and

strength and to increase the deformability of concrete.

The results of concrete compression tests under different

confinement pressures [12] are shown in Fig. 3. The
higher internal stress and higher deformability devel-

oped by the confined concrete simply imply a delay in

the onset of unstable crack propagation. Evidently, con-

finement provides the necessary lateral kinematic re-

straint that prevents volumetric dilation and keeps the

concrete fragments together, to an extent that failure

can be delayed. Fig. 4 shows the volumetric response

of concrete under different confinement pressures [12].

It can be observed that dilatation can be totally pre-

vented in compression tests under very high confining

pressures.

The response of concrete under triaxial compression

greatly depends on the formation and expansion of

microcracks. Several test programs have shown that

the evolution of the microcracks governs the concrete

brittleness, ductility, dilatancy and failure modes. All

these phenomena depend in general on the triaxial state

of stress applied to the concrete. Under low lateral
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confinement, failure in compression tests is caused by

vertical tension splitting. A sharp post-peak loss of

strength is observed. Under gradually larger confine-

ment, cracking and damage become more distributed

and concrete becomes ductile, with little or no post-peak

degradation [8].

2.2. FRP confinement

Fig. 5 shows the response curves of cylindrical con-

crete specimens confined by glass fiber reinforced com-

posites [13,14] and indicates a significant enhancement

in strength and ductility of concrete. Furthermore, un-

like steel-encased concrete, response of FRP-encased

concrete is almost bilinear with no descending branch
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Fig. 5. Stress–strain curves for concrete confined with GFRP

tubes [13,14].
[13]. This difference is due to the elastic behavior of

FRP composites. The response consists of three distinct

regions. In the first region, the behavior is similar to that

of plain concrete, since lateral expansion of the core is

insignificant. With the increase in microcracks, a transi-

tion zone is entered where the tube exerts a lateral pres-

sure on the core to counteract the stiffness degradation

of concrete. Finally, a third region is recognized in which

the tube is fully activated, and the stiffness is generally

stabilized around a constant rate. The response in this

region is mainly dependent on the stiffness of the tube.

Fig. 6 shows the results obtained for FRP-encased

concrete under quasistatic cyclic load [13,14]. The

stress–strain path obtained for monotonically increasing

load may serve as an envelope for the case of cyclic load

characterized by loading and unloading branches form-

ing loops. While the loops become wider beyond the

peak strength of unconfined concrete, stiffness degrada-

tion is not as severe as that of steel-encased concrete.

The volumetric response of FRP-encased concrete

[13,14] is shown in Fig. 7. Despite some volume expan-

sion beyond the critical stress of confined concrete, the

linearly increasing hoop stress of FRP eventually cur-

tails the volume expansion and reverses its direction. It
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Fig. 7. Volumetric strains of GFRP-encased concrete [13,14].
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is clear that with an adequate amount of external fiber

composites, lateral expansion of concrete can be effec-

tively avoided.

Fig. 8 shows the dilatational response of FRP-

encased concrete that consists of three regions that

generally correspond to those already explained for

stress–strain curves [13,14]. The initial rate of dilation

l ¼ � det
del

is the same as the Poisson ratio of unconfined

concrete. The dilation rate remains constant during the

early stages of loading, when concrete behaves elasti-

cally. As severe microcracks develop, the dilatation rate

begins to increase. For unconfined concrete, with the

growth of cracks opening dilatation becomes unstable.

However dilatation of FRP-encased concrete reaches a

peak value after which it decreases and finally stabilizes

at an asymptotic value.
3. Existing models for confined concrete

The modelling of the behavior of FRP-confined con-

crete is mostly based on semiempirical equations like

that of Samaan et al. [14], which uses a bilinear stress–

strain curve and incorporates stiffness of the jacket in

calculating lateral strains. The model is shown to work

well for concentrically loaded columns [16]. For these

models, the stress–strain response provided is strongly

dependent on the experimental data used to deduce

them. This disadvantage can be overcome by using the

theories of elasticity and plasticity as it has been success-

fully applied in steel confined concrete [4]. This provides

a solid theoretical framework to examine concrete col-

umns and gives reasonable predictions.

Recently, Kown et al. [16] developed a hypoelasticity-

based concrete model and validated it through correla-

tion studies with experimental tests on concrete cylinders

confined by different mechanisms, including steel and

fiber reinforced polymer jackets. The model was also
applied to the analysis of the three dimensional response

of concrete specimens and RC columns. The concrete

model is orthotropic, with the axes of orthotropy paral-

lel to the principal stress directions. Principal stress and

strain directions are not coaxial. The model is based on

the concept of equivalent uniaxial strains. The original

model by Balan et al. [8] was modified to include the

coupling between the deviatoric and the volumetric

stresses. The comparison with experimental results

shows good agreement, both in terms of the radial and

axial strains and in the prediction of the axial stress at

failure, but the complete stress–strain curve is not well

reproduced by numerical results neither the dilatational

response in the first load stages.

Mirmiran and his co-workers [17,2] developed a non-

linear finite element model with a non-associative Druc-

ker–Prager plasticity to account for restraint pressure

sensitivity of concrete. The predicted stress–strain curves

are closed to test results. Volumetric expansion tendency

of confined concrete, however, is not preserved.

Karabinis and Kiousis [6] modified and calibrated a

Drucker–Prager-type constitutive model so as to provide

the FRP-confined concrete stress–strain response. In this

confinement model concrete responds as an elasto-plas-

tic material following a Drucker–Prager-type [14] hard-

ening–softening criterion. For the analytical model

description, 14 material parameters are used to repro-

duce concrete behavior. From the comparison with

experimental results it can be concluded that the model

predicts bilinear behavior of the composite system in

axial direction but radial and volumetric results are

not shown.

Plasticity theory has been used by many authors.

Nevertheless, there are many aspects related to the dila-

tion response that are still not well represented. It seems

that plasticity theory cannot account for all microstruc-

ture changes taking place in confined concrete. An alter-

native could be the use of theories based on the

Disturbed State Concept (DSC) developed by Desai

and Zhang [18]. Although this theory has been mainly

applied to granular or cohesionless materials, it consti-

tutes a potential tool for the simulation of confined

concrete behavior. This theory assumes that applied

mechanical and environmental forces cause disturbances

or changes in the material microstructure with respect to

its behavior under its relative intact (RI) state. The

material is initially in a full or a partial RI state, depend-

ing upon the initial disturbance. During the deformation

the material in the RI state is transformed continuously

into the fully adjust (FA) state through a process of nat-

ural self-adjustment of its microstructure. At any stage,

the material is treated as the mixture of the RI and FA

parts, which are distributed (randomly) over the mate-

rial elements. The observed response of the mixture is

expressed in terms of the responses of the materials in

the RI and FA states by using the disturbance function,
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which can be considered to denote deviation of the ob-

served behavior from those of the two reference states.

The behavior of the material in the RI state can be sim-

ulated by using a theory based on continuum mechanics

such as linear or nonlinear elasticity, elastoplasticity,

viscoplasticity or thermoviscoplasticity. The FA state

can be represented as (1) the �failed� material which acts

like a �void� as in the classical damage theory and can

carry no stress at all, (2) it can carry hydrostatic stress

but no shear stress, like a constrained liquid, or (3) it

can continue to carry the shear stress for a given hydro-

static stress, reached up to that point and can deform

under constant volume, as in the case of the critical state

soil mechanics concept; here, the material acts like a

constrained liquid–solid. As the FA material is con-

strained by the surrounding RI material, the two latter

simulations are considered to be more realistic than

the first one. At this time, the disturbance, D, is assumed

to be a scalar; however, it can be expressed as a tensor.

The DSC includes the coupled (observed) response, as it

is influenced by the collective behavior of the interacting

mechanisms in the RI and FA states.

An alternative to this type of model is a combination

of plasticity and damage theories that accounts for the

microstructure changes in a phenomenological way.
4. Proposed model

The model presented in this paper is thermodynami-

cally consistent and comes from a generalization of plas-

ticity theory [7,19,20] and isotropic damage theory. The

plastic model has been adapted to be able to reproduce

the behavior of concrete under triaxial compression.

Coupling of damage and plastic strains is achieved by

solving both problems simultaneously [7,21]. In this

way correct energy dissipation is also assured.

The use of a second degree function in the compo-

nents of the stress tensor to define the elastic threshold

and the ultimate strength allows the accurate reproduc-

tion of the variation of ultimate strength with hydro-

static pressure. The hardening variable has also been

improved to reproduce energy dissipation in triaxial

compression. The reproduction of dilatational response

and ductility under high confinement pressure is

achieved with the introduction of damage for levels of

stress close to the ultimate strength in uniaxial

compression.
5. Thermodynamic basis

The constitutive model proposed is based on the

hypothesis of uncoupled elasticity [22,23]. According to

this hypothesis, the total free energy density per unit vol-

ume W can be supposed to be formed by two indepen-
dent parts: an elastic part We and a plastic part Wp,

corresponding to the elastic and plastic processes

respectively,

Wðeeij; jp; dÞ ¼ Weðeeij; dÞ þWpðjpÞ ð1Þ

where eeij is the elastic strains tensor, jp is the plastic

hardening variable and d is the damage variable.

For small strains and thermally stable problems, the

elastic part of free energy density is written as quadratic

function as follows,

Weðeeij; dÞ ¼
1

2
½eeijCijklðdÞeekl� ¼

1

2
½eeijð1� dÞC0

ijkle
e
kl�

¼ ð1� dÞW0ðdÞ ð2Þ

where CijklðdÞ ¼ ð1� dÞC0
ijkl is the secant constitutive

tensor affected by the evolution of damage, C0
ijkl is the

elastic constitutive tensor of the virgin material and W0

represents the elastic free energy density for the virgin

material. The damage variable d varies from 0, for the

undamaged virgin material, to a maximum value

dc 6 1, for the completely damaged material, i.e. 0 6

d 6 dc.

The fulfillment of inequality of Clausius–Planck for a

given thermodynamic state is guaranteed if the stress is

obtained as follows,

rij ¼
oWe

oeeij
¼ ð1� dÞ oW

0

oeeij
¼ Cijkle

e
kl ¼ ð1� dÞC0

ijkle
e
kl

Cijkl ¼ ð1� dÞC0
ijkl; rij ¼ ð1� dÞr0

ij; r0
ij ¼ C0

ijkle
e
kl

ð3Þ

where rij is the stress tensor.

Mechanical dissipation must satisfy first inequality of

Clausius–Planck and can be decomposed in two parts:

one part due to the plastic process Np
m and the other

due to the damage process Nd
m,

Nm ¼ rij _e
p
ij �

oWp

ojp
_jp|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Np
m

� oWe

od
_d P 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Nd
m

ð4Þ

where epij ¼ eij � eeij is the plastic strain tensor and eij is
the strain tensor.

5.1. Plastic process

The plastic process is described by a generalization of

classical plasticity theory that takes into account many

aspects of geomaterials behavior. Elastic threshold is

defined by a yield function,

F pðrij; j
pÞ ¼ f pðrijÞ � Kpðrij; j

pÞ ¼ 0 ð5Þ

where f(rij) is the equivalent stress, Kp(rij, j
p) is the

yielding threshold and jp is the plastic hardening

variable.
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The following rules are used for the evolution of plas-

tic strains _epij,

_epij ¼ _k
oGðrmn; jpÞ

orij
ð6Þ

where _k is the plastic consistency factor and G is the

plastic potential function.

The plastic hardening variable jp is obtained normal-

izing energy dissipated by the plastic process to unity

and varies from 0, for the virgin material, to 1, when

the maximum energy is plastically dissipated. The origi-

nal definition in [7] has been modified to take into ac-

count the plastic energy dissipation process under

triaxial compression,

_jp ¼ r
g�pf

þ ð1� rÞ
g�pc

� �
rij _e

p
ij ¼ _khpij

oG
orij

hpij ¼
r
g�pf

þ ð1� rÞ
g�pc

� �
rij

ð7Þ

where r represents a measure of the ratio between tensile

and compressive stresses and can be evaluated as follows,

r ¼

P3
i¼1

hrii

P3
i¼1

jrij
hrii ¼

1

2
½ri þ jrij� ð8Þ

ri are the principal stresses.

g�pf ¼
P3
i¼1

jrijRop

f pðrijÞ

0B@
1CA

1þHð�rÞ

gpf ; g�pc ¼
P3
i¼1

jrij

f pðrijÞ

0B@
1CAgpc

Hð�rÞ ¼
0 if r > 0

1 if r 6 0

( ð9Þ

Rop is the relation between the yielding thresholds in

uniaxial compression and that corresponding to uniaxial

tension; gpf and gpc are the maximum energy densities dis-

sipated by the plastic process in uniaxial tension and

compression processes respectively. In the case of a ther-

modynamic process with no damage dissipation, they

can be evaluated as follows,

gpf ¼
Gf

lc
and gpc ¼

Gc

lc
ð10Þ

where Gf and Gc are the fracture and crushing energies

respectively [19] and lc is an external parameter that de-

pends on the characteristic size of the finite element

mesh that is introduced in order to obtain objectivity

of the solid response respect to the mesh size [24].

The original definition of the plastic hardening vari-

able [7,21] was modified by the introduction of an expo-

nent in the terms between brackets in Eq. (9) in order to

increase energy dissipation under biaxial and triaxial

compression (r = 0) according to experimental results.
The following evolution equation is proposed for the

equivalent yielding threshold [7,21],

Kðrij; j
pÞ ¼ rrtðjpÞ þ ð1� rÞrcðjpÞ; ð11Þ

where rt(j
p) and rc(j

p) represent the evolution of the

yielding threshold in uniaxial tension and compression

tests respectively.

Loading/unloading conditions are derived from the

Kuhn–Tucker relations formulated for problems with

unilateral restrictions,

_k P 0 F p
6 0 _kF p ¼ 0 ð12Þ
5.2. Damage process

The damage threshold is described by a damage func-

tion in the following way [7,21],

F d ¼ f dðrijÞ � Kdðrij; j
dÞ ¼ 0 ð13Þ

where f d(rij) is the equivalent tension, kd(rij, j
d) is the

equivalent damage threshold and jd is the degradation

variable.

The equivalent tension f d(rij) can be evaluated using

known yielding functions (Tresca, Von Mises, Mohr–

Coulomb or Drucker–Prager) or any function specially

developed for damage.

The degradation variable jd varies from 0, for the

virgin material, to 1, for the completely damaged mate-

rial and is obtained normalizing energy dissipated by

damage to unity [7,21],

_jd ¼ r
g�df

þ ð1� rÞ
g�dc

� �
W0 _d ¼ hd _d

hd ¼ r
g�df

þ ð1� rÞ
g�dc

� �
W0

ð14Þ

g�df ¼
P3
i¼1

jrijRod

f d

0B@
1CA

1þHð�rÞ

gdf ; g�dc ¼
P3
i¼1

jrij

f d

0B@
1CAgdc ð15Þ

Rod is the relation between the damage thresholds in uni-

axial compression and that corresponding to uniaxial

tension and gdf and gdc are the maximum energy densities

dissipated by damage in uniaxial tension and compres-

sion processes respectively [7,21].

As in the case of the plastic hardening variable, an

exponent was also introduced in the definition of the

damage hardening variable in order to reproduce the

experimental results.

The following evolution equation is proposed for the

equivalent damage threshold [7,21],

Kdðrij; j
dÞ ¼ rrtðjdÞ þ ð1� rÞrcðjdÞ; ð16Þ

where rt(j
d) and rc(j

d) represent the evolution of the

damage threshold in uniaxial tension and compression

tests respectively.
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The loading/unloading conditions are derived from

the Khun–Tucker relations and are analogous to the

ones corresponding to the plastic process,

_d P 0 F d
6 0 _dF d ¼ 0. ð17Þ
-1.5

-1

-0.5

0

-1.5 -1 -0.5 0 0.5

σ1 = σ3

fcb/f'c

Fig. 9. Proposed yielding surface—plane r2 = 0. Comparison

with experimental results [27].
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Fig. 10. Proposed yielding surface—octahedral plane.
5.3. Consistency conditions

Evolution of permanent strains and damage is ob-

tained from the simultaneous solution of the following

equations called the consistency conditions of the

problem,

_F
p ¼ 0

_F
d ¼ 0

(
ð18Þ

Eq. (18) are two linear equations in _k and _d that can

be easily solved.

5.4. Yielding function

The elastic threshold criterion proposed for concrete

is a modification of the Lubliner–Oller [19,25] criterion

in order to reproduce the behavior of concrete under

high hydrostatic pressures. In order to have curve merid-

ians [26] a second-degree function of the first invariant

was introduced,

F p ¼
ffiffiffiffiffiffiffi
3J 2

p
þ aI1 þ bhrmaxi � ch�rmaxi

þ d
rcðjpÞ ð1� aÞI21 � rcðjpÞð1þ aÞð1þ dÞ 6 0.

ð19Þ

where a, b, c and d are constants that define the shape of

the yielding function, I1 is the first invariant of the stress

tensor, J2 is the second invariant of the deviatoric stress

tensor and rmax is the maximum principal stress.

Parameter a takes into account the relation between

strength in uniaxial compression f 0
c and biaxial compres-

sion fbc, Rbc ¼ fbc=f 0
c , see Fig. 9, and it results:

a ¼ Rbc þ 4dR2
bc � ð1þ dÞ

2Rbc þ 4dR2
bc � ð1þ dÞ

ð20Þ

The shape of the yielding surface on plane r2 = 0 and

its comparison with the original surface with straight

meridians [19,25] and experimental results by Kupfer

et al. [27] are presented in Fig. 9.

Parameter b takes into account the ratio between the

strength in uniaxial compression f 0
c and uniaxial tension

ft, R
0 ¼ f 0

c=ft,

b ¼ R0ð1� aÞð1þ dÞ � d

R0
ð1� aÞ � ð1þ aÞ ð21Þ

Parameter c is a function of the ratio between maxi-

mum octahedral radius in compression and tension rmax
oct

and appears only in triaxial stress states, i.e. r3 6

r2 6 r1 ¼ rmax
6 0. See Fig. 10. For I1 = 0,
c ¼ 3ð1� rmax
oct Þ

2rmax
oct � 1

ð22Þ

The yielding criterion proposed preserves the ratio

between octahedral radius constant along the inelastic

process and between the range 0.5 6 rmax
oct 6 1.0.

Fig. 10 shows the shape of the proposed elastic

threshold in octahedral planes corresponding to different

octahedral stresses. It is represented by a convex curve

with three corners corresponding to the three compres-

sion meridian planes.
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Fig. 11. Comparison of proposed failure surface with triaxial

compression experimental results [9].
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Parameter d P 0 is related to the curvature of the

meridians. The shape of the ultimate surface in the com-

pression meridian plane is shown in Fig. 11 together

with experimental results [9]. The ultimate surface can

be used to define d. If the compression meridian is forced

to pass through the point corresponding to a triaxial

compression test with ph, hydrostatic pressure, and rcu,
compression strength under that confinement, the

parameter d can be evaluated as follows,
d ¼ �
ffiffiffiffiffiffiffi
3J 2

p
ð2Rbc � 1Þ þ I1ðRbc � 1Þ þ crmaxð2Rbc � 1Þ � rcuRbcffiffiffiffiffiffiffi

3J 2

p
ð4R2

bc � 1Þ þ I1 4R2
bc � 1þ Rbc

rcu
I1

� �
þ crmaxð4R2

bc � 1Þ � rcuRbc

J 2 ¼
ðph � rcuÞ2

3
; I1 ¼ rcu þ 2ph

ð23Þ
For d = 0 the original yielding criterion of Lubliner–

Oller [25] with straight meridians is recovered.

The same value of parameter d obtained for the ulti-

mate strength can be used for the elastic threshold. As a
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Fig. 12. Proposed yielding and ultimate strength surfaces—

compression meridian plane.
result, the curve describing the initial elastic threshold

has more curvature than that defining the ultimate

strength. This fact is in accordance with experimental re-

sults which show that the difference between the elastic

limit and the ultimate strength grows with hydrostatic

pressure. See Fig. 12.

The function described by Eq. (19), with curve merid-

ians, can also be used as a plastic potential function to

control dilatancy for high confinement pressures.
6. Model parameters

The model proposed includes many parameters be-

cause it has been conceived as a general model that

can be calibrated for different types of materials by set-

ting appropriate values for the parameters. Nevertheless,

as the paper is focused on the application to concrete,

some guides on how to obtain the parameters are given

below.

Basically, the following data are required to com-

pletely define the proposed constitutive model for a spe-

cific material:
Functions:

(a) Yielding function: The proposed yielding function

can be used for concrete.

(b) Plastic potential function: The proposed yielding

function can be used as plastic potential function

for concrete.

(c) Damage function: A Von Mises function can be

used to describe damage due to changes in porous

structure of concrete taking place under high con-

fining pressures.

Data:

(a) Elastic properties

Elasticity modulus and Poisson�s ratio of concrete

can be obtained from a uniaxial compression test.

Nevertheless, there are many empirical equations

that could be used for the estimation of the elastic

modulus as a function of the compressive strength

f 0
c , in case the stress–strain curve for the uniaxial

test is not available. As an example, the following
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expression proposed by Ahmad and Shah [28] can

be used,

E1 ¼ 3950
ffiffiffiffi
f 0
c

p
½MPa� ð24Þ

Poisson�s ratio of concrete normally ranges from

0.15 to 0.22 [26,27,29], it is lower under tension

stresses than under compression stresses. It can

be approximate as 0.19 or 0.20 [19].

(b) Compression strength f 0
c

The compression strength strongly depends on the

type of concrete and the model cannot be cali-

brated without this value.

(c) Compression elastic limit

The compression elastic limit can be obtained

from the stress–strain curve of a uniaxial compres-

sion test. Although linear elastic limit correspond

to approximately 0.30–0.40f 0
c [27], for the sake of

simplicity, the behavior can be supposed to be

elastic up to the discontinuity level [29] that repre-

sents the onset of major microcracking. For uni-

axial compression tests, this discontinuity is

defined as the point at which Poisson�s ratio

begins to increase and occurs at about 75% of

the ultimate strength [19].

(d) Plastic damage variable for the peak stress jp
comp.

It can be obtained from a uniaxial compression

stress–strain curve but it always ranges from 0.1

to 0.20.

(e) Compression/tension strength ratio, R0 ¼ f 0
c=ft

This value can be obtained if uniaxial compres-

sion and tension strengths are available. Accord-

ing to experimental results [27], the value of R0 is

9.1, 11.1 and 12.5 for compressive strengths of

19, 32 and 60 MPa respectively and can be approx-

imate as 10 for a normal strength concrete.

(f) Biaxial compression/uniaxial compression stren-

gth ratio Rbc ¼ fbc=f 0
c

This value can be obtained from biaxial tests [27]

and it ranges from 1.10 to 1.16.

(g) Ratio between maximum octahedral radius in

compression and tension rmax
oct

Experimental results indicate that rmax
oct tends to a

constant value of about 0.65, from which results

c = 3.5 [19,25].

(h) Compression meridians curvature

It is defined by a point corresponding to a triaxial

compression test, with ph, hydrostatic pressure,

and rcu, compression strength under that confine-

ment. If these results are not available, there are

many empirical equations for the prediction of

compressive strength as a function of confinement

pressure [9]. From the experimental results used in

the application examples presented later, the fol-

lowing expressions can be used for the estimation

of that point for normal and high-strength con-

crete respectively,
Normal strength concrete [30],

rcu

f 0
c

¼ 1þ 3.5
ph
f 0
c

� �0.85
ð25Þ

High-strength concrete [31],

rcu

f 0
c

¼ �1.228þ 2.172 1þ 7.46
ph
f 0
c

� �0.5
� 2

ph
f 0
c

ð26Þ

(i) Fracture and crushing energy

Fracture energy of concrete can be obtained from

three point bend tests on notched beams [32]. It

ranges from 150 to 300 Pa m [19]. Crushing energy

[19] can be approximated as Gc � (R0)2Gf.

(j) Damage threshold in uniaxial compression

It can be obtained from a cyclic compression test

but, according with application examples pre-

sented later, it can be approximately taken as

0.90f 0
c .

(k) Damage hardening curve rc(j
d) can be obtained

from uniaxial cyclic tests but it can be approxi-

mated as linear with a slope equal to 0.012 to 0.015.
7. Algorithm for the numerical integration

For the proposed model, yielding and damage equa-

tions must be integrated simultaneously. The Euler-

Backward algorithm presented in Table 1 is used for this

purpose [7]. Between two equilibrium configurations n

and n � 1 the variables of the problem are updated as

follows:

ðepijÞn ¼ ðepijÞn�1 þ Dkn
oG
orij

� �
n

ð27Þ

ðjpÞn ¼ ðjpÞn�1 þ DknðhpijÞn
oG
orij

� �
n

ð28Þ

dn ¼ dn�1 þ Ddn ð29Þ
ðrijÞn ¼ ð1� dnÞC0

ijkl½ðeklÞn � ðepklÞn� ð30Þ

Replacing these equations in Eqs. (5) and (13), corre-

sponding to yielding and damage conditions, the follow-

ing nonlinear system of equations is obtained,

HpðDkn;DdnÞ ¼ F p½ðrijÞn; ðk
pÞn� ¼ 0

HdðDkn;DdnÞ ¼ F d½ðrijÞn; ðk
dÞn� ¼ 0

	
ð31Þ

This system can be solved, for example, by the

Newton–Raphson method, between to iteration k � 1

and k, the variable are updated as follows (Table 1):

Dkn

Ddn

( )
k

¼
Dkn

Ddn

( )
k�1

�
oHp

oDk


 �
n

oHp

oDd


 �
n

oHd

oDk

� �
n

oHd

oDd

� �
n

24 35�1

k�1

�
HpðDkn;DdnÞ
HdðDkn;DdnÞ

( )k�1

ð32Þ



Table 1

Algorithm for the numerical integration of constitutive equations [7]

(1) Initialization: k ¼ 0;Dk0n ¼ 0;Dd0n ¼ 0

(2) k ¼ k þ 1

(3) Plastic strain updating: ðepijÞ
k
n ¼ ðepijÞn�1 þ Dkk�1

n ð oG
orij

Þk�1
n

(4) Damage variable updating: dkn ¼ dn�1 þ Ddk�1
n

(5) Non damaged stress updating: ðr0ijÞ
k
n ¼ C0

ijkl½ðeklÞn � ðepklÞ
k
n�

(6) Damaged stress updating: ðrijÞkn ¼ ð1� dknÞðr0ijÞ
k
n

(7) Updating of the other internal variables: ðjpÞkn ¼ ðjpÞn�1 þ Dkknðh
p
ijÞ

k
n

oG
orij

� �k

n
; ðjdÞkn ¼ ðjdÞn�1 þ ðhdÞknDdkn

(8) Yielding and damage conditions: IfðHpÞkn 6 0 and ðHdÞkn 6 0 goto ð14Þ
(9) IfðHpÞkn P 0 goto ð11Þ
(10) ðoHp=oDdÞkn ¼ 0 goto ð13Þ
(11) IfðHdÞkn P 0 goto ð13Þ
(12) ðoHd=oDkÞkn ¼ 0

(13) Dkkþ1
n ¼ Dkkn �

hHpðDkkn;DdknÞiðoHd=oDdÞkn � hHdðDkkn;DdknÞiðoHp=oDdÞkn
ðoHp=oDkÞknðoHd=oDdÞkn � ðoHd=oDkÞknðoHp=oDdÞkn

Ddkþ1
n ¼ Ddkn �

hHdðDkkn;DdknÞiðoHp=oDkÞkn � hHpðDkkn;DdknÞiðoHd=oDkÞkn
ðoHp=oDkÞknðoHd=oDdÞkn � ðoHd=oDkÞknðoHp=oDdÞkn

Goto (2)

(14) ðepijÞn ¼ ðepijÞ
k
n; ðjpÞn ¼ ðjpÞkn; dn ¼ dkn; ðjdÞn ¼ ðjdÞkn; ðrijÞn ¼ ðrijÞkn

(15) END
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The incremental stress–strain relation can be summa-

rized as [7]:
ðDrijÞn ¼ bCijkl

� �
n
ðDeijÞn ð33Þ
where Ĉijkl is the consistent tangent modulus [7],
ðbCijklÞn ¼ ðCe�
ijklÞn

�
ðC�

ijpqÞn oG
orpq

� �
n

oF p

orrs

� �
n
ðCe�

rsklÞn

� oF p

ojp


 �
n
ðhptuÞn oG

ortu

� �
n
þ oF p

orpq

� �
n
ðC�

pqrsÞn oG
orrs

� �
n

ð34Þ

ðC�
ijklÞ ¼ dipdjq þ DknðCijrsÞn

o2G
orrsorpq

� �
n

� ��1

Cpqkl ð35Þ

ðCe�
ijklÞ ¼ dipdjq þ DknðCijrsÞn

o2G
orrsorpq

� �
n

� ��1

Ce
pqkl ð36Þ
Ce
ijkl ¼ Cijkl �

r0
ij

oF d

ortu
� oF p

ojp
hpmn

oG
ormn

þ oF p

ormn
Cmnrs

oG
orrs

� ��
� oF p

ojp
hpmn

oG
ormn

þ oF p

ormn
Cmnrs

oG
orrs

� �
� oF d

ojd
hd þ o

o

�

8. Comparison with experimental results

8.1. Uniaxial compression

First the behavior of cylindrical concrete specimens

of two different strengths (H30 and H70) under uniaxial

compression was studied with the proposed model and

compared with experimental results [9]. Concrete was

modelled as an elastoplastic damaged material with the

mechanical properties presented in Table 2. Only one

quarter of the cylindrical specimen that has 30 cm height

and 15 cm diameter was modelled with one axial sym-

metric finite element.

Figs. 13 and 14 show the axial stress–axial and trans-

verse strain curves obtained for both types of concrete

and their comparison with experimental results. Numer-

ical and experimental volumetric responses are also

compared in Figs. 13 and 14. A good agreement between

numerical and experimental results can be observed, not

only in axial but also in transverse direction.

It may be observed that the behavior under uniaxial

compression is almost not modified by damage. Initial

stiffness is preserved.
� oF d

ormn
Cmnrs

oG
orrs

� �
oF p

ortu

�
Ctukl

F d

rtu
r0
tu

�
� oF p

ormn
Cmnrs

oG
orrs

� �
oF p

ortu
r0
tu

ð37Þ



Table 2

Mechanical properties of concrete (confined compression tests [9])

Property H30 H70

Elasticity modulus, E 23800 MPa 33700 MPa

Poisson�s ratio, m 0.2 0.2

Compression ultimate strength, f 0
c 33.2 MPa 67 MPa

Uniaxial compression elastic threshold, rfc 20 MPa 45 MPa

Elastic threshold ratio, Rp
0 10 10

Rbc 1.16 1.16

c 3 3

Confined compression

ph 35 MPa 50 MPa

rccu 144 MPa 200 MPa

Plastic damage variable for the peak stress, jpcomp 0.15 0.15

Crushing energy, Gp
c 1.55E�2 MPa m 1.9E�2 MPa m

Fracture energy, Gp
f 1.55E�4 MPa m 1.9E�4 MPa m

Uniaxial compression damage threshold, rdc 30 MPa 65 MPa

Damage hardening slope 300 MPa 500 MPa

Lateral strain
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Fig. 13. Stress–strain curves for H30 concrete under uniaxial

compression. Comparison with experimental results [9].
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Fig. 14. Stress–strain curves for H70 concrete under uniaxial

compression [9]. Comparison with experimental results [9].
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8.2. Biaxial tension

Biaxial tests of plane square concrete specimens

tested by Kupfer et al. [27] are reproduced in this sec-

tion. Mechanical properties of concrete are presented

in Table 3. The specimens are tested under uniaxial ten-

sion, biaxial symmetric tension and biaxial tension with

a ratio of principal stress of 1/0.55. The stress–strain

curves in principal directions for the three tests are pre-

sented in Fig. 15. A good agreement with experimental

results is obtained. Both strength and ductility under dif-

ferent stress ratio are well reproduced.
Table 3

Mechanical properties of concrete (biaxial tension tests [27])

Property

Elasticity modulus, E 22900 MPa

Poisson�s ratio, m 0.18

Compression ultimate strength, f 0
c 29.5 MPa

Uniaxial compression elastic threshold, rfc 22.9 MPa

Elastic threshold ratio, Rp
0 10

Rbc 1.16

c 3

Confined compression

ph 30 MPa

rccu 125 MPa

Plastic damage variable for the

peak stress, jpcomp

0.15

Crushing energy, Gp
c 1.3E�2 MPa m

Fracture energy, Gp
f 1.3E�4 MPa m

Uniaxial compression damage threshold, rdc 27 MPa

Damage hardening slope 300 MPa
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Fig. 15. Stress–strain curves for concrete under biaxial tension. Comparison with experimental results [27].
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8.3. Confined compression

Triaxial compression tests of cylindrical concrete

specimens are reproduced in this section [9]. The first

tests simulated correspond to concretes H30 and H70

of Table 2. First the specimens were subject to a hydro-

static pressure. Then, the lateral confinement was kept
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Fig. 16. Stress–strain curves for compression tests under

different confinement pressures, normal strength concrete

H30. Comparison with experimental results [9]. (a) p = 0–17–

35 MPa; (b) p = 7–28 MPa.
constant and the axial stress was incremented until fail-

ure. The corresponding axial stress–axial strain curves

for both types of concrete and different confinement

pressures are presented in Figs. 16 and 17. It can be ob-

served that numerical results approximately reproduce

experimental results. Not only the variation of ultimate

strength but also the ductility under high confinement
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Fig. 17. Stress–strain curves for compression tests under

different confinement pressures, high-strength concrete H70.

Comparison with experimental results [9]. (a) p = 0–14–

35 MPa; (b) p = 7–28–50 MPa.
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pressures are reproduced. Many attempts to use classical

plasticity models for concrete have failed because they

conducted to more brittle stress–strain curves. The shape

of the elastic threshold function in combination with the

introduction of damage gives a more gradually loss of

tangent stiffness prior to the attainment of maximum

strength.

Additionally, other group of compression tests con-

fined with hydrostatic pressure are reproduced [12].

The corresponding mechanical properties are presented

in Table 4. Fig. 18 shows the variation of axial strains

and transverse strains with axial stress for different con-

finement pressures. It can be observed that a reasonable

agreement is found between numerical and experimental

results, not only in axial but also in radial direction. The

introduction of damage before plastic threshold for high

confinement pressures leads to ductile behavior in axial
Table 4

Mechanical properties of concrete (confined compression tests

[12])

Property H30

Elasticity modulus, E 26600 MPa

Poisson�s ratio, m 0.2

Compression ultimate strength, f 0
c 32.8 MPa

Uniaxial compression elastic threshold, rfc 20 MPa

Elastic threshold ratio, Rp
0 10

Rbc 1.16

c 3

Confined compression

ph 30 MPa

rccu 125 MPa

Plastic damage variable for the

peak stress, jpcomp

0.15

Crushing energy, Gp
c 1.6E�2 MPa m

Fracture energy, Gp
f 1.6E�4 MPa m

Uniaxial compression damage threshold, rdc 30 MPa

Damage hardening slope 225 MPa
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Fig. 18. Axial stress vs axial and lateral strain curves for

compression tests under different confinement pressures, p = 0–

30–60 MPa. Comparison with experimental results [12].
direction with non-dilatational effect. Moreover, the

use of plastic potential function with curve meridians

as that described by Eq. (19) and represented in Fig.

11, gives a plastic flow with reduced volumetric compo-

nent. Nevertheless, it may be observed that the estima-

tion of ultimate strength is not so accurate as for those

results shown in Figs. 16 and 17. The differences ob-

served in this case are due to the fact that the ultimate
-50

0
-0.06-0.04-0.020.000.020.04

Volumetric strain 

Exper.
unconfined

Fig. 19. Evolution of volumetric strains for compression tests

with different confinement pressures, p = 0–30–60 MPa. Com-

parison with experimental results [12].

Fig. 20. Finite element mesh for cylindrical concrete specimens

confined with steel tubes.

Table 5

Mechanical properties of steel [9]

Elasticity model, E 200000 MPa

Poisson�s ratio, m 0.3

Yielding stress, rf 355 MPa

Yielding function Von Mises

Plastic potential function Von Mises
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Fig. 21. Stress vs strain curves for compression tests of concrete

specimens confined with steel tubes. Comparison with experi-

mental results [9]. (a) Normal strength concrete H30; (b) high-

strength concrete H70.

Table 6

Mechanical properties of concrete confined with fiber compos-

ites [9]

Property H30F

Elasticity modulus, E 25000 MPa

Poisson�s ratio, m 0.2

Compression ultimate strength, f 0
c 42 MPa

Uniaxial compression elastic threshold, rfc 20 MPa

Elastic threshold ratio, Rp
0 10

Rbc 1.16

c 3

Confined compression

ph 35 MPa

rccu 151 MPa

Plastic damage variable for the

peak stress, jpcomp

0.15

Crushing energy, Gp
c 2.0E�2 MPa m

Fracture energy, Gp
f 2.0E�4 MPa m

Uniaxial compression damage threshold, rdc 40 MPa

Damage hardening slope 400 MPa

Table 7

Mechanical properties of CFRP [9]

Longitudinal elasticity modulus, El 200000 MPa

Transversal elasticity modulus, Et 26100 MPa

Longitudinal–transversal Poisson�s ratio, mlt 0.26

Transversal–longitudinal Poisson�s ratio, mtl 0.037

Transversal–transversal Poisson�s ratio, mtt 0.35

Longitudinal tensile strength, rulong 2700 MPa

Transverse tensile strength, rut 54 MPa

Layer thickness 0.117 mm
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Fig. 22. Stress–strain and volumetric responses of CFRP-

confined concrete H30F. Comparison with experimental results

[9]. (a) Unconfined; (b) confined with 3 CFRP layers; (c)

confined with 6 CFRP layers.
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Table 8

Mechanical properties of concrete [13]

Elasticity modulus, E 23273 MPa

Poisson�s ratio, m 0.2

Compression ultimate strength, f 0
c 31 MPa

Uniaxial compression elastic threshold, rfc 28 MPa

Elastic threshold ratio, Rp
0 8

Rbc 1.16

c 3

Confined compression

ph 30 MPa

rccu 120 MPa

Plastic damage variable for the

peak stress, jpcomp

0.15

Crushing energy, Gp
c 1.5E�2 MPa m

Fracture energy, Gp
f 1.5E�4 MPa m

Uniaxial compression damage threshold, rdc 30 MPa

Damage hardening slope 190 MPa

Table 9

Mechanical properties of GFRP [13]

Longitudinal elasticity modulus, El 37233 MPa

Transversal elasticity modulus, Et 12400 MPa

Longitudinal–transversal Poisson�s ratio, mlt 0.26

Transversal–longitudinal Poisson�s ratio, mtl 0.1

Transversal–transversal Poisson�s ratio, mtt 0.29

Circumferential tensile strength, rulong 524 MPa

Layer thickness 0.21 mm
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plastic surface is simulated with a second-degree polyno-

mial that is not able to exactly adjust all experimental re-

sults in a such a wide range of hydrostatic pressures,

from 0 to twice the uniaxial compression strength. More
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Fig. 23. Stress–strain and volumetric responses of GFRP confine

Unconfined; (b) confined with 6 GFRP layers; (c) confined with 10 G
accurate results could be obtained with higher degree

polynomials.

The evolution of the volumetric strains and the dila-

tational rate for different confinement pressures are rep-

resented and compared with experimental results in Fig.

19. It can be observed that numerical results follow the

same tendency that experimental ones.

8.4. Confinement with steel tubes

The behavior of cylindrical concrete specimens con-

fined with steel tubes is represented in this section [9].
-0.04-0.020.0002

Axial strain
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d concrete. Comparison with experimental results [13]. (a)

FRP layers; (d) 14 GFRP layers.
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The mechanical properties of concrete are the same as

those presented in Table 2. The steel tube is 4.5 mm

thick in both cases. In the tests the load is applied only

on the concrete core.

Fig. 20 shows the finite element mesh used for both

problems. Lubrication between the concrete core and

the steel cylinder is explicitly modelled through a very

thin layer of axial symmetric elements. As an approxi-

mation, this lubrication layer is supposed to be elastic,
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Fig. 24. Dilatation ratio curves for GFRP-confined concrete.

Comparison with experimental results [13]. (a) Unconfined; (b)

confined with 6 GFRP layers; (c) confined with 10 GFRP

layers; (d) confined with 14 GFRP layers.
almost incompressible, but with a very low shear stiff-

ness in order to allow the relative displacement of the

concrete core from the steel tube.

Steel is modelled as an elastic-perfectly plastic mate-

rial with the mechanical properties presented in Table 5.

The stress–strain curves obtained for both types of

concrete are presented in Fig. 21. A good agreement be-

tween numerical and experimental results is found for

concrete with steel confinement.

8.5. FRP confinement

The behavior of cylindrical concrete specimens con-

fined with FRP composites is analyzed in this section.

First the behavior of concrete H30F confined with a

carbon fiber reinforced composite with epoxy matrix is

simulated [9]. Specimens confined with different number

of confinement layers are tested under compression. The

mechanical properties of concrete H30F are slightly dif-

ferent from those in Table 2 and are condensed in Table

6. The composite is modelled as an elastic brittle ortho-

tropic material with the mechanical properties presented

in Table 7.

Fig. 22 shows the stress–strain and volumetric re-

sponses of FRP confined concrete for different number

of confinement layers. It can be seen that a good agree-

ment between numerical and experimental results is ob-

tained. With a proper number of composite layers, the

dilatational response of plain concrete can be compen-

sated and also reversed. For this case the volumetric re-

sponse is always a contraction.

Cylindrical (152.5 · 305 mm) concrete-filled GFRP

tubes were also analyzed [13]. The mechanical properties

of concrete are condensed in Table 8. FRP tubes consist

of a filament-wound angle ply of polyester resin with

unidirectional E-Glass fibers at ±15� winding angle.

Three distinct jackets thicknesses of 6, 10 and 14 plies

(layers) were tested. The thickness, hoop strength and

modulus of elasticity of the FRP tubes are presented

in Table 9.

Stress–strain curves and volumetric response ob-

tained for plain concrete and the three types of FRP
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0
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Fig. 25. Uniaxial cyclic response of GFRP-encased concrete

under compression. Comparison with experimental results [13].
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tubes are plotted in Fig. 23 together with experimental

results corresponding to batch C [13]. The predicted re-

sponse matches experimental results in all cases. Fig. 24

shows the dilatation response curves for plain concrete

and for the different thickness of FRP confinement.

Numerical results show the same variation than experi-

mental ones in all cases. Dilatational effect is reversed

by the confinement and the dilatation rate reaches a

maximum, then decreases and finally stabilizes at an

asymptotic value.

To evaluate the stiffness degradation and compare it

with experimental results a cyclic compression test of the

14-layer specimen (DA32) was reproduced. The speci-

men was subjected to four unloading-reloading cycles.

The stress–strain response obtained with the proposed

model and that recorded in the test are plotted in Fig.

25. It can be concluded that, although the numerical

model is not able to reproduce the loops registered in

the tests, it accurately reproduces the average stiffness

degradation due to damage.
9. Conclusions

The plastic damage model presented accurately

reproduces the behavior of confined concrete, not only

in the axial direction but also in the transverse one.

The adequate computation of transverse strains in

confined concrete columns plays a crucial role in the

evaluation of the FRP retrofitting system. FRP behaves

elastically, so the confinement pressure is always increas-

ing until the tensile failure of the FRP layers. As the

stress state in the composite mainly depends on the

transverse deformation of the concrete core, it might

be properly evaluated in order to predict the ultimate

load capacity of the retrofitted column.

Although the model involves a considerable number

of material parameters, most of them can be obtained

from stress–strain curves in uniaxial tension and com-

pression tests or can be evaluated using empirical expres-

sions because they take values that can be easily

identified with the compression strength of concrete.

The consideration of damage requires additional data

about the stiffness degradation that can be obtained

from cyclic tests but can be approximated from the con-

crete quality.

The numerical response obtained with the plastic

damage model is closer to experimental results than that

obtained with a plastic model with the same yielding

function and hardening variable. The difference between

the two types of models is more marked in the case of

triaxial compression.

While permanent strains can be associated with the

development of microcracks, damage is due to changes

in the pore structure of concrete. There is experimental

evidence regarding concrete stiffness degradation under
triaxial compression. This stiffness degradation is one

of the manifestations of damage due to the destruction

of pore structure as a result of high pressures.

On the other side, if the tangent stiffness loose in a

confined compression test is attributed to damage, a

marked nonlinearity in the axial direction, without the

classical dilatancy of plastic models, can be obtained

for compression stresses lower than the peak one. In this

way, the consideration of damage allows not only to

reproduce stiffness degradation but also the transverse

and volumetric response.

The modification of the plastic hardening variable

proposed leads to a better representation of concrete

ductility under triaxial compression.

The use of a yielding criteria based on a second-

degree function defines a yielding surface with curve

meridians that accurately reproduces the variation of

compression strength with the confinement pressure.

The comparison with experimental results shows that

this yielding surface is able to reproduce ultimate

strength under compression for a fairly wide range of

pressures.

As a result of the consideration of non-isotropic plas-

tic hardening, with an initial yielding threshold surface

more curved in the meridian planes than the ultimate

strength surface, an increasing difference between initial

yielding and ultimate strength is obtained for increasing

confinement pressures. This result follows experimental

evidence.
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