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In the framework of a bimetric model, we discuss a relation between the (modified) Friedmann 
equations and a mechanical system similar to the quantum Hall effect problem. Firstly, we show how 
these modified Friedmann equations are mapped to an anisotropic two-dimensional charged harmonic 
oscillator in the presence of a constant magnetic field, with the frequencies of the oscillator playing the 
role of the cosmological constants. This problem has two energy scales leading to the identification of two 
different regimes, namely, one dominated by the cosmological constants, with exponential expansions for 
the scale factors, and the other dominated by a magnetic seed, which would be responsible for both a 
component of dark energy and a primordial magnetic field. The latter regime would be described by a 
(nonperturbative) mapping between the cosmological evolution and the quantum Hall effect.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The standard description of the Universe rests on the cosmo-
logical principle, which states that, on large scales, space-time is 
homogeneous and isotropic. The observations are consistent with 
this hypothesis for distances above 100 Mpc [1,2]. But this mathe-
matical idealization, which greatly simplifies the physical interpre-
tation of the model, has limitations for lower scales. In particular, 
the formation of structures can only be understood after the occur-
rence of some gravitational instability due to tiny deviations from 
a homogeneous distribution [3,4].

These departures from the cosmological principle can be ob-
served, for example, in the spectrum of the cosmic microwave 
background (CMB), which presents temperature fluctuations of the 
order of 10−5, showing that corrections to classical cosmology can 
be incorporated via perturbations [5].

However, one might wonder if there are other phenomena 
of cosmological interest that might require a non-perturbative 
analysis. This possibility is particularly relevant since, in many 
fields of physics, there are problems that are perturbative or non-
perturbative depending on the range of parameters one is consid-
ering. As an example, one can consider a gas of charged particles 
subject to a magnetic field perpendicular to the plane. If the mag-
netic field is strong enough, the system presents the quantum Hall 
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effect, with a Hamiltonian spectrum that can not be perturbatively 
obtained from that of the free case.

This simple example could also be translated into the cosmo-
logical regime by noting that in the center of galaxies there are 
strong magnetic fields which are observed through the Zeeman’s 
splitting they produce. Although the origin of these magnetic fields 
is at present unknown, the idea that a very small magnetic seed 
was formed in an early epoch of the universe evolution and that, 
after a dynamo mechanism, the field grew up to what is observed 
today in galaxies is widely accepted [6–10,25]. Our present knowl-
edge does not allow us to determine when these magnetic seeds 
were created, but one can speculate that they might have been 
originated in the small inhomogeneities existing before the recom-
bination epoch.

Very probably the primordial magnetic fields did not produce 
any relevant effect after the recombination, but these could be 
important in the first 100.000-years and eventually to affect the 
big-bang nucleosynthesis, the dynamics of the phase transitions 
and even baryogenesis and leptogenesis [11].

The magnetic seed must satisfy two consistency requirements. 
The first one is that the coherence length is not larger than about 
10 kpc, and the second one is that the field in the magnetic seed 
must be between 10−19 and 10−22 G. In the analogous Hall sys-
tem we discuss below, the coherence length corresponds to the 
magnetic depth �B

1 [12], that is,

1 Here we use natural units and e = 1 [13].
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�B = 1√
B

< 10 kpc. (1)

The second condition is necessary for the stability of the dynamo 
mechanism [8–10].

A central issue not solved so far is how to provide the cos-
mological standard model with a mechanism that incorporates a 
magnetic seed as a fundamental element [14]. Any possible answer 
to this question requires extra new ideas in a model that satisfies 
all constraints known so far and that incorporates the magnetic 
field as a central element.

In this direction and using arguments coming from the for-
mation of primordial magnetic fields [8–10] (we say for t ∼ 106

years), the mechanism proposed here should work.
The purpose of this paper consists in investigating the possible 

emergence of magnetic seeds in a model with two metrics with an 
effective interaction between them. This interaction can be consid-
ered as a relic of a causal primordial connection between sectors in 
a very early epoch of the Universe. This problem is considered in 
the context of a simple mechanical system that nevertheless repro-
duces the Friedmann’s equations of the two interacting sectors. We 
emphasize that the important issue is not only the existence of a 
mapping between these apparently unrelated systems but also that 
the same mechanism contributes to the production of dark energy.

Interestingly, no matter how different the dark energy and mag-
netic seed scales might be since in the present approach both are 
linked through a dynamical mechanism which (see Eq. (11)) allows 
to fix them in a rather independent way.

In order to develop this idea let us consider the Lagrangian2

L = 1

2N

(
ẋ2

1 + ẋ2
2

)
− N

2

(
ω2

1x2
1 + ω2

2x2
2

)
− θ

2
(x1 ẋ2 − ẋ1x2) . (2)

Here x1 and x2 are the dynamical variables, the coefficients ω1, ω2

and θ are constants, and N = N(t) is an auxiliary variable that 
transforms as N(t) → t′(s)N(t(s)) when t → t(s), thus ensuring 
the invariance of the action under time reparametrizations. This 
Lagrangian yields the following Hamiltonian

H = N

2

[
p2

1 + p2
2 +

(
ω2

1 + θ2

4

)
x2

1 +
(
ω2

2 + θ2

4

)
x2

2 +

θ (x1 p2 − x2 p1)

]
. (3)

This Hamiltonian describes an anisotropic two-dimensional
charged harmonic oscillator with frequencies ω1 and ω2, inter-
acting with a constant magnetic field.

The Hamiltonian equations of motion for (3) are

ẋi = [xi, H] , ṗi = [pi, H] ,

where [ , ] is the Poisson bracket, with the standard structure for 
the canonical variables, that is 

[
xi, p j

] = δi j and zero for the re-
maining brackets. Alternatively, one can define the new variables 
πi = pi − θ

2 εi j x j and rewrite the Hamiltonian H = H(xi, π j) in or-
der to obtain the equations of motion

ẋi = [xi, H] , π̇i = [πi, H] , (4)

but with the following Poisson brackets[
xi, x j

] = 0,
[
xi,π j

] = δi j,
[
πi,π j

] = εi jθ. (5)

2 The approach proposed here is valid for any number of patches, however for 
simplicity in the presentation we will restrict ourselves to two of them.
The equations of motion, once the momenta are eliminated, reduce 
to

ẍ1 + ω2
1 x1 + θ ẋ2 = 0, (6)

ẍ2 + ω2
2x2 − θ ẋ1 = 0, (7)

ẋ2
1 + ẋ2

2 + ω2
1x2

1 + ω2
2x2

2 = 0. (8)

The constraint (8) is a consequence of time reparametrization in-
variance and, at the end of the derivation, the gauge N ≡ 1 has 
been chosen.

Notice that this constraint – from the point of view of the sec-
ond order differential equations (6) and (7) – is in fact a relation 
between initial conditions since the left hand side is a constant of 
the motion. Indeed, multiplying (6) by ẋ1 and (7) by ẋ2, and adding 
both equations, we immediately find that

d

dt

[
ẋ2

1 + ẋ2
2 + ω2

1x2
1 + ω2

2x2
2

]
= 0. (9)

The physical solutions correspond to those for which the constant 
ẋ2

1 + ẋ2
2 + ω2

1x2
1 + ω2

2x2
2 vanishes.

One of the goals of this paper is to point out the following 
remarkable mapping. If we redefine the variables x1, x2 as follows,

x1 = 2

3
a3/2(t), x2 = 2

3
b3/2(t), (10)

and replace them in (6)–(7), the resulting equations turn out to be

2
ä

a
+

(
ȧ

a

)2

+ 4

3
ω2

1 = −2 θ
√

a b
ḃ

a2
, (11)

2
b̈

b
+

(
ḃ

b

)2

+ 4

3
ω2

2 = 2 θ
√

a b
ȧ

b2
, (12)

a3

[(
ȧ

a

)2

+
(

2

3
ω1

)2
]

= −b3

⎡
⎣

(
ḃ

b

)2

+
(

2

3
ω2

)2
⎤
⎦ . (13)

These equations are identical to the Friedmann equations for a 
cosmology with two metrics3 if we identify their respective cos-
mological constants �1 and �2 as

−ω2
1 ←→ 3

4
�1, −ω2

2 ←→ 3

4
�2. (14)

In fact, Eqs. (11)–(13) form a coupled system of nonlinear sec-
ond order differential equations for the scale factors a(t) and b(t), 
where the right hand sides of (11)–(12) can be considered as 
sources of dark energy (see [17] for a discussion on a similar sys-
tem and for string theory see [18]). Moreover, from these equations 
one can read off the effective pressure and density contributions 
induced by the coupling between scale factors. Indeed, expressing 
the Friedmann equations for the scale factor a(t) in terms of the 
pressure pb and energy density ρb of an additional component of 
“dark energy”, from Eqs. (11) and (13) one obtains the equivalence

8πG pb = −2 θ
√

a b
ḃ

a2
,

8πG

3
ρb = − 1

a3

(
4

9
ω2

2 b3 + ḃ2b

)
.

This leads to the following equation of state for the effective com-
ponent of dark energy,

3 The literature of cosmology with two metrics is very extensive, see for example 
[15] and [16].
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ρb + 6πG

θ2
p2

b = �2

8πG

(
b

a

)3

. (15)

For the case �2 = 0, the dark energy so described turns out 
to be a generalized Chaplygin gas [19–23]. Notice that this is a 
non-perturbative result, valid for any θ 	= 0.

Now we can use the mapping (10) to solve the Friedmann 
equations. Equations (6)–(7) form a system of two coupled linear 
second order differential equations which consequently have four 
linearly independent solutions. The latter have the form(

x1(t)
x2(t)

)
=

(
i
θ


2 − ω1
2

)
ei
t, (16)

where the frequency 
 takes one of the four values


±,± = ± 1√
2

{
ω2

1 + ω2
2 + θ2 ±

√[
ω2

1 + ω2
2 + θ2

]2 − 4ω2
1ω

2
2

}1/2

. (17)

The general solution of Eqs. (6)–(8) is an arbitrary linear combina-
tion of these four functions with coefficients c1, c2, c3, c4.

To get a solution of our problem, we must also impose the con-
straint (8). Since the left hand side of (8) is proportional to the 
Hamiltonian (written in terms of coordinates and velocities), it is 
a constant real symmetric quadratic form in c1, c2, c3, c4 (but not 
positive definite for the ω’s given in Eq. (14)). The constrained so-
lutions we are looking for correspond to the isotropic vectors of 
this quadratic form.4

The mapping (10) allows us first, to understand the evolution 
of the scale factors (a(t), b(t)) under the previously described in-
teraction through the knowledge of the evolution of a mechanical 
system of two degrees of freedom (x1(t), x2(t)), and second, to de-
scribe the system by means of the Hamiltonian in Eq. (3).

It is interesting to note that the limit ω2
1,2 → 0 does not elimi-

nate the causal connection between metrics since, in this case, the 
Hamiltonian (3) reduces to

H = N

2

(
p2

1 + p2
2 + θ2

4

(
x2

1 + x2
2

)
+ θ (x1 p2 − x2 p1)

)
.

This can also be written as

H = 1

2

[
θ2

4

(
p̄2

1 + p̄2
2

)
+

(
x̄2

1 + x̄2
2

)
− θ (x̄1 p̄2 − x̄2 p̄1)

]
. (18)

Here we have rescaled variables as xi = 2 x̄i/θ , and pi = θ p̄i/2, 
with i = 1, 2, and changed θ → −θ to obtain the Hamiltonian 
considered in [24] in the context of noncommutative quantum me-
chanics.

Let us remark that the region where

2|ω1,2| 
 |θ | (19)

is similar to the strong magnetic field regime in the quantum Hall 
effect. In terms of cosmological constants this region corresponds 
to√

3|�a,b| 
 |θ |, (20)

which can be called the cosmological Hall regime.

4 The explicit expression of this quadratic form is not very enlightening, so we 
do not include it, but one can convince oneself that it has a nontrivial isotropic 
subspace.
From the quantum mechanical point of view, the system de-
scribed by the quantized Hamiltonian (3) is particularly interesting 
because this implies replacing the Poisson brackets (5) by the com-
mutators (with h̄ = 1)[

x̂i, x̂ j
] = 0,

[
x̂i, π̂ j

] = i δi j, (21)[
π̂i, π̂ j

] = i εi jθ, (22)

where π̂i = p̂i − θ
2 εi j x̂ j , with p̂i the canonical momentum operator. 

For θ 	= 0, the commutator in Eq. (22) induces entangled states 
for (x1(t), x2(t)) and, therefore, for the two metrics of our model, 
represented by the scale factors (a(t), b(t)).

The commutator (22) implements non-local communication 
between different spacetime regions, equivalently, entanglement 
states.

In addition, we note that in the problem at hand we have three 
energy scales, 

√|�a|, √|�b|, and 
√|θ |. This allows us to identify 

two regimes of cosmological interest, namely
(i) 

√|�i | � √|θ |, which corresponds to a cosmological-constant 
dominated era in which each metric evolves independently with 
no effective interaction, showing an exponential behavior and mak-
ing the corresponding side of Eq. (13) to vanish;
(ii) 

√|�i | 
 √|θ | which, by analogy, could be interpreted as the 
magnetic-seed dominated era, which eventually would be respon-
sible for the existence of the magnetic fields in the universe.

The quantum description of these two regimes, which could be 
relevant in a very early epoch of the Universe evolution, is very 
different. In regime (i) the system is formally described (in the 
gauge N ≡ 1) by the Hamiltonian operator of an anisotropic har-
monic oscillator. On the other hand, in regime (ii) the equivalent 
mechanical system is exactly a Landau problem, whose eigenstates 
are given by

ψn+,n−(x1, x2) = e
θ2
4

(
x2

1+x2
2

) (
∂

∂x1
+ i

∂

∂x2

)n+
×

(
∂

∂x1
− i

∂

∂x2

)n−
e− θ2

4

(
x2

1+x2
2

)
.

The corresponding energy eigenvalues

ψn+,n− = θ (2n− + 1)

do not depend of n+ , leading to an infinitely degenerate Hamilto-
nian spectrum.

This regime would be responsible for inducing both a compo-
nent of dark energy [17] and traces of magnetic fields that would 
subsequent grow. In this sense, one might attribute both effects to 
a quantum origin of the Universe.

We would like to thank to M. Henneaux, S. Mooij, M. Paranjape, 
M. Plyushchay and J. C. Retamal by the discussions. This work was 
supported by Dicyt/041831GR and USA-1555 (J.G.), Fondecyt-Chile 
1140243 (F.M.). H.F. thanks ANPCyT, CONICET and UNLP, Argentina, 
for partial support through grants PICT-2014-2304, PIP 2015-2017 
GI-688CO and Proy. Nro. 11/X748, respectively and P. G was par-
tially supported by NSF Grant No. PHY-1720282 at the University 
of Utah.

References

[1] A. Joyce, B. Jain, J. Khoury, M. Trodden, Phys. Rep. 568 (2015) 1.
[2] For a nice recent review see I. Debono, G.F. Smoot, Universe 2 (4) (2016) 23.
[3] J. Frieman, M. Turner, D. Huterer, Annu. Rev. Astron. Astrophys. 46 (2008) 385.
[4] D.F. Mota, D.J. Shaw, Phys. Rev. D 75 (2007) 063501;

F.K. Hansen, A.J. Banday, K.M. Gorski, Mon. Not. R. Astron. Soc. 354 (2004) 641;
R. Bousso, R. Harnik, G.D. Kribs, G. Perez, Phys. Rev. D 76 (2007) 043513.

http://refhub.elsevier.com/S0370-2693(18)30670-1/bib74726F64s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib736F6D65s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib726563656E74s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib766172696F73s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib766172696F73s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib766172696F73s3


402 H. Falomir et al. / Physics Letters B 785 (2018) 399–402
[5] For example P.A.R. Ade, et al., Planck Collaboration, Astron. Astrophys. 594 
(2016) A20;
P.A.R. Ade, et al., BICEP2 and Planck Collaborations, Phys. Rev. Lett. 114 (2015) 
101301.

[6] R. Durrer, A. Neronov, Astron. Astrophys. Rev. 21 (2013) 62.
[7] L. Campanelli, Phys. Rev. Lett. 111 (2013) 061301.
[8] D. Grasso, H.R. Rubinstein, Phys. Rep. 348 (2001) 163.
[9] A. Kandus, K.E. Kunze, C.G. Tsagas, Phys. Rep. 505 (2011) 1.

[10] B. Ratra, Astrophys. J. 391 (1992) L1.
[11] J.M. Wagstaff, R. Banerjee, D. Schleicher, G. Sigl, Phys. Rev. D 89 (10) (2014) 

103001;
J.M. Wagstaff, R. Banerjee, J. Cosmol. Astropart. Phys. 1601 (2016) 002;
K. Kajantie, M. Laine, J. Peisa, K. Rummukainen, M.E. Shaposhnikov, Nucl. Phys. 
B 544 (1999) 357;
K. Kajantie, M. Laine, J. Peisa, A. Rajantie, K. Rummukainen, M.E. Shaposhnikov, 
Phys. Rev. Lett. 79 (1997) 3130;
K. Kajantie, K. Rummukainen, M.E. Shaposhnikov, Nucl. Phys. B 407 (1993) 356.

[12] Some recents references are F. Renzi, G. Cabass, E. Di Valentino, A. Melchiorri, 
L. Pagano, arXiv:1803 .03230 [astro -ph .CO];
S. Hutschenreuter, S. Dorn, J. Jasche, F. Vazza, D. Paoletti, G. Lavaux, T.A. Enßlin, 
Class. Quantum Gravity 35 (15) (2018) 154001;
L. Pogosian, A. Zucca, Class. Quantum Gravity 35 (12) (2018) 124004;
M. Gasperini, J. Cosmol. Astropart. Phys. 1706 (06) (2017) 017, and references 
therein.

[13] For a recent review see for example D. Tong, arXiv:1606 .06687 [hep -th].
[14] See also the detailed analysis of K. Subramanian, Rep. Prog. Phys. 79 (7) 

(2016) 076901, https://doi .org /10 .1088 /0034 -4885 /79 /7 /076901, arXiv:1504 .
02311 [astro -ph .CO].
[15] M. von Strauss, A. Schmidt-May, J. Enander, E. Mortsell, S.F. Hassan, J. Cosmol. 
Astropart. Phys. 1203 (2012) 042;
Yashar Akrami, S.F. Hassan, Frank Könnig, Angnis Schmidt-May, Adam R. 
Solomon, Phys. Lett. B 748 (2015) 37, and references therein.

[16] M. Bouhmadi-López, S. Capozziello, P. Martín-Moruno, Gen. Relativ. Gravit. 
50 (4) (2018) 36.

[17] H. Falomir, J. Gamboa, F. Méndez, P. Gondolo, Phys. Rev. 96 (2017) 083534.
[18] L. Freidel, R.G. Leigh, D. Minic, J. High Energy Phys. 09 (2017) 060;

L. Freidel, R.G. Leigh, D. Minic, Phys. Rev. D 94 (2016) 104052.
[19] M.C. Bento, O. Bertolami, A.A. Sen, Phys. Rev. D 66 (2002) 043507.
[20] V. Gorini, A. Kamenshchik, U. Moschella, V. Pasquier, The Chaplygin Gas as a 

Model for Dark Energy, 2006;
V. Gorini, A.Y. Kamenshchik, U. Moschella, O.F. Piattella, A.A. Starobinsky, J. Cos-
mol. Astropart. Phys. 0802 (2008) 016.

[21] V. Gorini, A. Kamenshchik, U. Moschella, Phys. Rev. D 67 (2003) 063509.
[22] V. Sahni, A. Starobinsky, Int. J. Mod. Phys. D 15 (2006) 2105.
[23] V. Sahni, Lect. Notes Phys. 653 (2004) 141.
[24] J. Gamboa, M. Loewe, J.C. Rojas, Phys. Rev. D 64 (2001) 067901;

J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Mod. Phys. Lett. A 16 (2001) 2075;
J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, Int. J. Mod. Phys. A 17 (2002) 2555;
V.P. Nair, A.P. Polychronakos, Phys. Lett. B 505 (2001) 267.

[25] J. Gamboa, J. López-Sarrión, Phys. Rev. D 71 (2005) 067702;
D. Carcamo, A. Das, J. Gamboa, M. Loewe, Phys. Lett. B 718 (2013) 1548.

http://refhub.elsevier.com/S0370-2693(18)30670-1/bib706C616E636Bs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib706C616E636Bs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib706C616E636Bs2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib706C616E636Bs2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib4475727265723A32303133706761s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib43616D70616E656C6C693A323031336D6561s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib67726173736Fs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib686F6C6C616E64s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib7261747261s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s3
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s3
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s4
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s4
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib656C656374726F31s5
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s3
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s4
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib636F746173s4
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib68616C6Cs1
https://doi.org/10.1088/0034-4885/79/7/076901
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib62696D6574726963s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib62696D6574726963s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib62696D6574726963s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib62696D6574726963s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6361706Fs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6361706Fs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib676F6E646F6C6Fs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib737472696E6731s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib737472696E6731s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib42656E746Fs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib476F72696E69s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib476F72696E69s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib476F72696E69s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib476F72696E69s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib676F31s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib676F32s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib676F33s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6E6F73s1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6E6F73s2
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6E6F73s3
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6E6F73s4
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6A7573746Fs1
http://refhub.elsevier.com/S0370-2693(18)30670-1/bib6A7573746Fs2

	Magnetic seed and cosmology as quantum hall effect
	References


