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A B S T R A C T

We present a fully relativistic formulation for the energy loss rate of a charged particle moving parallel to a sheet
containing two-dimensional electron gas, allowing that its in-plane polarization may be described by different
longitudinal and transverse conductivities. We apply our formulation to the case of a doped graphene layer in the
terahertz range of frequencies, where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major
role. By using the Drude model with zero damping we evaluate the energy loss rate due to excitation of the DPP,
and show that the retardation effects are important when the incident particle speed and its distance from
graphene both increase. Interestingly, the retarded energy loss rate obtained in this manner may be both larger
and smaller than its non-retarded counterpart for different combinations of the particle speed and distance.

1. Introduction

Developments in the area of Nanophotonics and Optoloectronic
devices, which are based on two-dimensional (2D) materials, exploit
several favorable optical properties of graphene [1]. In particular, ap-
plications in the frequency range from terahertz (THz) to the infrared
(IR) make use of the so-called Dirac plasmon (or sheet plasmon), which
arises from low-energy intraband excitations within the π electron
bands in doped graphene [2]. In that context, it was shown that the
dispersion relation of the Dirac plasmon can be easily tuned by chan-
ging the chemical potential in graphene via external gates, whereas the
corresponding plasmon polariton exhibits long propagation distances
along graphene and strong confinement of the associated electric field
in directions perpendicular to graphene [3].

In recent years there has been an increase of interest in using
electron beams to generate radiation from graphene in the THz range of
frequencies using different electron trajectories, including both aloof
scattering [4,5] and normal incidence [6]. It has been shown that, when
the incident charged particle moves parallel to graphene, its velocity
may be used as additional tuning parameter, besides the chemical po-
tential in graphene, for creating radiation at various frequencies [4,5].
Being interested in the THz frequencies, those authors adopted a model

for dynamic polarization of doped graphene based on the Drude model
[4–6], which was also found to be reliable in many other applications of
graphene in the area of Nanoplasmonics [1,7].

In our previous work, we have studied stopping power and image
force on charged particles moving parallel to graphene using a non-
relativistic approach to elucidate the role of Dirac plasmon in doped
graphene [8,9]. More recently, we have developed a fully relativistic
treatment of the energy loss and induced transition radiation from
graphene traversed by a fast charged particle under normal incidence,
and applied it to single [10] and multiple graphene layers [11].

In this work we adapt our relativistic treatment of Refs. [10,11] to
the case of a charged particle moving parallel to a single layer of doped
graphene. When the particle moves with constant speed in the absence
of other polarizable media, no radiation is generated from graphene,
whereas its energy loss to the electron excitations in graphene occurs at
a constant rate, which is related to the usual stopping power for a
parallel incidence trajectory [8,9]. The study of relativistic effects in
stopping power of charged particles has a long history, mostly focusing
on solid targets (see, e.g., Ref. [12] and references therein) and their
surfaces [13,14], whereas relatively less is known for strictly 2D targets.
In that respect, we note that our formulation of the energy loss rate for
incident particle is given in terms of the 2D conductivity of the target
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and hence it may be applied to any 2D material, not just graphene.
The main novelty regarding our description of graphene in com-

parison with Refs. [10,11] is that, in the case of parallel trajectory of the
incident particle, graphene may exhibit differences between its long-
itudinal and transverse polarizations. Accordingly, our formulation of
the problem in this work is more general, allowing for a tensorial in-
plane conductivity of graphene. However, since we are primarily in-
terested in the processes occurring in graphene at the THz to mid-IR
range of frequencies, it is safe to take the long wavelength limit of the
graphene’s conductivity [15]. In that limit, the longitudinal and
transverse conductivities become equal, and are well described by a
sum of the Drude model describing the intraband electron transitions
and a term, which describes interband transitions between graphene’s π
electron bands [16–18]. Moreover, focusing on the role of Dirac
plasmon in doped graphene at the THz frequencies, it turns out that
using just the Drude term for graphene conductivity suffices [1,4–7].

While it was shown in our previous work that the damping factor in
the Drude model exerts rather strong effects on energy losses of the
perpendicularly incident charged particle due to the excitations of
charge carriers in graphene [10], taking the limit of zero damping can
provide an insight into the efficiency of exciting the collective mode in
graphene known as the Dirac plasmon polariton (DPP) [11]. Accord-
ingly, taking the limit of zero damping in this work will enable us to
evaluate the energy loss rate due to the excitation of the long-lived DPP
in doped graphene as a function of the incident particle speed and its
distance from graphene.

After outlining a general theoretical formulation, we present and
discuss several results for the energy loss rate based on the Drude model
with zero damping, which are followed by our concluding remarks.
Note that, unless otherwise explicitly stated, we use Gaussian units of
Electrodynamics [19].

2. Theory

We consider an infinitely large conducting layer of zero thickness,
placed in vacuum, which occupies the =z 0 plane of a three-dimensional
(3D) Cartesian system with coordinates = x y zR { , , }, and assume that a
point charge Ze moves with constant velocity v parallel to that layer at a
fixed distance b. Since both the external charge and the induced charge
in the layer are moving uniformly, no electromagnetic radiation is ex-
pected in the absence of dielectric environment. We assume that the
conducting layer is isotropic in the direction of the in-plane coordinates
= x yr { , }, but the polarization of its electron gas may depend on the di-

rection of propagation relative to the in-plane wavevectors = k kk { , }x y .
This property is generally captured by a tensorial in-plane conductivity of
the layer that depends on = +k k kx y

2 2 and frequency ω, but may ex-
hibit distinct longitudinal and transverse components, σ k ω( , )l and
σ k ω( , )t , which describe different responses of the electron gas in the
directions of the unit vectors ̂k and ̂ ̂ ̂= ×τ z k, respectively. Accordingly,
we shall also define the longitudinal and transverse components of the
external particle’s velocity via ̂ ̂= + τv vv k l t.

As in Ref. [10], we use the Hertz vector tΠ R( , ) [20] and perform
Fourier transforms with respect to the in-plane coordinates and time,
according to
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(1)

which enables us to express the corresponding electric field as
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where z ωΠ k( , , )‖ and z ωkΠ ( , , )z are components of the Hertz vector
parallel and perpendicular to the conducting layer, and c is the speed of
light in vacuum. The advantage of using the Hertz vector is that it may

be expressed in terms of the source charge current, z ωJ k( , , ), by means
of a free-space, retarded Green’s function, G k z ω( , , ), for a non-
homogeneous Helmholtz equation in scalar form as [10]
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for <ω ck.
Note that the current density of the moving external charge may be

written as

= −t ρ t zJ R v r v( , ) ( , ),ext ext
cm (6)

where = −ρ z Zeδ δ z br r( , ) ( ) ( )ext
cm is the density of a point charge in its

center-of-mass (cm) frame of reference. Performing the Fourier trans-
form, we obtain

= − −z ω πZe δ ω δ z bJ k v k v( , , ) 2 ( · ) ( ),ext (7)

which gives the corresponding Hertz vector from Eq. (3) in the form

= − −z ω i
ω

G k z b ω πZe δ ωΠ k v k v( , , ) ( , , ) 2 ( · ).ext (8)

Clearly, the Dirac’s delta function in Eq. (8) only selects frequencies
= =ω kvk v· l, corresponding to a resonance condition for exciting the

polarization modes in the conducting layer, which lie outside the light
cone, <ω ck. While using Eq. (8) in Eq. (2) gives an electric field due
to the external charge that has all three non-zero Cartesian components,
we only require its components parallel to the conducting layer, which
may be conveniently decomposed into the longitudinal and transverse
parts via ̂ ̂= + τE EE k l t

ext
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On the other hand, the induced charge carrier current density in the
conducting layer may be written as

=z ω δ z ωJ k j k( , , ) ( ) ( , ),ind (11)

where the in-plane current density may be expressed in terms of a
generalized Ohm’s law as =ω σ k ω ωj k E k( , ) ( , ) ( ,0, )tot

‖ ,with
=σ σ σdiag[ , ]l t being a conductivity tensor in diagonal form and

ωE k( ,0, )tot
‖ the in-plane (tangential) component of the total electric field

evaluated at the plane =z 0. Using Eq. (11) in Eq. (3) gives the Hertz
vector due to the induced currents in the form

=bfPi z ω i
ω

G k z ω σ k ω ωk E k( , , ) ( , , ) ( , ) ( ,0, ),ind tot
‖

(12)

which when used in Eq. (2) yields all three Cartesian components of the
corresponding electric field. However, we only require components of
the induced electric field that are parallel to the conducing layer, which
are again decomposed into the longitudinal and transverse parts via

̂ ̂= + τE EE k l t
ind
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In order to obtain a self-consistent set of equations for the
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longitudinal and transverse components of the total in-plane electric
filed, = +E ω E ω E ωk k k( ,0, ) ( ,0, ) ( ,0, )l t l t l t

tot
( , )

ext
( , )

ind
( , ) , we set =z 0 in Eqs. (9),

(10), (13), and (14), whence adding Eqs. (9) and (13) and solving the
resulting equation gives
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whereas adding Eqs. (10) and (14) and solving the resulting equation
gives
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Using the results obtained in Eqs. (15) and (16) in the right hand
sides of Eqs. (13) and (14) gives final expressions for the longitudinal
and transverse components of the induced electric fields at arbitrary
position z, respectively.

Notice that the thus obtained expressions for E z ωk( , , )l t
ind
( , ) contain a

delta function −δ ω k v( · ), which is “inherited” from the external current
density in Eq. (7). Thus, performing the inverse Fourier transform
shows that the induced electric field is stationary in the moving frame
of reference attached to the external particle, so that the spatiotemporal
dependence of its parallel component may be written as

= −t t zE R E r v( , ) ( , )ind
‖

ind
cm,‖ . Here, the induced electric field parallel to the

conducting layer is defined in the center-of-mass (cm) frame via its 2D
spatial Fourier transform as
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where we have taken into account that = =ω kvk v· l, and we defined
the longitudinal and transverse dielectric functions of the conducting
layer by

∊ = +k ω πi α k ω
ω

σ k ω( , ) 1 2 ( , ) ( , ),l l (18)

∊ = −k ω πi ω
c α k ω

σ k ω( , ) 1 2
( , )

( , ),t t2 (19)

respectively.
One may further refer to Eq. (6) and write the rate of energy dis-

sipation in the conducting layer as
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Using Eq. (17) in the last line of Eq. (20) and performing the angular
integration over the direction of k with respect to v , one may invoke
parity properties of the functions σ k ω( , )l t, to express the energy loss rate
in a more familiar form involving integration over the frequency and
the in-plane wavenumber [8],
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This result represents a modification of the formula (5.30) of Ref.
[12], derived for the stopping power in the bulk of a solid, to the case of
a charged particle moving parallel to a 2D target. From the expression
in Eq. (21), it is obvious that any resonant modes in the conducting

layer are given by the zeros of the 2D dielectric functions ∊ k ω( , )l t, in the
ω k( , ) plane. Those modes may be excited by the externally moving
charged particle if their dispersion relations (in the limit of vanishing
damping) traverse the boundary of the region < ⩽ω kv0 . Clearly, the
two terms within the curly brackets in Eq. (21) represent contributions
to the energy loss of the external charged particle resulting from the
longitudinal and transverse polarizations of the electron gas in the
conducting layer.

In the non-retarded limit, one lets → ∞c and hence →α k ω k( , ) in
Eq. (21), so that only the longitudinal contribution survives, giving the
familiar expression for the energy loss rate [8,21–23]
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with the usual definition of dielectric function for a 2D electron gas in
the non-retarded limit,

∊ = +k ω πi k
ω

σ k ω( , ) 1 2 ( , ).lnr (23)

3. Results and discussion

While the formalism developed in the previous section can be di-
rectly applied to any isotropic 2D material with tensorial in-plane
conductivity, we limit our focus on doped graphene, where low-energy
electron excitations within and between its π electron bands give rise to
the Dirac plasmon, with an appealing property of tunability by chan-
ging the doping density of charge carriers in graphene, n, by using
external gates [24]. Calculations of the conductivity of graphene using
the Dirac cone approximation for its π electron bands [17,18], as well
as the ab initio calculations based on all graphene bands [15], show that
the longitudinal and transverse conductivities, σ ωk( , )l t, , exhibit rather
different behaviors when the dependence on the wavevector k is in-
cluded in those functions. On the other hand, applications of the DPP in
Nanophotonics involve rather low frequencies, ranging from THz to
mid-IR [24], so that it is safe to consider conductivities in the optical
limit by letting →k 0, in which case one finds that

= =σ ω σ ω σ ω(0, ) (0, ) ( )l t [17,18,16].
The dispersion relation for the DPP is readily deduced from zeros of

the longitudinal dielectric function, ∊ =k ω( , ) 0l , by using a simple
Drude model for conductivity in Eq. (18). This model describes intra-
band electron excitations in doped graphene in the optical limit, and is
given at zero temperature by

=
+

σ ω i v
π

ω
ω iγ

( ) ,B F
intra

(24)

where = ≈v e c/ℏ /137B
2 is the Bohr velocity, = =ω ε v k/ℏF F F F is the

frequency related to the Fermi energy εF in graphene, with ≈v c/300F
being the Fermi speed in graphene and =k π n| |F its Fermi wave-
number, whereas γ is the damping rate [25]. The range of validity of
the Drude model in Eq. (24) is limited to frequencies satisfying the
relations ≪ ≪kv ω ωF F .

On the other hand, a collective mode due to transverse polarization
of graphene has proven to be more elusive. Its existence was predicted
theoretically by including interband electron transitions between the π
electron bands in graphene, which may be described in the optical limit
by a contribution to the conductivity, given at zero temperature and
with zero damping by [16]

= ⎡
⎣⎢

− + −
+

⎤
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σ ω v ω ω i
π

ω ω
ω ω

( )
4

Θ( 2 ) ln 2
2

,B
F

F

F
inter

(25)

with Θ being the Heaviside unit step function. Combining the Drude
and the interband contributions, Eqs. (24) and (25), gives a con-
ductivity model = +σ ω σ ω σ ω( ) ( ) ( )intra inter , which relaxes the require-
ment ≪ω ωF . Using this model in Eq. (19) gives a condition for the
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transverse plasmon polariton (TPP) from zeros of the transverse di-
electric function, ∊ =k ω( , ) 0t . It was found that the dispersion of such a
collective mode is pinned at the light line, =ω ck, and would only be
observable in a narrow range of frequencies close to ω2 F [16]. Since
excitation of such a mode by an external charge moving parallel to
graphene would require that the resonance condition is satisfied,
=ω kv, it appears that only ultrarelativistic particles with →v c would

be capable of exciting the TPP in doped graphene placed in vacuum.
While this indicates that the so-called relativistic density effect (see
Section 5.6.4 in Ref. [12]) is possibly much weaker in graphene than in
a solid target, a further detailed analysis of the TPP contribution in Eq.
(21) is warranted, but is left for future work.

Therefore, we shall only study here energy loss of the external
charged particle due to excitation of the DPP in doped graphene in the
optical limit. Limiting our consideration to frequencies ≪ω ωF and
taking the limit of zero damping, → +γ 0 , in Eq. (24), one can show that
the contribution of the transverse polarization in Eq. (21) vanishes,
whereas the contribution of the longitudinal polarization may be well
described by using just the Drude conductivity, Eq. (24), in Eq. (18),
provided that the external charged particle is sufficiently fast.

To facilitate the computations, it is useful to introduce the reduced
wavenumber and reduced frequency, =k k k/ c and =ω ω ω/ c, respec-
tively, where =k v v k c/c B F F

2 and = =ω ck v v k c/c c B F F [10]. We note
that, using =n| | 1013 cm−2 as typical doping density of graphene, the
characteristic wavenumber attains the value ≈ × −k 1.36 10c

5 nm−1,
whereas the corresponding characteristic frequency yields ≈ωℏ 2.69c

meV or = ≈ν ω π/(2 ) 0.65c c THz. Using the reduced quantities, the
conditions validating the Drude model may be written as
≪ ≪k ωv

c
c

v
F

B
.

By taking the limit of zero damping in Eq. (24), one can further
show that the loss function − ∊ k ω[ 1/ ( , )]lI in Eq. (21) yields a Dirac’s
delta function that is peaked at the dispersion curve of the DPP, given in

the reduced form by = − + +ω k2( 1 1 )2 . Note that, in the non-
retarded limit, this dispersion is reduced to =ω k2 . Moreover, the
resonance condition for exciting the DPP by a particle moving with the
reduced speed =β v c/ may be written as =ω βk , which crosses the DPP
dispersion curve in a fully retarded limit at the reduced wavenumber
= −−k β 1r β

2 2 . It may be then shown that the pair of values kr and

=ω βkr r may be chosen so that the conditions validating the Drude
model, are fulfilled when the speed of the external charged particle is
≫v vB, or ≳β 0.1.
In Fig. 1 we show both the retarded and non-retarded dispersion

relations in the reduced units. One notices significant differences,
where the retarded dispersion is placed below the light line for all
wavenumbers, whereas the non-retarded dispersion lies above the light
line for < <k0 2. Similarly, considering the resonance line for a par-
ticle with =v c0.5 , one sees that its intersections with the retarded and
non-retarded dispersions occur at ≈k 7 and ≈k 8, respectively.

Next, taking advantage of the Dirac’s delta function that results from
the loss function − ∊ k ω[ 1/ ( , )]lI in Eq. (21), and introducing the auxiliary
variable = ≡y vk ω βk ω( / ) ( / )2 2, one can write the final expression for
the energy loss rate to the DPP excitation as

∫=
−
−

⎡
⎣⎢
− − ⎤

⎦⎥
∞dW

dt
R
β

dy
y β
y y

b
β

y β
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1
exp 4 ( ) ,3 1

2 3/2

2
2

(26)

where = ≈ ×R Zek c(2 ) 3.2 10c
2 8 eV/s ≈ × −5.1 10 11 W, and =b b k| | c is

the reduced distance. Notice that the value =b 1 corresponds to a ra-
ther large physical distance of ≈b| | 73.5 μm.

To obtain the non-retarded result for energy loss, one needs to
transform the expression that appears twice in the parentheses in Eq.
(26) according to − →y β y( )2 giving

∫=
−

− = +∼ ∼ ∼∼ ∼∞ − ∼dW
dt

R dy y
y

b y R K b K b
1

exp( 4 )
2

e [ (2 ) (2 )],b

nr 1
2

0 1

(27)

where ≡ =∼R R β Zek v v v/ (2 ) /F F B
3 2 3 and ≡ =∼b b β b k v v v/ | | /F F B

2 2,
whereas K0 and K1 are modified Bessel functions of the second kind.

Using the expressions in Eqs. (26) and (27), we evaluate the cor-
responding energy loss rates and show them in Fig. 2 as a function of
the reduced distance b (for several reduced speeds β) and in Fig. 3 as a
function of the reduced speed (for several reduced distances). One
notices in Fig. 2 that the retardation effects increase with increasing
distance and increasing speed, as expected. It is somewhat surprising
that, at larger speeds, the retarded energy loss tends to exceed the non-
retarded loss at large distances, but this trend is reversed for inter-
mediate and shorter distances.

Given the strong decrease of the energy loss rate with distance, we
have multiplied each curve in Fig. 3 by a suitable factor, so that all the
retarded curves in that figure have the same maximum value, with a
position that depends on the reduced speed. One notices that the po-
sitions of these maxima increase with the reduced distance, as expected.
Moreover, as the distance increases, one also notices increasing differ-
ences between the retarded and non-retarded energy loss rates, such
that the non-retarded energy losses are larger than the retarded losses at
sufficiently large speeds, whereas this trend is reversed at lower speeds.

Both Figs. 2 and 3 exhibit an interesting dependence of the ratio of
the retarded to the non-retarded energy loss rates as a function of the
reduced particle speed in a range ≲ <β0.2 1 and the reduced distance
in a range ≲ ≲b0.01 1. This behavior may be qualitatively analyzed by
applying the Mean-Value Theorem to the factor −y β( )2 3/2 in the integral
in Eq. (26), giving

⎜ ⎟= ⎛
⎝
− ⎞

⎠∗

dW
dt

β
y

dW
dt

e 1 ,b4
2 3/2

nr (28)

where ≳∗y 1. This expression shows that the ratio of the retarded to the
non-retarded energy loss rates may take values <1 for increasing β and
decreasing b , and >1 for increasing b and decreasing β. However, from
both Figs. 2 and 3, one observes that at distances shorter than about
= −b 10 3, i.e., for ≲b| | 73.5 nm, there are practically no differences be-

tween the retarded and non-retarded energy loss rates in the full range

Fig. 1. Dispersion relations in reduced variables =ω ω ω/ c and =k k k/ c. Red: Dirac

plasmon polariton (including retardation), = − + +ω k2( 1 1 )2 . Green: Dirac
plasmon (non-retarded limit), . Blue: resonance line, =ω βk , for external charge with the
reduced speed = =β v c/ 0.5. Cyan: light line, =ω k . (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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of the incident particle speeds.
It may be worthwhile mentioning that, by attaching a semiclassical

interpretation to the expressions for the energy loss rate given in Eqs.
(21) and (22), one can calculate the corresponding inverse inelastic
lifetimes of the external charged particle, Γ and Γnr, respectively. This is
achieved by simply replacing the factor ω in the integrands in those
equations with a factor 1/ℏ [21]. Furthermore, by taking the limit of
zero damping in the loss function − ∊ k ω[ 1/ ( , )]lI , the thus obtained ex-
pressions for Γ and Γnr yield the rates of excitation of the DPP in doped
graphene by the external charged particle in a fully retarded and non-
retarded regimes, respectively. It is interesting that, following the same
procedure as that used in deriving Eqs. (26) and (27), both those rates
can be evaluated in terms of elementary functions as

⎜ ⎟= ⎡

⎣
⎢ − ⎛

⎝
⎞
⎠
⎤

⎦
⎥

−Q
β b

π β
β

bΓ e 1 e 2 erfc 2 ,b
b
β4 4 2

(29)

where = ≈( )Q π ω 53F
v
c

2B GHz, and erfc is the complementary error
function, and

= ∼

∼
− ∼Q

b
Γ e ,b

nr
4

(30)

where =∼Q Q β/ 2 and =∼b b β/ 2. A simple analysis of Eqs. (29) and (30)
shows that the ratio of the retarded and non-retarded excitation rates
for the DPP, Γ/Γnr, exhibits a similar dependence on the reduced particle
speed β and the reduced distance b as the ratio of the energy loss rates,
discussed above.

4. Concluding remarks

We have presented a fully relativistic formulation for the energy loss
rate of a charged particle moving parallel to a sheet containing two-
dimensional electron gas, and applied it to a single doped graphene
layer. While our formulation of the problem allows for different

longitudinal and transverse in-plane conductivities of graphene, lim-
iting our attention to the THz range of frequencies allowed us to work
in the optical limit, where those conductivities are well approximated
by a Drude model. Taking this model in the limit of zero damping al-
lowed us to evaluate the energy loss rates due to excitation of the Dirac
plasmon polariton in doped graphene by a charged particle that moves
at speeds in excess of about one tenth of the speed of light.

We have observed that the retardation effects are important when
the incident particle speed and its distance from graphene both in-
crease, as expected. However, there are some interesting, non-mono-
tonous relations between the values of the retarded and non-retarded
energy loss rates. Namely, for a given particle speed, the retarded loss
rate is greater than the non-retarded rate at large distances, but this
trend is reversed at shorter distances, whereas for a given distance, the
non-retarded loss rate is greater than the retarded rate at high speeds,
but this trend is reversed at lower speeds. On the other hand, using the
parameters relevant for the Dirac plasmon in a typically doped gra-
phene layer, we have found no significant retardation effects for dis-
tances of the charged particle trajectory up to ∼ 100 nm. Given that in
most experiments using aloof scattering of electrons the distance of
closest approach does not reach so large values, we may conclude that
non-relativistic treatment would be valid for studying Dirac plasmons
in graphene.
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Fig. 2. Solid lines show the retarded, and the dotted lines show the non-retarded energy
loss rate dW

dt
divided by the factor R as a function of the reduced distance =b b k| | c of

external charged particle with =Z 1 that moves parallel to doped graphene at the re-
duced speed =β v c/ , which takes values =β 0.1 (red curves), =β 0.3 (green curves),
=β 0.5 (blue curves), =β 0.7 (cyan curves) and =β 0.9 (black curves). (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Solid lines show the retarded, and the dotted lines show the non-retarded energy
loss rate dW

dt
multiplied by the factor f

R
as a function of the reduced speed =β v c/ of

external charged particle with =Z 1 that moves parallel to doped graphene at the re-
duced distance =b b k| | c, which takes values = −b 10 4 (red curves with = −f 10 5),
= −b 10 3 (green curves with = × −f 3.15 10 4), = −b 10 2 (blue curves with = −f 10 2),
= −b 10 1 (cyan curves with =f 0.34) and =b 1 (black curves with =f 16). (For inter-

pretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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