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Abstract The multicomponent syntheses of 2,4-di-aryl-quinolines and analogous polycyclic

derivatives as anti-tuberculosis agents were described. They were prepared via Beyer and Friedlän-

der methods under microwave irradiation in short reaction times and good yields. Several homoge-

neous and heterogeneous acid catalysts were compared for preparing 2,4-di-arylquinolines and

among them trifluoroacetic acid (TFA) reached the higher yields. Two derivatives exhibited activity

against Mycobacterium tuberculosis H37Rv (Mtb), underwent additional testing and were consid-

ered lead compounds. The synthesis of a series of polycyclic analogous led to six new active com-

pounds and a Quantitative Structure Activity Relationship study (QSAR) study was established.
� 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Tuberculosis (TB) is caused by bacteria (Mycobacterium tuber-
culosis) that most often affect the lungs. In 2016, an estimated
1 million children became ill with TB and 250,000 children died

of TB (including children with HIV associated TB). Multidrug-
resistant TB (MDR-TB) remains a public health crisis and a
health security threat. WHO estimates that there were

600,000 new cases with resistance to rifampicin, the most effec-
tive first-line drug, of which 490,000 had MDR-TB. Ending the
TB epidemic by 2030 is among the health targets of the newly

adopted Sustainable Development Goals. By June 2017, 89
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Fig. 2 Lead fused quinolines A-C.
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countries had introduced bedaquiline and 54 countries had
introduced delamanid (a dihydro-nitroimidazooxazole deriva-
tive), in an effort to improve the effectiveness of MDR-TB

treatment regimens (Tuberculosis Fact sheet, WHO, 2018).
Bedaquiline, previously known as TMC207 (Fig. 1), was

developed by Johnson & Johnson pharmaceutical company.

This diarylquinoline (DARQ) acts by a novel mechanism by
targeting proton pump of adenosine triphosphate (ATP) syn-
thesis, leading to inadequate synthesis of ATP (Andries

et al., 2005; Rustomjee et al., 2008). A quinoline moiety is its
essential pharmacophoric feature and the bedaquiline perfor-
mance encouraged several authors for the design and synthesis
of new drugs (Tanwar et al., 2016). The quinoline alkaloids 4-

methoxy-2-phenylquinoline, graveolinine and kokusagine iso-
lated from Lunasia amara, showed significant activity towards
M. tuberculosis H37Rv in vitro (Metallidis et al., 2007). More

recently, new 4-substituted quinoline derivatives of the anti-
malarial drug mefloquine exhibited anti-tuberculosis properties
(Eswaran et al., 2010). Furthermore 2-substituted quinolines

isolated from plants or prepared by synthesis, have exhibited
activity against leishmaniasis (Fournet et al., 1996; Gopinath
et al., 2014), Chagas disease (Muscia et al., 2011) andM. tuber-

culosis (Jain et al., 2003; Patel et al. 2014, 2015). The quinoline
ring was shown to confer anti-TB activity and confirms that
quinoline-based scaffolds are promising leads for new TB drug
developments (Casal and Ası́s, 2017) as depicted in Fig. 2 for

our previously synthesized quinolines A-C (Muscia et al.,
2014). We have also reported the microwave-assisted Döbner
synthesis of 2-phenylquinoline-4-carboxylic acids and their

activities against malaria, trypanosomiasis and leishmaniasis
(Muscia et al., 2008). The parent compound 2-phenyl-4-
quinolincarboxylic acid 4 (Atophan) and its analogous 5, 6,

7 and 8, were further evaluated for growth inhibitory activity
towards M. tuberculosis H37Rv (Mtb) through the National
Institute of Allergy and Infectious Diseases (NIAID,

USA) and showed no activity (Scheme 1, A). Since 2-
styrylquinoline-4-carboxylic acids had not been sufficiently
explored as anti-TB agents and thus the effect of a vinyl
group, we have synthesized a series of ten derivatives. Only

the compounds featuring the 3,5-di-OCH3-phenyl, 3,4-
methylendioxyphenyl and 1-naphthyl moieties attached at
the C2 of vinyl group showed weak activity against M. tuber-

culosis under aerobic conditions (Muscia et al., 2017). Thus the
analogous 2-aryl-4-quinolin-carboxylic acids 9–11 and 14 were
prepared (Scheme 1, A and B). Although these four derivatives

had been already reported, their NMR spectra were not
described. Moreover, compound 9 with a 1-naphthyl ring
attached at C2 was cited for the treatment of TB (Tsatsas
Fig. 1 Chemical structure of bedaquiline.
et al., 1955) but these data are not available. Later, the family

of DARQ 16–23 was prepared via the Beyer method, another
multicomponent reaction (MCR), with the aim to analyze the
effect of introducing a second aryl moiety at C4 of the quino-
line ring (Scheme 2).

Finally, the DARQ series was extended to the polycyclic
and fused quinolines 26–45 analogous to our lead compounds
(Schemes 3 and 4). A computational analysis of the different

molecular descriptors for each product was performed in order
to establish a Quantitative Structure Activity Relationship
(QSAR) study.

2. Results and discussion

2.1. Chemistry

The microwave-assisted Döbner reaction from substituted ani-

lines (1), arylaldehydes (2) and pyruvic acid (3) was employed
to prepare 2-aryl-4-quinoline carboxylic acids 9–11, (Scheme 1,
A) (Muscia et al., 2008). Although the yields of this MCR are
poor, it is worthy to use in order to achieve in short reaction

times a wide variety of substituted quinolines from easily
affordable starting materials. Furthermore, this work showed
that microwave irradiation (MW) improved all yields com-

pared to two-hour thermal heating. To complete this first ser-
ies, the Pfitzinger reaction (Pfitzinger, 1886) from isatine (12)
and 3-acetyl-phenanthrene (13) was used to afford compound

14 (Scheme 1, B).
In order to determine the effect on the anti-TB activity of a

second aryl moiety attached at position 4 of the quinoline, the

pyruvic acid of Döbner synthesis was replaced for a variety of
methyl aryl ketones (15) maintaining the same neat reaction
conditions (Scheme 2). Therefore, 2,4-diarylquinolines 16–23
were obtained via the microwave assisted one-pot Beyer

method (Beyer, 1886), as a modification of the Döbner-
Miller reaction. Owing to the low yields, the addition of homo-
geneous catalysts, trifluoroacetic acid (TFA) and Eaton´s

reagent (Eaton et al., 1973), and heterogeneous catalysts (sul-
famic acid (H2NSO3H) and Amberlyst� 15) was evaluated.
The reaction times and yields for compounds 16–23 are shown

in Table 1. TFA catalysis proved to be more effective as long
as the yields were between 35 and 89% and the reactions times
were within 1.5–9 min. Whereas for compounds 21 and 22,
Eaton´s reagent and no catalyst, respectively, exhibited the best

performances.
A variety of synthetic methods have been developed to

obtain 2,4-disubstituted quinolines. In this regard, 2,4-

diarylquinolines were prepared by reactions of o-isocyano-b-
methoxystyrenes with nucleophiles, from 2-iodoanilines and
alkynyl aryl ketones, Silver-catalyzed cascade reaction of o-

aminoaryl compounds with alkynes, among others. The syn-
thesis of compounds 16 (Tanwar et al., 2016; Kobayashi



Scheme 1 Synthesis of 2-aryl-4-quinolincarboxylic acids 4–11 and 14 via Döbner and Pfitzinger reactions.

Scheme 2 Synthesis of 2,4-DARQ 16–23 via Beyer method.
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et al., 2004; Prasad Korivi and Cheng, 2006; Tang et al., 2011;
Li et al., 2011; Zhang et al., 2013; Xu et al., 2016), 17 (Ahmad

et al., 2012), 19 (Kobayashi et al., 2004; Tang et al., 2011;
Palimkar et al., 2003; Rehan et al., 2015; Muscia et al.,
2006), 21 (Tang et al., 2011; Zhang et al., 2013; Enugala
et al., 2008) and 22 (Xu et al., 2016; Rehan et al., 2015) were

reported by these or other two-steps methods involving long
reaction times and expensive reagents or by MCR with high-
priced catalysts. Recently, compounds 16, 19 and 22 were
obtained in comparable yields to our work, via MW-assisted
Povarov reaction in the presence of p-sulfonic acid calix[4]

arene (CX4SO3H) as catalyst (Liberto et al., 2017). The synthe-
sis of compound 18 was found as a progress report from the
reaction of 2-vinylaniline and piperonal after 15 h in refluxing
toluene and 40% yield, and its melting point and NMR spectra

were not given (Walter, 1998). Compounds 20 and 23 have not
been previously described. The last one possesses a 4-sulfona
mido-5-methylisoxazol-3-yl substituent at C6 position and



Scheme 3
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was prepared from sulfamethoxazole, a recognized antimicro-
bial agent and thus a pharmacophore moiety for anti-TB activ-
ity (Aly, Abadi, 2004).
The above described experimental conditions support that
the MW-assisted Beyer method for the synthesis of 2,4-
diarylquinolines promoted by TFA is a rapid, neat and versa-



Scheme 4 Synthesis of quinoline derivatives 44 and 45 via Beyer method.

Table 1 Preparation of compounds 16–23 with acid catalysts.

Compd No Catalyst TFA Eaton´s H2NSO3H Amberlyst� 15

Time

(min)

Yield

(%)

Time

(min)

Yield

(%)

Time

(min)

Yield

(%)

Time

(min)

Rto

(%)

Time

(min)

Yield

(%)

16 6 63 9 89 10 43 6 19 5 19

17 20 30 3 56 3 13 4 50 nr –

18 6 <10 2.5 44 1 26 2 24 5 <10

19 3 49 1.5 76 14 35 3 49 3 13

20 4 18 5 52 2 24 4 27 2 <10

21 10 13 5 12 6 37 6 32 1 11

22 6.5 38 2 <10 2 30 2 <10 2 <10

23 6 <10 4 35 3 20 2 <10 2 <10
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tile reaction that can be extended to a large variety of 2,4-
diarylquinolines successfully prepared in short times.

Taking into account the remarkable anti-TB activity results

for compounds 14 and 18 (Section 2.2.1) and considering our
former lead fused quinolines A-C (Fig. 2), the analogous 26–
43 were synthesized employing MW-assisted Friedländer reac-

tion (Scheme 3) (Muscia et al., 2014) and 44–45 through the
Beyer method (Scheme 4), both under TFA catalysis.

The tetrahydroacridine derivative 26 was prepared in 2015
using a tandem process that involves in situ aerial oxidation of

the corresponding alcohol followed by Friedländer annulation
in the presence of KOH at 80 �C for 7 h (Anand et al., 2015).
Recently was reported the water mediated green Friedländer

synthesis of the polycyclic quinolines 28–32 and 34 under
diluted HCl catalysis at room temperature. Although the
authors obtained comparable yields to ours, the reactions pro-

ceeded in longer reaction times (Gopi and Sarveswari (2017)).
Finally the 4-indolylquinoline derivative 44 was cited by Chen
et al. in 2015 in a process that involves two steps, the Michael

addition of indole to a nitrochalcone followed by a reductive
cyclization of the indolylnitrochalcone intermediate.

The spectroscopical analysis of our products agrees with
the reported data. All our synthesized quinoline derivatives

were obtained in short reaction times under eco-friendly condi-
tions, ease of purification and the ready availability of the
starting materials. These advantages are imperative for design-

ing biological active compounds.
2.2. Biological activity

2.2.1. In vitro activity against M. Tuberculosis

Initially the 2-aryl-4-quinoline carboxylic acids 9–11, 14 and
DARQ 16–23 were evaluated for growth inhibitory activity

towards M. tuberculosis H37Rv (Mtb) through the National
Institute of Allergy and Infectious Diseases (NIAID, USA)
and rifampicin was used as reference drug (NIH/NIAID Task

Order A01 Contract HHSN272201100012I).
Compounds 14, 18 and 19 exhibited IC50 values of 60.25, 29

and 19 mM, respectively but only compounds 14 (2-

phenanthren-3-yl) and 18 2-(3,4-methylenedioxyphenyl)
underwent additional testing and are also considered lead com-
pounds. This subset was determined by an algorithm that con-
sidered primarily activity and analytical quality of the samples

but also considered other aspects such as chemotype series and
solubility. This testing includes in vitro evaluation of H37Rv
under both anaerobic and aerobic conditions as well as mini-

mal bactericidal concentration (MBC). Single drug resistant
strain testing (isoniazid, rifampicin and ofloxacin resistant
Mtb strains) and intracellular inhibition of Mtb H37Rv growth

using murine macrophage cell line and cytotoxicity in this cell-
line were also determined.

The twenty derivatives 26–45 designed as analogous of lead

compounds A-C, 14 and 18 (Schemes 3 and 4) were evaluated
against Mtb using rifampicin as reference drug (MIC
0.0072 mM) and six of them showed inhibitory activity
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(Table 2). The additional halogen atom (Cl or F) attached at
C2 of the 4-phenyl moiety in compounds 26–29 did not
improve the IC50 values of A-C. The chlorine atom at C6 of

quinoline ring in compound 38 conferred less activity mean-
while the trifluormethyl group increased the activity compar-
ing to the lead 18 however it was not selected for additional

testing. The polycyclic quinolines 35–37 as constrained models
of 18 lacked of activity as well as the 2-phenanthryl derivatives
42 and 43 analogous to 14 (Fig. 3).

2.2.2. Minimal inhibitory concentration (MIC)

The MIC for each compound was determined by testing ten,
two-fold dilutions in concentration ranges. The MIC is

reported as the lowest concentration (mM) of drug that visually
Table 2 In vitro activity against M. tuberculosis H37Rv of analogo

Compd Structure

26

27

28

29

38

45
inhibited growth of the organism. In addition, the percentage
of inhibition at the MIC is provided for compound 14

(Table 3). Rifampicin and isoniazid were used as positive con-

trols. Although MIC values of compound 14 were higher than
the MIC values for the reference drugs, this compound showed
a similar percent inhibition value against the rifampicin resis-

tant strain (RMP-R) and a higher percent inhibition value
against the ofloxacin resistant strain (OFX-R). On the other
hand, compound 18 had limited activity against M. tuberculo-

sis resistant.

2.2.3. Minimal bactericidal concentration (MBC)

The established rejection value of >40 colonies for the MBC

assay was based on the calculated concentration of Mtb in
us active compounds.

IC50 (mM) IC90 (mM) MIC (mM)

81 158 >200

65 97 102

130 190 200

95 >200 >200

162 >200 >200

21 118 73



Fig. 3 SAR of the synthesized quinolines.
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the MIC plates. Results are determined based on Colony
Forming Units (CFUs) enumerated from agar plates. Only

agar plates with countable colonies have reportable counts.
If a compound lacks bactericidal activity, many times the
CFUs are too numerous to count (TNTC) and are thus

reported as such. This result was the one obtained for com-
pound 14, meanwhile compound 18 proved bactericidal activ-
ity so far the MBC value was 100 mM.

2.2.4. Low-oxygen recovery assay (LORA)

Traditional screening of drugs against M. tuberculosis only
addresses or targets the organism in an active replicating state.

It is well documented that Mtb can reside in a state of non-
replicating persistence (NRP) which has not been adequately
assessed in the development of new antimicrobials. Results
for the LORA assay are reported as the lowest concentration

of drug that visually inhibited growth of the organism. This
NRP state is considered an antimicrobial tolerance factor, so
LORA may identify drugs that could reduce anti-tubercular

treatment period. Compound 14 exhibited higher MIC value
under anaerobic than under aerobic conditions. Compound
18 had activity against M. tuberculosis under low oxygen con-

ditions and the MIC, IC50 and IC90 values were 136, 7.3 and
30 mM, respectively.
Table 3 Percentage of inhibition at the MIC for compound 14.

Comp MIC

H37Rv

(mM)

%

Inhiba
MBC

H37Rv

(mM)

MIC

INH-Rb

(mM)

14 25.1 60 NAe 12.6

Rifampicin

(pos control)

0.06 57 0.95 0.06

Isoniazid

(pos control)

NA NA NA NA

a Percent inhibition at the MIC concentration.
b INH-R: Isoniazid Resistance.
c RMP-R: Rifampicin Resistance.
d OFX-R: Ofloxacin Resistance.
e NA: Not Applicable, Colony Counts above the established rejection
f NA: Not Applicable, Compound not used in assay.
2.2.5. Intracellular drug activity

Intracellular drug activity is reported as log reduction values

calculated as reduction in Mtb concentration from zero hour
to 7 days post-infection. The three concentrations chosen were
based on the MIC data generated in the HTS primary screen.

The mid concentration bracketed the reported MIC with the
lower concentration ten-fold below the mid and the higher
concentration tenfold above the mid. Drug cytotoxicity is

reported as cell proliferation, macrophage toxicity (MTT) or
percentage of viability. Compound 14 showed a similar ten-
dency as rifampicin, so at higher drug concentrations lower
UFC are obtained and the log reduction is higher (Table 4).

Concerning cytotoxicity, compound 14 exhibited percentages
of viability comparable to rifampicin at low and mid concen-
trations, so it is not toxic to macrophages. Compound 18

had intracellular activity against M. tuberculosis and was cyto-
toxic (IC50 = 82 mM).

2.3. QSAR study

The analogous compounds 26–29, 38 and 45 have been classi-
fied as ’active’ and the remaining structures as ’inactive’. All

the active molecules have pIC50 values above 4.22 log units.
The molecules were built with ChemAxon Marvin Sketch 6.0
and exported to MOL2 format. A total of 1444 1D and 2D dif-
ferent molecular descriptors were calculated using PaDEL-

Descriptor v2.7, Table 5 (Todeschini and Consonni, 2009).
Descriptors with zero standard deviation in their values were
then removed. The principal component analysis (PCA)

showed that three principal components (PC) explained 97%
of the variance in the chemical structure. The first three PCA
vectors were added to the study table containing the binary

representation of the activity of the molecules (Tables 6 and
7). Summarizing, PC1 is related to the number of aromatic
bonds, PC2 with the effect and position of the substituents

and PC3 with the molecular distances between atoms and
the tertiary quinoline nitrogen.

3. Conclusion

We herein describe the multicomponent, eco-friendly synthe-
sis of 31 quinoline derivatives in short reaction times and
%

Inhib

MIC

RMP-Rc

(mM)

%

Inhib

MIC

OFX-Rd

(mM)

%

Inhib

50 25.1 62 6.28 77

68 NAf NA 0.47 63

NA 0.15 74 NA NA

value of �40.



Table 4 Macrophage toxicity (MTT) and percentage of viability of compound 14.

Comp. Macrophage

log reduction

(low conc)

Macrophage

log reduction

(mid conc)

Macrophage log reduction

(high conc)

MTT

% viability

(low conc)

MTT

% viability

(mid conc)

MTT

% viability

(high conc)

14 1.56 1.98 2.54 100 100 80

Rifampicin 0.58 2.00 2.98 90 79 82

Table 5 Calculated molecular descriptors for compounds 26–45.

Compd AMR nHBAcc nHBDon nRing nRotB Ro5 Failures TPSA MW XLogP

26 26.37 1 0 4 1 1 12.89 327.058 6.380

27 29.28 1 0 4 1 1 12.89 341.073 6.949

28 21.62 1 0 4 1 1 12.89 311.087 6.243

29 24.54 1 0 4 1 1 12.89 325.103 6.812

30 23.3 3 0 6 1 1 31.35 405.032 6.098

31 21.14 5 0 4 2 1 73.10 318.100 5.846

32 39.5 2 0 4 1 1 29.96 369.068 6.210

33 23.74 2 0 4 1 0 29.96 325.066 4.959

34 3.89 4 0 6 3 1 56.03 426.136 12.668

35 11.36 6 0 5 3 1 74.49 370.095 7.322

36 16.97 6 0 5 3 1 74.49 404.056 6.363

37 22.87 2 0 4 1 1 29.96 307.076 6.055

38 13.08 3 0 5 2 1 31.35 359.071 7.531

39 18.7 3 0 5 2 1 31.35 393.032 6.572

40 5.615 1 0 6 2 1 12.89 415.112 12.877

41 28.48 2 0 4 1 1 29.96 341.037 5.096

42 17.68 3 0 6 1 1 31.35 371.071 7.057

43 10.77 4 1 6 2 1 47.14 364.121 6.034

44 13.96 3 0 5 2 1 31.35 377.061 6.435

45 13.9 3 0 5 3 1 31.35 393.097 8.549

Table 6 Eigenvectors for the first components.

Principal Component VR2Dta nBondsMb nAtomPc MDEC-23d nssCH2e nwHBaf C2SP2g

PC1 0.1087 0.5011 0.456 0.5194 �0.1219 0.3972 0.2942

PC2 0.9873 �0.0316 0.0092 �0.1446 �0.0257 �0.0413 �0.0246

PC3 �0.1108 0.0458 0.5291 �0.7276 �0.3088 0.0126 0.2825

Major contribution property values to each PC are depicted in bold.
a Normalized Randic-like eigenvector-based index from detour matrix.
b Total number of bonds that have bond order greater than one.
c Number of atoms in the largest pi system.
d Molecular distance edge between all secondary and tertiary nitrogens.
e Count of atom-type E-State: ACH2A.
f Minimum E-States for weak Hydrogen Bond acceptors.
g Doubly bound carbon bound to two other carbons.
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from easily affordable starting materials and their anti-TB
activity. Among the synthesized compounds, fifteen are

novel structures and the remaining terms have been reported
in the literature although prepared by other experimental
conditions and from different expensive starting materials.

All products were evaluated in vitro against M. tuberculosis
(Mtb) H37Rv. Nine compounds showed inhibitory activity
and compounds 14 and 18 underwent additional testing.

Compound 18 had limited activity against M. tuberculosis
resistant, proved to be bactericidal and had activity against
M. tuberculosis under low oxygen conditions, although was
cytotoxic. By contrast, compound 14 had a higher percent
inhibition value against the ofloxacin resistant strain

(OFX-R), lacked of bactericidal activity, was not active
under low oxygen conditions and exhibited percentages of
viability comparable to rifampicin at low and mid concen-

trations, so it was not toxic to macrophages. Considering
the established minimal structural requirements supported
by theoretical calculations, it is worthy to note that the

introduction of a sulfonamide moiety at C6 of the quinoline
ring in future series could improve the anti-TB activity and
diminish the cytotoxicity.



Table 7 Principal components for each tested compound.

Compound PC1 PC2 PC3

26 �11.534 �3.415 �1.432

27 �10.755 �3.2 �2.983

28 �11.534 �3.415 �1.432

29 �10.755 �3.2 �2.983

30 4.005 �1.841 �1.331

31 �7.314 �0.285 1.867

32 �9.959 1.55 1.858

33 �9.305 �2.506 0.313

34 24.349 �4.6 �1.443

35 4.53 �2.449 4.007

36 5.31 1.178 3.073

37 �7.459 15.38 �1.526

38 2.649 �2.554 2.386

39 3.433 1.112 1.447

40 22.488 �4.523 �3.086

41 �9.305 �2.506 0.313

42 4.483 2.426 �1.824

43 10.869 14.144 �0.758

44 3.433 1.112 1.447

45 2.368 �2.408 2.087

940 G.C. Muscia et al.
4. Experimental section

4.1. Chemistry

The structures of the synthesized compounds were established

through their 1H and 13C NMR, MS and IR spectra. Melting
points were determined in a capillary Electrothermal 9100
SERIES-Digital apparatus and are uncorrected. 1H and 13C
NMR spectra were recorded at room temperature using a Bru-

ker 300 spectrometer. The operating frequencies for protons
and carbons were 300.13 and 75.46 MHz, respectively. When
indicated, the spectra were obtained using a Bruker 600 spec-

trometer. The operating frequencies for protons and carbons
were 600 and 151 MHz, respectively. The chemical shifts (d)
were given in ppm. IR spectra were recorded on an FT Perkin

Elmer Spectrum One from KBr discs. Mass spectra were mea-
sured on MS/DSQ II Thermo Scientific DIP or Agilent MSD,
electrospray ionization, positive ion. Elemental analysis (C, H

and N) were performed on an Exeter CE 440 and the results
were within ±0.4% of the calculated values. Analytical TLCs
were performed on DC-Alufolien Kieselgel 60 F254 Merck.
Microwave-assisted reactions were carried out in a CEM Dis-

cover oven.

4.1.1. 2-Arylquinoline-4-carboxylic acids

4.1.1.1. General procedure for compounds 9–11. A mixture of
the corresponding aniline (0.37 mL, 4.1 mmoles), arylaldehyde

(0.58–0.73 g, 3.9 mmoles) and pyruvic acid (0.30 mL,
4.3 mmoles) placed in a 50 mL round-bottomed flask was sub-
jected to MW irradiation at 400 W and 250 �C. After comple-
tion of the reaction (TLC), the reaction mixture was allowed to

cool and the residual semisolid crystallized. When this did not
occur, the reaction mixture was diluted with CH2Cl2 (15 mL)
and washed with water, 5% HCl (10 mL) and brine (10 mL).

This was then dried (Na2SO4) and concentrated in vacuo to
give a solid product (Muscia et al., 2008).
4.1.1.2. 2-(3,4-methylenedioxyphenyl)quinoline-4-carboxylic

acid 9. White solid; yield 45%, mp 215–218 �C, crystallized
from EtOH. 1H NMR (DMSO d6): d 6.13 (s, 2H, OCH2O),
7.08 (d, J = 8.1 Hz, 1H, H-Ph), 7.66 (1H, t, Het-H), 7.79–

7.85 (2H, m, Ph-H and Het-H), 7.87 (1H, s, Ph-H), 8.11
(1H, d, J = 8.5 Hz, Het-H), 8.39 (1H, s, Het-H), 8.59 (1H,
d, J = 8.5 Hz, Het-H). 13C NMR (DMSO d6): d 101.63
(OCH2O), 107.05, 108.68, 118.81, 121.84, 123.29, 125.33,

127.40, 129.64, 130.19, 132.24, 137.63, 148.26, 149.08, 155.21
(Carom), 167.7 (COOH). 101.6, 107.0, 108.6, 118.8, 121.8,
123.2, 125.3, 127.4, 129.6, 130.1, 132.2, 137.6, 148.2, 149.0,

155.2, 167.7. IR (cm�1): t 3392, 3004, 1715, 1264, 1036, 764,
690. MSD 292 (M+).

Anal. Calcd. for C17H11NO4: C, 69.62; H, 3.78; N, 4.78.

Found: C, 69.58; H, 3.72; N, 4.81.

4.1.1.3. 2-(naphthalen-1-yl)quinoline-4-carboxylic acid 10. Pale
yellow solid; yield 25%, mp 170 �C d, Lit. 198 �C (Buu-Hoı̈,

1943), crystallized from cyclohexane. 1H NMR (DMSO d6):
d 7.46–7.47 (2H,m, Ph-H), 7.61 (1H, t, Het-H), 7.66 (1H, t,
Ph-H), 7.71 (1H, t, Het-H), 7.83–7.87 (2H, m, Ph-H), 7.93

(1H, d, J = 8.2 Hz, Ph-H), 8.13 (1H, d, J = 7.9 Hz, Ph-H),
8.20 (1H, s, Het-H), 8.25 (1H, d, J = 7.7 Hz , Het-H), 8.51
(1H, d, J = 7.7 Hz, Het-H). 13C NMR (DMSO d6): d 122.9,

125.2, 125.3, 125.5, 125.8, 126.6, 126.7, 127.1, 127.9, 130.0,
130.8, 131.0, 134.5, 143.6, 149.3, 157.7(Carom), 171.2 (COOH).
IR (cm�1): t 3314, 3044, 1678, 1397, 779, 719. MS (EI): MSD

297 (M+).
Anal. Calcd. for C20H13NO2: C, 80.25; H, 4.38; N, 4.68.

Found: C, 80.21; H, 4.44; N, 4.60.

4.1.1.4. 2-(6-methoxynaphthalen-2-yl)quinoline-4-carboxylic
acid 11. Orange solid; yield 25%, mp 149–151 �C, Lit. 258–
259 �C (Buu-Hoı̈, 1949), crystallized from cyclohexane. 1H

NMR (DMSO d6): d 3.9 (3H, s, OCH3), 7.21–7.29 (3H, m,
Ph-H), 7.39–7.45 (3H, m, Ph-H), 7.92 (2H, t, Het-H), 8.07
(1H, d, J = 8.7 Hz, Het-H), 8.30 (1H, d, J = 8.7 Hz, Het-

H), 8.69 (1H, s, Het-H). 13C NMR (DMSO d6): d 55.3
(OCH3), 106.3, 113.8, 115.6, 119.3, 120.9, 124.2, 125.7, 127.5,
127.9, 130.3, 131.1, 131.6, 136.1, 151.6, 158.7, 159.8 (Carom),
160.5 (COOH). IR (cm�1): t 3468, 3002, 1689, 1477, 1032,

758, 694. MSD 119.1 (M+).
Anal. Calcd. for C21H15NO3: C, 76.58; H, 4.59; N, 4.25.

Found: C, 76.54; H, 4.57; N, 4.28.

4.1.1.5. 2-(phenanthren-3-yl)quinoline-4-carboxylic acid 14. A
mixture of 3.4 mmoles (0.5 g) of isatine and 7.1 mmoles

(1.5 g) of 3-acetyl-phenanthrene in 20 mL 20% KOH was stir-
red at reflux temperature for 7 h. The reaction mixture was
cooled to rt and concd HCl was added to pH 6.5 and the crys-

talline solid was filtered and crystallized from i-PrOH.
White solid; yield 54%, mp 261–263 �C, Lit. 268 �C (Buu-

Hoı̈, 1943). 1H NMR (600 MHz, CDCl3): d 7.70–7.80 (3H,
m), 7.90–7.96 (3H, m), 8.04 (1H, d, J = 7.8 Hz), 8.19 (1H, d,

J= 8.3 Hz), 8.30 (1H, d, J = 8.3 Hz), 8.62 (2H, t), 8.83 (1H,
s), 9.13 (1H, d, J = 8.2 Hz), 9.68 (1H, s). 13C NMR
(151 MHz, CDCl3): d 120.0, 122.5, 123.8, 125.8, 126.1, 126.9,

127.6, 127.7, 128.4, 128.7, 129.1, 129.7, 130.0, 130.4, 130.5,
130.9, 132.3, 133.1, 136.4, 138.9, 148.5, 156.3 (Carom), 168.2
(COOH). IR (cm�1): t 3435, 3065, 1717, 1630, 1589, 847,

717. MSD 349 (M+).
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Anal. Calcd. for C24H15NO2: C, 82.50; H, 4.33; N, 4.01.
Found: C, 82.53; H, 4.31; N, 3.98.

4.1.2. Diarylquinolines (DARQ)

4.1.2.1. General procedure for compounds 16–23. A mixture of

the corresponding aniline (0.51–1.39 g, 5.5 mmoles), arylalde-
hyde (0.55–0.79 g, 5.25 mmoles), substituted acetophenone
(0.66–0.82 g, 5.5 mmoles) and 1% of catalyst placed in a

50 mL round-bottomed flask was subjected to MW irradiation
at 400 W and 250 �C. After completion of the reaction (TLC),
the reaction mixture was allowed to cool. It was diluted with
CH2Cl2 (15 mL) and washed with water, 5% HCl (10 mL)

and brine (10 mL). This was then dried (Na2SO4) and concen-
trated in vacuo to give a solid product which was crystallized
from the corresponding solvent. The yields are shown in

Table 1.
4.1.2.2. 2-(3,4-methylenedioxyphenyl)-4-phenylquinoline 18.

Pale yellow solid, mp 149–151 �C, crystallized from cyclohex-
ane. 1H NMR (600 MHz, CDCl3): d 6.05 (2H, s), 6.87 (1H,
d, J = 6.9 Hz), 7.15 (1H, d, J= 8.0 Hz), 7.19 (1H, s), 7.20

(1H, s), 7.39 (1H, d, J = 15.5 Hz), 7.52 (2H, t), 7.60 (1H, t),
7.76 (1H, d, J= 15.5 Hz), 8.03 (2H, d, J= 8.1 Hz). 13C
NMR (151 MHz, CDCl3): d 101.6 (OCH2O), 106.7, 108.7,
120.1, 125.2, 128.4, 128.6, 129.4, 132.6, 138.4, 144.7, 148.4,

149.9 (Carom). IR (cm�1): t 3062, 2913, 1674, 1456, 1260,
804, 717. MS (EI): 325 (M+), 252 (100%), 122 (21%), 77
(26%).

Anal. Calcd. for C22H15NO2: C, 81.21; H, 4.65; N, 4.30.
Found: C, 81.23; H, 4.63; N, 4.34.

4.1.2.3. 4-(4-hydroxyphenyl)-2-phenylquinoline 20. White solid,
mp 174–175 �C, crystallized from CH2Cl2.

1H NMR (CDCl3):
d 6.57–6.62 (3H, m), 6.68 (2H, d, J = 8.2 Hz), 6.69 (1H, s),
7.15 (2H, d, J = 7.9 Hz), 7.35 (1H, s), 7.42 (2H, d,

J = 8.1 Hz), 7.83 (2H, d, J = 7.9 Hz), 7.79 (2H, d,
J = 8.1 Hz). 13C NMR (CDCl3): d 116.8, 119.8, 122.5, 124.8,
125.5, 126.9, 129.8, 130.0, 131.2, 132.6, 143.7, 146.2, 147.8

(Carom), 159.8 (Carom-OH). IR (cm�1): t 3300, 3010, 1594,
1485, 1283, 834, 751, 699. MS (EI): 297 (M+), 182 (100%),
121 (36%), 93 (50%), 77 (22%).

Anal. Calcd. for C21H15NO: C, 84.82; H, 5.08; N, 4.71.
Found: C, 84.79; H, 5.10; N, 4.67.

4.1.2.4. 2,4-diphenyl-6-(4-sulfonamido-5-methylisoxazol-3-yl)
quinoline 23. White solid, mp 222–223 �C, crystallized from
EtOH. 1H NMR (DMSO d6): d 2.51 (3H, s), 6.07 (1H, s),
6.59 (2H, d, J= 8.8), 7.67–7.20 (10H, m), 7.98 (2H, d,

J = 7.2 Hz), 10.94 (1H, s). 13C NMR (DMSO d6): d 12.5
(CH3), 112.1, 125.2, 127.0, 127.5, 128.5, 128.9, 129.1, 133.7,
137.1, 143.4 (Carom). IR (cm�1): t 3369, 3283, 3109, 3065,

1674, 1587, 1174, 1087, 760, 696. MS (EI): 442 (M+), 207
(100%), 162 (31%), 92 (32%), 77 (24%).

Anal. Calcd. for C25H19N3O3S: C, 68.01; H, 4.34; N, 9.52.

Found: C, 68.05; H, 4.31; N, 9.55.
4.1.3. Polycyclic quinolines

4.1.3.1. General procedure for compounds 26–43. A neat mix-
ture of 1.00 mmol of 2-amino-5-chlorobenzophenones (0.23–
0.27 g) or 2-amino-5-nitrobenzophenones (0.24–0.28 g) 24

and 1.50 mmol of the corresponding cyclanone or methylke-
tone (0.15–0.26 g) 25 with 0.15 mL TFA was subjected to
MW irradiation, at 400 W and 250 �C. The completion of
the reaction was determined by TLC (Muscia et al., 2014).

The product was crystallized from EtOH and the reaction
times were 2–6 min.

4.1.3.2. 2-chloro-11-(2-chlorophenyl)-7,8,9,10-tetrahydro-6H-
cyclohepta[b]quinoline 27. White solid, yield 63%, mp 151–
153 �C, crystallized from EtOH. 1H RMN (600 MHz, CDCl3):

d 1.56–1.72 (m, 2H, CH2), 1.87 (s, 4H, CH2), 2.58–2.70 (m, 2H,
CH2), 3.26–3.33 (m, 2H, CH2), 7.10 (s, 1H, H-Het), 7.19 (dd,
J= 1.4; J = 7.3 Hz, 1H, HAAr), 7.41–4.48 (m, 2H, HAAr),
7.56 (dd, J = 2.2; J = 8.9 Hz, 1H, HAAr) 7.60 (d,

J= 7.8 Hz, 1H, HAAr), 7.99 (d, J = 8.9 Hz, 1H, H-
Het).13C NMR (151 MHz, CDCl3): d 26.9 (CH2), 27.8
(CH2), 30.9 (CH2), 31.9 (CH2), 40.2 (CH2), 124.4, 127.1,

129.2, 129.7, 129.9, 130.4, 131.0, 131.7, 133.7, 135.2, 135.8,
141.8, 144.3, 165.1 (Carom). IR (cm�1): t 3044, 2918, 2841,
1575, 1468, 1169, 829, 757. MSD 342 (M+).

Anal. Calcd. for C20H17Cl2N: C, 70.18; H, 5.01; N, 4.09.
Found: C, 69.85; H, 4.96; N, 4.11.

4.1.3.3. 7-nitro-9-phenyl-3,4-dihydroacridin-1(2H)-one 33. Yel-
low solid; yield 35%, mp 195–197 �C, crystallized from EtOH.
1H RMN (CDCl3): d 2.25–2.37 (m, CH2, 2H), 2.78 (t, CH2,
J= 6.7 Hz, 2H), 3.44 (t, CH2, J = 6.2 Hz, 2H), 7.19–7.23

(m, 2H, H-Ph), 7.54–7.59 (m, 3H, H-Ph), 8.21, (d,
J= 9.2 Hz, 1H, H-Het), 8.44 (s, 1H, H-Het), 8.53 (d,
J= 9.2 Hz, 1H, H-Het). 13C NMR (CDCl3): d 21.0 (CH2),

34.8 (CH2), 40.5 (CH2), 124.9, 125.0, 125.3, 126.8, 128.0,
128.5, 130.5, 145.6, 150.5, 153.2, 166.1 (Carom), 197.1
(C‚O). IR (cm�1): t 3000, 2890, 1696, 1616, 1554, 1338,

714, 688. MSD 113.1 (M+).
Anal. Calcd. for C19H14N2O3: C, 71.69; H, 4.43; N, 8.80.

Found: C, 71.47; H, 4.50; N, 8.50.

4.1.3.4. 8-chloro-10-phenyl-11H-[1,3]dioxolo[40,50:5,6]indeno
[1,2-b]quinoline 35. Pale yellow solid; yield 55%, mp 254–
256 �C, crystallized from EtOH. 1H RMN (600 MHz, CDCl3):

d 3.72 (s, 2H, CH2), 6.08 (s, 2H, OCH2O), 6.93 (s, 1H, H-Ph),
7.45 (d, J = 7.0 Hz, 2H), 7.54–7.62 (m, 5H, HAAr), 7.7 (s, 1H,
H-Het), 8.12 (d, J = 9.6 Hz, 1H, H-Het).

13C NMR (151 MHz, CDCl3): d 33.80 (CH2), 101.69
(OCH2O), 101.9, 105.5, 124.6, 126.6, 128.5, 128.9, 129.0,
129.2, 129.4, 130.4, 130.9, 134.1, 134.2, 135.8, 140.5, 142.0,

146.8, 148.1, 150.4, 161.2 (Carom). IR (cm�1): t 3000, 2900,
1566, 1468, 1331, 1259, 1037, 833, 708. MSD 372.0 (M+).

Anal. Calcd. for C23H14ClNO2: C, 74.30; H, 3.80; N, 3.77.
Found: C, 74.69; H, 3.89; N, 3.55.

4.1.3.5. 8-chloro-10-(2-chlorophenyl)-11H-[1,3]dioxolo
[40,50:5,6]indeno[1,2-b]quinoline 36. Pale yellow solid; yield

60%, mp 250–251 �C, crystallized from EtOH. 1H RMN
(600 MHz, CDCl3): d 3.68 (q, 2H, CH2), 6.10 (s, 2H, OCH2O),
6.96 (s, 1H, HAAr), 7.35–7.38 (m, 2H, H-Ph), 7.48–7.54 (m,

2H, H-Ph), 7.63–7.66 (m, 2H, HAAr), 7.73 (s, 1H, H-Het),
8.15 (d, J = 8.9 Hz, 1H, H-Het). 13C NMR (151 MHz,
CDCl3): d 33.5 (CH2), 101.7 (OCH2O), 102.0, 105.6, 124.2,

126.4, 127.2, 129.6, 130.1, 130.5, 130.8, 131.2, 133.3, 134.1,
134.9, 139.3, 140.4, 146.7, 148.2, 150.5, 161.2, 165.4 (Carom).
IR (cm�1): t 3062, 2925, 2847, 1755, 1471, 1428, 1170, 829,
759. MSD 406.0 (M+).
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Anal. Calcd. for C23H13Cl2NO2: C, 68.00; H, 3.23; N, 3.45.
Found: C, 67.88; H, 3.17; N, 3.38.
4.1.3.6. 2-(benzo[d][1,3]dioxol-5-yl)-6-chloro-4-(2-fluo-
rophenyl)quinoline 37. Pale yellow solid; yield 50%, mp 133–
135 �C, crystallized from EtOH. 1H RMN (600 MHz, CDCl3):

d 6.04 (s, 2H, OCH2O), 6.86 (d, J = 8.4 Hz, 1H, HAAr), 7.44–
7-52 (m, 3H, HAAr), 7.61–7.68 (m, 2H, HAAr), 7.81 (dd,
J= 2.3 Hz, J = 9.0 Hz, 1H, H-Ph),7.93 (d, J= 5.5 Hz, 2H,

H-Het), 8.16 (d, J = 8.7 Hz, 2H, H-Het). 13C NMR
(151 MHz, CDCl3) d 101.6, 106.7, 108.7, 120.1, 125.2, 128.4,
128.6, 129.4, 132.6, 138.4, 144.7, 148.4, 149.9 (Carom). IR
(cm�1): t 3067, 2897, 2775, 1592, 1481, 1446, 1251, 1038,

873, 764. MSD 378.0 (M+).
Anal. Calcd. for C22H13ClFNO2 C, 69.94; H, 3.47; N, 3.71.

Found: C, 70.04; H, 3.50; N, 3.67.
4.1.3.7. 2-(benzo[d][1,3]dioxol-5-yl)-6-chloro-4-phenylquino-
line 38. Pale yellow solid; yield 61%, mp 142–144 �C, crystal-
lized from EtOH. 1H RMN (DMSO d6): d 6.12 (s, 2H,
OCH2O), 7.08 (d, J= 8.1 Hz, 1H, HAAr), 7.50–7.63 (m,
5H, HAAr), 7.73 (d, J = 2.0 Hz, 1H, H3C6OCH2O), 7.80

(dd, J= 2.1 Hz; J= 8.9 Hz; 1H, H3C6OCH2O), 7.92 (d,
J= 6.3 Hz, 2H, H-Het), 8.05 (s, 1H, H-Het), 8.13 (d,
J= 8.9 Hz, 1H, H-Het). 13C NMR (DMSO d6): d 102.0
(OCH2O), 107.8, 109.0, 119.9, 122.5, 124.3, 126.2, 129.3,

130.0, 130.8, 131.3, 132.2, 132.9, 137.3, 146.9, 148.3, 148.6,
149.4, 156.13 (Carom). IR (cm�1): t 3049, 2890, 1589, 1505,
1483, 1369, 1245, 1037, 827, 776, 700. MSD 360.0 (M+).

Anal. Calcd. for C22H14ClNO2: C, 73.44; H, 3.92; N, 3.89.
Found: C, 73.65; H, 3.89; N, 3.93.
4.1.3.8. 2-(benzo[d][1,3]dioxol-5-yl)-6-chloro-4-(2-chlorophe-
nyl)quinoline 39. Pale yellow solid; yield 55%, mp 166–168 �C,
crystallized from EtOH. 1H RMN (DMSO d6): d 6.14 (s, 2H,

OCH2O), 7.08 (d, J = 8.5 Hz, 1H, HAAr), 7.30 (s, 1H, H3C6-
OCH2O), 7.47–7.50 (m, 3H, HAAr), 7.72–7.82 (m, 2H,
HAAr), 7.93 (d, J= 6.3 Hz, 2H, H-Het), 8.12–8.30 (m, 2H-
Het). 13C NMR (DMSO d6): d 102.4 (OCH2O), 107.7, 109.0,

120.4, 122.6, 124.1, 126.3, 128.1, 130.2, 131.0, 131.2, 131.5,
132.2, 132.6, 132.7, 136.0, 145.8, 146.5, 148.6, 149.5, 156.2
(Carom). IR (cm�1): t 3086, 2879, 2776, 1602, 1472, 1246,

1036, 820, 759. MSD 394.0 (M+).
Anal. Calcd. for C22H13Cl2NO2: C, 67.02; H, 3.32; N, 3.55.

Found: C, 68.92; H, 3.36; N, 3.61.
4.1.3.9. 2-(benzo[d][1,3]dioxol-5-yl)-6-nitro-4-phenylquinoline
40. Pale yellow solid; yield 58%, mp 195–197 �C, crystallized
from EtOH. 1H NMR (DMSO d6): d 6.15 (s, 2H, OCH2O),

7.09 (d, J = 8.1 Hz, 1H, H3C6OCH2O), 7.57–7.70 (m, 5H,
H-Ph), 7.95–8.02 (m, 2H, H3C6OCH2O), 8.20 (s, 1H, H-
Het), 8.26 (d, J= 9.2 Hz, 1H, H-Het), 8.47 (d, J = 9.2 Hz,

1H, H-Het), 8.64 (s, 1H, d, H-Het). 13C NMR (CDCl3): d
102.2 (OCH2O), 108.0, 109.1, 120.5, 122.8, 123.4, 123.6,
124.3, 130.2, 131.8, 132.3, 136.8, 145.1, 148.7, 150.1, 150.7,

150.9, 158.9 (Carom). IR (cm�1): t 3082, 3049, 2901, 1592,
1506, 1484, 1339, 1038, 811, 703. MSD 371.0 (M+).

Anal. Calcd. for C22H14N2O4: C, 71.35; H, 3.81; N, 7.56.

Found: C, 71.30; H, 3.78; N, 7.60.
4.1.3.10. 2-(benzo[d][1,3]dioxol-5-yl)-4-(2-chlorophenyl)-6-

nitroquinoline 41. Pale yellow solid; yield 55%, mp 259–
260 �C, crystallized from EtOH. 1H NMR (600 MHz,
DMSO d6): d 6.10 (s, 2H, H24), 6.98 (d, J= 8.2 Hz, 1H,

H19), 7.46 (dd, J = 1.5 Hz, J = 7.5 Hz, 1H, H12), 7.51 (dt,
J= 1.0 Hz, J= 7.5 Hz, 1H, H13), 7.56 (dt, J = 1.5 Hz,
J= 8.0 Hz, 1H, H14), 7.66 (d, J = 8.8 Hz, 1H, H15), 7.77
(dd, J= 1.6 Hz, J = 8.2 Hz, 1H, H18), 7.85 (d, J = 1.6 Hz,

1H, H22), 7.89 (s, 1H, H9), 8.31 (d, J = 9.2 Hz, 1H, H3),
8.44 (d, J = 2.4 Hz, 1H, H6), 8.50 (dd, J = 2.4 Hz,
J= 9.2 Hz, 1H, H2).

13C NMR (151 MHz, CDCl3): d 101.67

(OCH2O), 108.0, 108.6, 121.0, 122.6, 122.7, 123.2, 124.7,
127.3, 130.3, 130.7, 131.3, 131.5, 132.7, 133.2, 135.5, 145.3,
148.4, 145.0, 150.7, 159.3 (Carom). IR (cm�1): t 3083, 2894,

1601, 1496, 1453, 1337, 1245, 1031, 888, 815. MSD 404.0
(M+).

Anal. Calcd. for C22H13ClN2O4: C, 65.28; H, 3.24; N, 6.92.
Found: C, 65.33; H, 3.19; N, 6.89.

4.1.3.11. 6-chloro-2-(phenanthren-3-yl)-4-phenylquinoline 42.
Yellow solid; yield 67%, mp 178–180 �C, crystallized from

EtOH. 1H RMN (600 MHz, CDCl3): d 7.59–7.68 (m, 6H),
7.72–7.75 (m, 2H),7.82 (m, 2H) 7.91–7.92 (m, 2H), 8.05 (d,
J= 8.2 Hz, 1H), 8.08 (s, 1H, H-Het) 8.29 (d, J = 8.9 Hz,

1H), 8.46 (dd, J = 1.6 Hz; J = 8.2 Hz, 1H, H-Het), 8.91 (d,
J= 8.2 Hz ,1H, H-Het), 9.55 (d, J= 1.1 Hz, 1H, H-Het).
13C NMR (151 MHz, CDCl3) d 120.2, 122.1, 123.0, 124.6,

125.6, 126.6, 126.6, 126.8, 126.9, 128.0, 128.7, 128.8, 128.9,
129.2, 129.5, 129.5, 130.5, 130.6, 130.6, 131.8, 132.3, 132.3,
132.9, 137.1, 137.8, 147.4, 148.6, 157.1 (Carom). IR (cm�1): t
3005, 2956, 1591, 1544, 1486, 1361, 1153, 849, 748, 705.

MSD 416.0 (M+).
Anal. Calcd. for C29H18ClN: C, 83.75; H, 4.36; N, 3.37.

Found: C, 83.92; H, 4.39; N, 3.30.

4.1.3.12. 6-nitro-2-(phenanthren-3-yl)-4-phenylquinoline 43.
Yellow solid; yield 50%, mp 235–237 �C, crystallized from

EtOH. 1H NMR (CDCl3): d 7.67 (s, 1H, HAAr), 7.70–7.88
(m, 8H, HAAr), 7.96 (d, J = 8.0 Hz, 1H, H-Het), 8.07 (d,
J = 8.0 Hz, 1H, H-Het), 8.22 (s, 1H, H-Het), 8.43–8.57 (m,
3H, HAAr), 8.90–8.93 (m, 2H, HAAr), 9.62 (s, 1H, H-Het).
13C NMR (CDCl3): d 120.9, 122.6, 122.9, 123.2, 124.9, 125.6,
126.5, 127.0, 128.6, 128.8, 129.2, 129.4, 129.5, 130.5, 131.8,
132.3, 133.4, 136.3, 137.0, 145.4, 151.4, 160.1 (Carom). IR

(cm�1): t 3049, 3022, 1590, 1552, 1482, 1336, 1079, 838, 748,
695. MSD 427.1 (M+).

Anal. Calcd. for C29H18N2O2: C, 81.67; H, 4.25; N, 6.57.

Found: C, 81.62; H, 4.28; N, 6.54.

4.1.4. General procedure for compounds 44–45

A mixture of the corresponding aniline (0.50–0.52 mL, 5.5

mmoles), piperonal (0.79 g, 5.25 mmoles), 3-acetylindole or
acetophenone (0.87–0.66 g, 5.5 mmoles) with 0.15 mL of
TFA placed in a 50 mL round-bottomed flask was subjected

to MW irradiation at 400 W and 250 �C. After completion
of the reaction (TLC) was proceed as described for 16–23.

4.1.4.1. 2-(benzo[d][1,3]dioxol-5-yl)-4-phenyl-6-(trifluo-
romethyl)quinoline 45. White solid; yield 49%, mp 115–
117 �C, crystallized from EtOH. 1H RMN (600 MHz, CDCl3):
d 6.04 (s, 2H, OCH2O), 6.86 (d, J = 8.0 Hz, 1H, HAAr), 7.14
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(d, J= 7.8 Hz, 1H, HAAr), 7.19 (s, 1H, H-Het), 7.39 (d,
J = 15.6 Hz, 1H, H-Het), 7.52 (t, J = 7.6 Hz, 2H, Ph), 7.59
(t, J = 7.2 Hz, 2H, Ph), 7.76 (d, J = 15.6 Hz, 1H, H-Het),

8.02 (m, 3H). 13C NMR (151 MHz, CDCl3): d 101.6 (OCH2O),
106.7, 108.7, 120.1, 125.2 (CF3), 128.4, 128.6, 129.4, 132.6,
138.4, 144.7, 148.4 (Carom), 149.93 (Carom-CF3). IR (cm�1): t
3036, 2922, 2785, 1660, 1590, 1503, 1450, 1253, 1018, 844,
777, 699, 598. MSD 392.0 (M+).

Anal. Calcd. for C23H14F3NO2: C, 70.23; H, 3.59; N, 3.56.

Found: C, 70.19; H, 3.62; N, 3.50.

4.2. In vitro activity against M. tuberculosis (Mtb)

4.2.1. Minimal inhibitory concentration (MIC)

The MIC of compound was determined by measuring bacterial
growth after 5 d in the presence of test compounds. Com-

pounds were prepared as 20-point two-fold serial dilutions in
DMSO and diluted into 7H9-Tw-OADC medium in 96-well
plates with a final DMSO concentration of 2%. The highest

concentration of compound was 200 mM where compounds
were soluble in DMSO at 10 mM. For compounds with limited
solubility, the highest concentration was 50X less than the

stock concentration e.g. 100 mM for 5 mM DMSO stock,
20 mM for 1 mM DMSO stock. Control compounds were pre-
pared as 10-point two-fold dilution series. Each plate included
assay controls for background (medium/DMSO only, no bac-

terial cells), zero growth (100 mM rifampicin) and maximum
growth (DMSO only), as well as a rifampicin dose response
curve. Plates were inoculated with M. tuberculosis and incu-

bated for 5 days: growth was measured by OD590 and fluores-
cence (Ex 560/Em 590) using a BioTekTM Synergy 4 plate
reader. Growth was calculated separately for OD590 and

RFU. To calculate the MIC, the dose response curve was plot-
ted as % growth and fitted to the Gompertz model using
GraphPad Prism 5. The MIC was defined as the minimum

concentration at which growth was completely inhibited and
was calculated from the inflection point of the fitted curve to
the lower asymptote (zero growth). In addition, dose response
curves were generated using the Levenberg-Marquardt algo-

rithm and the concentrations that resulted in 50% and 90%
inhibition of growth were determined (IC50 and IC90

respectively).

4.2.2. Minimal bactericidal concentration (MBC)

M. tuberculosis was grown aerobically to logarithmic phase
and inoculated into liquid medium containing four different

compound concentrations with a final maximum concentra-
tion of 2% DMSO. For compounds with an MIC (from
Task Group 1 assay), the concentrations selected were 10X

MIC, 5X MIC, 1X MIC, and 0.25X MIC. For compounds
with MIC > 20 mM, fixed concentrations of 200, 100, 20 and
5 mM were used (assuming solubility to 10 mM in DMSO).

Cultures were exposed to compounds for 21 days and cell via-
bility measured by enumerating colony forming units on agar
plates on day 0, 7, 14 and 21. MICs were calculated as the
average of the MIC derived from RFU and OD from Assay

Group 1.
MBC was defined as the minimum concentration required

to achieve a 2-log kill in 21 days. For compounds with >1-

log kill, an assessment of time- and/or concentration-
dependence was determined from the kill kinetics. DMSO
was used as a positive control for growth.

4.2.3. Low-oxygen recovery assay (LORA)

Test compounds were prepared as 20-point two-fold serial
dilutions in DMSO and diluted into DTA medium in 96-well
plates with a final DMSO concentration of 2%. The highest

concentration of compound was 200 mM where compounds
were soluble in DMSO at 10 mM. For compounds with limited
solubility, the highest concentration was 50X less than the

stock concentration e.g. 100 mM for 5 mM DMSO stock,
20 mM for 1 mM DMSO stock. Control compounds were pre-
pared as 10-point two-fold serial dilutions in DMSO and

diluted into DTA medium in 96-well plates with a final DMSO
concentration of 2%.

M. tuberculosis constitutively expressing the luxABCDE

operon was inoculated into DTA medium in gas-
impermeable glass tubes and incubated for 18 days to generate
hypoxic conditions (Wayne model of hypoxia). At this point,
bacteria are in a non-replicating state (NRP stage 2) induced

by oxygen depletion.

4.2.4. Intracellular drug activity and cytotoxicity

Murine J774 macrophages were infected with a luminescent
strain of H37Rv (which constitutively expresses luxABCDE)
at a multiplicity of infection of 1. After 18 h, extracellular bac-
teria were removed by washing and compound was added.

Infected macrophages were incubated in the presence of com-
pound for 4 days at 1X and 10X MIC (as determined in aero-
bic culture in liquid medium from Task 1). For compounds

with MIC > 20 mM, fixed concentrations of 20 mM and
200 mM were used. Bacteria were harvested from macrophages
by lysis with 0.1% SDS, inoculated into growth media and

allowed to grow aerobically for 5 days, when the amount of
bacteria present was determined by luminescence. All assays
were conducted in triplicate; each assay included a positive
control (4 mM isoniazid) and a negative control (2% DMSO).

The intracellular activity was expressed as a log reduction of
M. tuberculosis using the formula:

Log RLU Day 4 Compound½ � � Log RLU Day 4 DMSO½ �

As a control for each assay, the inoculum was plated into
96-well plates, grown for 5 days and luminescence measured;
correlation of RLU and CFU was confirmed for each run
(data provided as excel spreadsheet). The baseline of infection

was determined by harvesting bacteria from macrophages at
day 0 before compound addition and plating for CFU determi-
nation in triplicate.

The cytotoxicity of compounds was determined by measur-
ing Vero cell viability growth after 2 d in the presence of test
compounds. Compounds were prepared as 10-point three-

fold serial dilutions in DMSO. Vero cells were cultured in
DMEM containing high glucose and GlutaMAXTM, 10%
FBS, and 1x of Penicillin-Streptomycin solution. Cells were
inoculated into assay plates and cultured for 24 h before com-

pound dilutions were added to a final DMSO concentration of
1%. The highest concentration of compound tested was
100 mM where compounds were soluble in DMSO at 10 mM.

For compounds with limited solubility, the highest concentra-
tion was 50X less than the stock concentration e.g. 100 mM for
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5 mM DMSO stock, 20 mM for 1 mM DMSO stock. Each
plate included staurosporine as a control.

4.3. QSAR study

The descriptors were from different classes such as autocorre-
lation descriptors [e.g., autocorrelation (charge)], chi indices

descriptors (e.g., chi chain), electrotopological state index
descriptors (e.g., atom type electrotopological state), BCUT
descriptors, constitutional descriptors (e.g., weight, ring

counts) and topological descriptors (e.g., Zagreb index, Wiener
numbers). The standard data reduction technique of ‘Principal
Component Analysis’ (PCA) was used to reduce the columns

of descriptors to the principal components that contain as
much of the original information as possible. The first three
PCA vectors were added to the study table containing the bin-
ary representation of the activity of the molecules (Todeschini

and Consonni, 2009).
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Beyer, C., 1886. Über a-c-dimethylchinolin und die synthese des

cincholepidins und des c-phenylchinaldins. J. Prakt. Chem. 33,

393–425. https://doi.org/10.1002/prac.18860330136.

Buu-Hoı̈, N.P., Cagniant, P., 1943a. Des Quinoléines Substituées II.
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wave-assisted Döbner synthesis of 2-phenylquinoline-4-carboxylic

https://doi.org/10.1016/j.arabjc.2018.10.003
https://doi.org/10.15227/orgsyn.089.0549
https://doi.org/10.15227/orgsyn.089.0549
https://doi.org/10.1007/BF02980137
https://doi.org/10.1007/BF02980137
https://doi.org/10.1039/C5OB01422K
https://doi.org/10.1039/C5OB01422K
https://doi.org/10.1126/science.1106753
https://doi.org/10.1002/prac.18860330136
https://doi.org/10.1002/recl.19430621102;Beil.XXII,523
https://doi.org/10.1002/recl.19430621102;Beil.XXII,523
https://doi.org/10.1002/recl.19430620805
https://doi.org/10.1002/recl.19490680811
https://doi.org/10.1002/recl.19490680811
http://refhub.elsevier.com/S1878-5352(18)30205-3/h0045
http://refhub.elsevier.com/S1878-5352(18)30205-3/h0045
https://doi.org/10.3390/molecules201219862
https://doi.org/10.3390/molecules201219862
https://doi.org/10.1021/jo00987a028
https://doi.org/10.1021/jo00987a028
https://doi.org/10.3987/COM-08-11405
https://doi.org/10.3987/COM-08-11405
https://doi.org/10.1016/j.ejmech.2010.04.022
http://aac.asm.org/content/40/11/2447.full.pdf+htm
http://aac.asm.org/content/40/11/2447.full.pdf+htm
https://doi.org/10.1007/s00706-016-1826-3
https://doi.org/10.1007/s00706-016-1826-3
https://doi.org/10.1016/j.bmcl.2014.03.065
https://doi.org/10.1016/S0960-894X(03)00074-X
https://doi.org/10.1016/S0960-894X(03)00074-X
https://doi.org/10.1016/j.tet.2004.09.069
https://doi.org/10.1016/j.tetlet.2010.12.102
https://doi.org/10.1016/j.bmc.2016.12.023
https://doi.org/10.1016/j.ijantimicag.2007.01.012
https://doi.org/10.1016/j.ijantimicag.2007.01.012
https://doi.org/10.1016/j.tetlet.2006.10.073


Synthesis, anti-tuberculosis activity and QSAR study 945
acids and their antiparasitic activities. J. Heterocyclic Chem. 45,

611–614. https://doi.org/10.1002/jhet.5570450251.

Muscia, G.C., Cazorla, S.I., Frank, F.M., Borosky, G.L., Buldain, G.

Y., Ası́s, S.E., Malchiodi, E.L., 2011. Synthesis, trypanocidal

activity and molecular modeling studies of 2-alky-

laminomethylquinoline derivatives. Eur. J. Med. Chem. 46, 3696–

3703. https://doi.org/10.1016/j.ejmech.2011.05.035.

Muscia, G.C., Buldain, G.Y., Ası́s, S.E., 2014. Design, synthesis and

evaluation of acridine and fused-quinoline derivatives as potential

anti-tuberculosis agents. Eur. J. Med. Chem. 73, 243–249. https://

doi.org/10.1016/j.ejmech.2013.12.013.

Muscia, G.C., Ası́s, S.E., Buldain, G.Y., 2017. Microwave-assisted

synthesis of 2-styrylquinoline-4-carboxylic acids as antitubercular

agents. Med. Chem. 13, 448–452. https://doi.org/10.2174/

1573406412666160901102710.

NIH/NIAID Task Order A01 Contract HHSN272201100012I. Task

Order A08 – ‘‘in vitro characterization of anti-mycobacterial

activity”. Contract No. HHSN272201100009I / HHSN27200001

A08.

Palimkar, S.S., Siddiqui, S.A., Rajgopal, T.D., Lahoti, J., Srinivasan,

K.V., 2003. Ionic liquid-promoted regiospecific Friedländer annu-

lation: novel synthesis of Quinolines and fused polycyclic Quino-

lines. J. Org. Chem. 68, 9371–9378. https://doi.org/10.1021/

jo035153u.

Patel, S.R., Gangwal, R., Sangamwar, A.T., Jain, R., 2014. Synthesis,

biological evaluation and 3D-QSAR study of hydrazide, semicar-

bazide and thiosemicarbazide derivatives of 4-(adamantan-1-yl)

quinoline as anti-tuberculosis agents. Eur J. Med. Chem. 85, 255–

267. https://doi.org/10.1016/j.ejmech.2014.07.100.

Patel, S.R., Gangwal, R., Sangamwar, A.T., Jain, R., 2015. Synthesis,

biological evaluation and 3D QSAR study of 2,4-disubstituted

quinolines as anti-tuberculosis agents. Eur. J. Med. Chem. 93, 511–

522. https://doi.org/10.1016/j.ejmech.2015.02.034.

Pfitzinger, W.J., 1886. Chinolin Derivate aus Isatinsäure. Prakt. Chem.
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