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Chromium can be found in several oxidation states being the most stable and
common forms trivalent Cr(IIl) and hexavalent Cr(VI), which present different
chemical properties (Bagchi et al., 2002). This metal is an essential element for
some organisms in relation with some metabolic pathways (Hamilton &
Wetterhahn, 1987). Discharges of this metal into surface water increase its
concentration in the environment due to the application of this metal in diverse
industries, such as the metallurgical and tanning industries.

Hexavalent chromium is an environmental contaminant whose cytotoxic effects in
animals and plants are well documented (Cervantes ef al., 2001; Vajpayee et al.,
2001). 1t is considered the most toxic form of this metal, usually associates with
oxygen to form chromate (CrO4>). This molecule can easily go through cell
membranes, as an alternative substrate for the sulfate transport system (Riedel,
1985). Cr(VI) physicochemical characteristics, pH-dependent equilibrium and
redox propertics, as well as the thermodynamic and kinetic stability observed in
various chromium oxidation states, are key elements to understand the interaction
of Cr(VI) in living systems (Cieslak-Golonka, 1996).

Many authors reported the great tolerance to heavy metals showed by algae cells
collected from highly contaminated rivers (Rai and Rai, 1998, Devars et al.,
1998). Previous works on the phytoplankton of the Matanza River, one of the
most polluted rivers of Buenos Aires, Argentina, showed that the englenoids were
one of the most important groups of this community. For decades, the quality of
this River has been deteriorating due to the high discharges of different pollutants
derived from untreated sewage, solid wastes and petroleum. The most important
industrial discharge was produced by tanning (Conforti, 1991, Conforti et al.
1995). In a previcus paper (Rocchetta et al., 2003), we demonstrated the damage
produced by hexavalent chromium on two strains of Euglena gracilis; UTEX 753
(from the Culture Collection of the Texas University), and MAT (isolated from
the Matanza River). Both were cultured in Buetow mineral medium with a neutral
pH (Buetow, 1982). Exposure to different metal concentrations showed that MAT
had higher resistance than UTEX.

Based on this information, we decided to compare chromium toxicity on these
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strains using a mineral medium but with a lower pH (Buetow, 1982) to evaluate
the possible impact from some acid industrial effluents, related with the leather
treatment, discharged into the River.

MATERIALS AND METHODS

All the experiments were carried out on axenic cultures of Euglena gracilis strains
UTEX 753 (from the Culture Collection of Algae of the Texas University), and
MAT (isolated from the Matanza River, Ruiz et ai., 2004.). Experimental cultures
were grown in a mineral medium with B, vitamin (0.5 pg/L), Cramer and Myers,
initial pH 5 (Buetow, 1982), at 24 + 1 °C, under continuous light. Axenicity was
monitored plating the cultures in 2 bacteria broth medium. A new culture was
started 6 days before each experiment in order to obtain an inoculum in
exponential growth.

Aliquots of stock cultures from both strains containing 10° cells/ml were
inoculated in each flask KyCroO; MERCK (analytical purity), was added
axenically from a 0.1 M stock solution to a total nominal concentration of 20, 100,
200 and 400 pM Cr(VI). Each treatment was done in duplicate and each assay
was repeated three times. Assays were performed on static cultures containing 125
ml culture medium in 250 ml glass flasks with a manual agitation twice per day.
Controlled conditions were used with a temperature of 24 = 1°C, with cool-white
fluorescent continuous light (150 pE.m™?.s" irradiance) and lasted 96 hours. The
experiments were carried out according to EPA protocols (U.S. Environmental
Protection Agency, 1985).

Cellular density was evaluated using a Neubauer chamber, and the error was less
than 10%, o 0.05, Results were expressed as cells/ml.

Total sugars were measured spectrophotometrically using the Dubois et al. (1956)
procedure standardized with glucose. Cells were harvested centrifuging 5 ml
culture for 20 min at 3,700 x g. Each sample was mixed with 2 ml distilled water
in a 15-ml borosilicate glass tube before Dubois reagents were added. The
spectrophotometric analysis was carried out at 490 nm with a UV/VIS JAS-CO
7850 spectrophotometer.

Paramylon (B-1,3- glucans, Euglenida storage carbohydrates) was extracted and
purified according to Kiss and Triemer (1988). For this determination, 40 mi
culture was centrifuged a 3,700 x g and the cells were washed twice with
phosphate buffer. Pellet was frozen overnight. A solution of 2% SDS (w/v) and
0.125 M buffer tris was added, and then the suspension was shaken to mix and
incubated for 30 min at 37°C. Paramylon granules were recovered by
centrifugation for 20 min at 3,700 x g. The treatment was repeated until a
translucid solution was obtained. The paramylon granules obtained were washed
twice with hot glass distitled water (70° C). After the second wash, granules were
put on glass fiber filters (APFC type, Millipore), and dried ovemnight at 90°C for
weight determination.
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Chlorophyll content was determined following Devars et al. (1992) procedure.
Cells were harvested filtering 5 ml sample through Whatman GF/C filter papers.
Pigments were extracted with 80% acetone solution {vol/vol) for 24 h at 4°C, and
optical densities were measured with a UV/VIS JAS-CO 7850 spectrophotometer.

Aliquots of 5 ml culture were centrifuged, washed twice with 0.154 M phosphate
buffer, pH 7, and then sonicated. Protein content was evaluated by the Bradford
(1976) method, using bovine serum albumin as standard.

For lipid content determination, culture cells were harvested by centrifugation for
15 min at 3,700 x g, and washed three times with 0.154 M phosphate buffer, pH 7.
Total lipids were extracted with chloroform:methanol (2:1 v/v), and then
quantified according to the Bligh and Dyer method (1959).

Lipid peroxidation was measured in terms of malondialdehyde (MDA) content
determined by the thiobarbituric acid reactive substances (TBARS) method
(Vavilin ef al., 1998), using the equations of Hodges et al. (1999). Cells (125 ml
culture) were harvested by centrifugation and the pellet was washed three times.

Chromium uptake was determined harvesting 20 ml culture. The pellet was
washed three times with distilled water, and then each washed fraction together
with the supernatant was digested with concentrated nitric acid. Both the amount
of chromium adsorbed and the amount of total chromium uptake were determined.
Total chromium concentration was measured using a SHIMADZU 6800 atomic
absorption spectrophotometer (Kyoto, Japan) equipped with an autosampler ASC
6100. A Hamamatsu hollow cathose lamp was employed as radiation source at
357.9 nm with a slit width of 0.2 nm and 6 mA lamp current. Working solutions
of chromium were prepared by appropriate dilution of a stock standard solution of
Cr 1000 mg/L (trace to SRM from NIST) from Merck Chemical. These solutions
were used as standards for obtaining the calibration curve. Appropriate blanks
controls were conduced during all analytical methodology. The detection limit
based of three times the standard deviation of the blank was estimated to be 0.020

mg/L.

Light microscopic examinations were used to observe the motility and the shape
on living cells. It was carried out with an OLYMPUS B201 photomicroscope.

Mean and standard deviations were obtained from the duplicates of each
concentration. The results were compared applying an analysis of variance
{ANOVA) with Tuckey’s test and the significant differences were obtained using
a p<0.05 (Sokal and Rohlf, 1984). This analysis was performed with the
STATISTICA program. The minimur concentration that produced 50% growth
(ICsp) was obtained with the Probit Algae program (Walsh et al., 1987). The
Student t(c, n-1)-test, o 0.05, was used to compare the two values of ICsy (Sokal
and Rohlf, 1984).

RESULTS AND DISCUSSION

Hexavalent chromium inhibition on cell growth in a time and dose dependent
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Fignre 1. Effect of hexavalent chromium on cell growth in a time and dose
dependent manner in two strains of Euglena gracilis. Cell proliferation is
represented as a percentage with regards to the control value. The graphed
concentrations are nominals. (A) MAT strain, isolated from a highly polluted
river, (B) UTEX strain, from the Culture Collection of Algae of the Texas
University. Initial cell density was the same for both strains (10° cells/ml).
Data are means of three different experiments with standard deviations.
*Denotes significant difference between control and treated cells, ANOVA,

Tuckey test, p<0.05.

High malondialdehyde (MDA} levels revealed the existence of lipid peroxidation
events (Figure 5). MAT control cells showed significant higher basal levels than
UTEX cells. This could be explained by the adaptation to an oxidative
environment devised to protect the intracellular membrane structure and cellular
function. This adaptation would involve the reduction of polyunsaturated fatty
acid content in the biomembrane, thus producing higher MDA values (Watanabe
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Figure 2. Effcct of different chromium concentrations on cell growth,
and total chromium incorporation in lwo strains of Euglena gracilis.
Cell proliferation is represented as a percentage of the control value.
The graphed concentrations are nominals Data are means of three
different experiments with standard deviations. *Denotes significant
difference between control and treated cells, ANOVA, Tuckey test,
p<0.05.
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Figure 3, E(lcct of chromium on chlorophyll a and total sugar content
in two strains of Fuglena gracilis. Chlorophyll content is represented
as a percentage of the control value. The graphed concentrations are
nominals Data are means of threc different experiments with standard
deviations. *Denotes significant difference between control and
treated cells, ANOVA, Tuckey test, p<0.05.
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Figure 4. Effect of chromium on paramylon and total protein
content in two strains of Fuglena gracilis. Both parameters are
expressed as mg/10° cells. The graphed concentrations are
nominals Data are means of three different experiments with
standard deviations. *Denotes significant difference between
control and treated cells, ANOV A, Tuckey test, p<0.05.
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Figure 5. Effect of hexavalent chromium on total lipid content, and
malondialdehyde (MDA) level as lipid peroxidation indicator in two
strains of Euglena gracilis. The graphed concentrations are nominals
Data are means of three different experiments with standard deviations.
*Denotes significant difference between control and treated cells,
ANOVA, Tuckey test, p<0.05.

and Suzuki, 2002). In both strains treated cells, a significant increase was
observed from 20 uM concentration.

Figure 2 shows that chromium was not incorporated by cells at the lowest metal
concentration assayed. In spite of this, both strains showed lipid oxidation (Fig. 5)
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and an increase of the protein and paramylon content (Fig. 4). This could be
related to damage in the plasmatic membrane produced by the metal adsorbed.
The amount of chromium attached to the extracellular membrane was determined
in the washed fractions by atomic absorption spectrophotometry. Both 20 pM
Cr(VI) treated strains showed the same amount of chromium adsorbed (0.126
mg/10° cells). The highest chromium concentration assayed (400 pM) lead to a
7.1-fold increase of MDA content in UTEX, whereas the increase was 4.5-fold in
MAT with respect to the controls. These results suggest higher oxidative damage
in the commercial strain lipid content.

Alterations in cell motility and shape were observed in the presence of 200 pM
Cr(V]) by light microscopy. In a previous work using Buetow medium, great
morphological damage had been reported at lower chromium concentrations (26
pM), including loss of flagella and color, and high amounts of paramylon grains
in the cells.

H is clear that the significant toxic effect exerted by chromium in cells cultured in
Cramer and Myers medium was different from the one observed in the bioassay
performed using Buetow medium (Rocchetta er al.,, 2003). Chromium uptake in
cells grown in Cramer and Myers occurred at high metal concentrations, thus
leading to greater ICsy values for both strains, showing a higher value the strain
isolated from a highly polluted river (MAT). Despite of this result, we could
observe only few differences between strains, The differences in chromium
toxicity observed in both studies are related to the culture media used, which
basically have a different pH. In aqueous solutions, Cr(VI) exists as oxoforms in a
variety of species depending on pH and Cr(VI) concentration (Cieslak-Golonka,
1996). In the concentrations used in our bioassays, the major ion for a neutral pH
(Buetow medium) is chromate (CrO4?). This molecule can easily go through cell
membranes, being an altemative substrate for the sulphate transport system
(Haglund, 1997). In the case of a lower pH (Cramer and Myers medium), the most
common ion is the hydrochromate form (HCrO,'), which is incorporated by the
cell with more difficulty (Cieslak-Golonka, 1996). This may account for the
different levels of toxicity observed in the same strains.

The present study shows the different levels of hexavalent chromium toxicity
depending on the physicochemical properties of the culture medium used. There is
a difference between both strains with the highest chromium concentration
treatment. MAT strain showed the greatest levels in the carbohydrate amount,
while the malondialdehyde content was higher in UTEX cells indicating great
oxidative damage in lipid content. MAT cells showed higher MDA basal levels,
which could indicate a higher lipid sensibility against oxidative damage.
However, MAT MDA increase was lower with the metal treatment, respect to its
control, than UTEX, suggesting a better adaptation to an oxidative environment.
As both strains presented quite similar variations at the chromium concentrations
assayed, it is possible that they have a similar toxicity/detoxification mechanism.
Further investigations are necessary to understand the relation between the higher
resistance showed by MAT strain and the detoxification or adaptation systems
that it may have developed.
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