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Abstract. We study the a.e. convergence in the Cesàro-α sense of the ergodic
averages and the ergodic Hilbert transform associated with a Cesàro bounded flow.

1. Introduction.

Let (X,F , ν) be a finite measure space. By a flow {τt : t ∈ R} we mean a
group of measurable transformations τt : X → X with τ0 the identity and τt+s =
τt ◦ τs, (t, s ∈ R). The flow is said to be measure preserving if the τt are measure-
preserving, i.e., if ν(τ−tE) = ν(E) for all E ∈ F . The flow is said to be nonsingular
if ν(τ−tE) = 0 for all t ∈ R and all E ∈ F with ν(E) = 0. Finally, the flow is said
to be measurable if the map (x, t) → τtx from X × R into X is F̃-F-measurable
where F̃ is the completion of the product-σ-algebra F ⊗ B of F with the Borel
sets, and the completion is taken with respect to the product measure of ν on F
and the Lebesgue measure on B. Analogously we can define what we mean by
semiflow {τt : t > 0}, a measure-preserving semiflow, a nonsingular semiflow and a
measurable semiflow.

Y. Deniel studied in [4] the convergence in the Cesàro-α sense ( (C,α) sense ) of
the ergodic averages associated with a measure-preserving semiflow on a probability
space (Ω,F , µ). More precisely, he proved the following result.

Theorem A [4]. Let {τt : t > 0} be a measure-preserving semiflow of a probability
space (Ω,F , µ). Let −1 < α < 0, 1

1+α < p < ∞ and f ∈ Lp(dµ). Then, the (C,α)
ergodic averages

A+
T,1+αf(x) =

1
T 1+α

∫ T

0

f(τtx)(T − t)α dt

converge, when T →∞, almost everywhere and in the Lp(dµ)-norm.

Theorem A does not hold in the limit case p = 1
1+α [4]. However a positive result

was obtained in [2] in this limit case. Their result is the following.
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Theorem B [2]. Let {τt : t > 0}, (Ω,F , µ) and α be as in Theorem A. Then, there
exists the limit limT→∞A+

T,1+αf(x) a.e. for all f in the Lorentz space L 1
1+α ,1(dµ) =

{f : ||f || 1
1+α ,1;µ =

∫∞
0

(
λf (t)

)1+α
dt < ∞}, where λf (t) = µ({x : |f(x)| > t}) is

the distribution function of f .

On the other hand, it was studied in [6] the convergence of the ergodic averages

AT,1f(x) =
1

2T

∫ T

−T

f(τtx) dt,

and the ergodic Hilbert transform Hf(x) = limε→0 Hεf(x), where

Hεf(x) =
∫

ε<|t|<1/ε

f(τtx)
t

dt,

associated with a Cesàro bounded flow on a finite measure space (X,F , ν) (notice
that the flow does not need to preserve the measure ν). The result proved in [6] is
as follows.

Theorem C [6]. Let (X,F , ν) be a finite measure space, 1 ≤ p < ∞ and let
{τt : t ∈ R} be a nonsingular measurable flow on X such that for some positive
constant C and all f ∈ Lp(dν)

sup
T>0

||AT,1f ||p;ν ≤ C||f ||p;ν .

(i) If 1 < p < ∞ and f ∈ Lp(dν), then there exist the limits limT→∞AT,1f(x) and
limε→0 Hεf(x) a.e. and in the Lp(dν)-norm.

(ii) If p = 1 and f ∈ L1(dν), then there exist the limit limT→∞AT,1f(x) a.e. and
in the L1(dν)-norm and there exist the limit limε→0 Hεf(x) a.e..

The aim of this paper is to study the (C,α) convergence of the ergodic averages
and the ergodic Hilbert transform in the setting of Theorem C, i.e., for Cesàro
bounded flows. More precisely, for the (C,α) ergodic averages, we shall prove the
following theorem.

Theorem 1.1. Let (X,F , ν) be a finite measure space, −1 < α ≤ 0 and 1
1+α ≤

p < ∞. Let {τt : t ∈ R} be a nonsingular measurable flow on X such that for some
positive constant C and all f ∈ Lp(1+α)(dν)

(1.2) sup
T>0

||A+
T,1f ||p(1+α);ν ≤ C||f ||p(1+α);ν .

(i) If 1
1+α < p < ∞ and f ∈ Lp(dν), then there exists the limit limT→∞A+

T,1+αf(x)
a.e. and in the Lp(dν)-norm.

(ii) If p = 1
1+α and f ∈ L 1

1+α ,1(dν), then there exists the limit limT→∞A+
T,1+αf(x)

a.e..

Now, we precise what we mean as (C,α) convergence of the ergodic Hilbert
transform. Following Hardy [5,§5.14 and Notes on Chapter V] we wish to study
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the existence of the limit Hf(x) = limε→0 Hεf(x) = limt→∞H1/tf(x) in the (C,α)
sense; in the case α > 0 that means that we want to study the limit

lim
T→∞

α

Tα

∫ T

0

H1/tf(x)(T − t)α−1 dt.

Interchanging the integrals we can easily see that to study the above limit is equiv-
alent to study the limit of

Hε,αf(x) =
∫

ε<|t|≤1

f(τtx)
t

(
1− ε

|t|
)α

dt +
∫

1<|t|≤1/ε

f(τtx)
t

(1− ε|t|)α
dt,

when ε → 0. We shall see that for suitable f the above integrals make sense not
only for α ≥ 0 but also for α > −1. Since the convergence of Hε,0f(x) implies
the convergence of Hε,αf(x) for α > 0 (see §4: claim (d)), we are interested in the
study of the limit limε→0 Hε,αf , for −1 < α ≤ 0. In particular, we shall prove the
following theorem.

Theorem 1.3. Let (X,F , ν) be a finite measure space, −1 < α ≤ 0 and 1
1+α ≤

p < ∞. Let {τt : t ∈ R} be a nonsingular measurable flow on X such that for some
positive constant C and all f ∈ Lp(1+α)(dν)

(1.4) sup
T>0

||AT,1f ||p(1+α);ν ≤ C||f ||p(1+α);ν .

(i) If 1
1+α < p < ∞ and f ∈ Lp(dν), then there exists the limit limε→0 Hε,αf(x)

a.e. and in the Lp(dν)-norm.
(ii) If p = 1

1+α and f ∈ L 1
1+α ,1(dν), then there exists the limit limε→0 Hε,αf(x) a.e..

On one hand, notice that Theorem 1.3 for α = 0 is contained in Theorem C. On
the other hand, Theorem 1.3 also holds for the (C,α) ergodic averages

AT,1+αf(x) =
1

(2T )1+α

∫ T

−T

f(τtx)(T − |t|)α dt,

but this result is an easy consequence of Theorem 1.1 applied to the flows {τt : t ∈
R} and {τ̃t : t ∈ R}, where τ̃t = τ−t .

Throughout this paper α will be a number such that −1 < α ≤ 0 and if 1 < p <
∞ then p′ will be denote its conjugate exponent, i.e., 1/p + 1/p′ = 1. The letter C
will mean a positive constant non necessarily the same at each ocurrence.

2. Preliminary results

In order to prove the theorems we will need results about some maximal operators
which were studied in [9] and [1]. First we introduce the following definitions about
weights.

Definition 2.1 [10]. Let w be a positive measurable function on the real line. It
is said that w satisfies the Muckenhoupt Ap condition, 1 ≤ p < ∞, if there exists a
constant C > 0 such that

sup
a<b

(
1

b− a

∫ b

a

w(t) dt

)(
1

b− a

∫ b

a

w1−p′(t) dt

)p−1

≤ C if 1 < p < ∞

and

sup
r>0

(
1
2r

∫ r

−r

w(x− t) dt

)
≤ Cw(x) a.e. if p = 1.
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Definition 2.2 [12]. Let w be a positive measurable function on the real line. It is
said that w satisfies A+

p , 1 ≤ p < ∞, if there exists a constant C > 0 such that

sup
a<b<c

(
1

c− a

∫ b

a

w(t) dt

) (
1

c− a

∫ c

b

w1−p′(t) dt

)p−1

≤ C if 1 < p < ∞

and

sup
r>0

(
1
r

∫ r

0

w(x− t) dt

)
≤ Cw(x) a.e. if p = 1.

The A−p classes are defined in the obvious way, reversing the orientation in the real
line.

In order to study the (C,α) ergodic averages we will need the boundedness of
the following maximal operator:

M+
1+αf(x) = sup

T>0

1
T 1+α

∫ T

0

|f(x + t)|(T − t)α dt.

For this operator it was proved in [9] the following result (see Theorem 2.5, Theorem
3.5 and Final Remarks in [9]).

Theorem D [9]. Let −1 < α ≤ 0, 1
1+α ≤ p < ∞ and let w be a positive measurable

function on the real line.
(i) If 1

1+α < p < ∞ and w ∈ A+
p(1+α), then there exists a constant C > 0 such that

∫

R

[
M+

1+αf(t)
]p

w(t) dt ≤ C

∫

R
|f(t)|pw(t) dt

for all f ∈ Lp(w(t)dt).
(ii) If p = 1

1+α and w ∈ A+
1 , then there exists a constant C > 0 such that

w({t ∈ R : M+
1+αf(t) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;w

for all f ∈ L 1
1+α ,1(w(t)dt) and all λ > 0.

Remark 2.3. Actually, in [9] it was proved Theorem D (ii) only for characteristic
functions but, for −1 < α < 0, applying Theorem 3.13 in [13, p.195] which also
holds for the sublinear operator M+

1+α, we easily obtain the result for all f ∈
L 1

1+α ,1(w(t)dt). On the other hand, if α = 0, statement (ii) is the known result that

w ∈ A+
1 implies the weak type (1,1) inequality for the one-sided Hardy-Littlewood

maximal function with respect to w(t)dt that was proved by E. Sawyer [12] (see
also [8] and [7]).

Obviously, a result analogous to Theorem D hold for the other one-sided maximal
operator M−

1+αf(x) = supT>0
1

T 1+α

∫ 0

−T
|f(x + t)|(T + t)α dt and the corresponding

A−p(1+α) classes. Now, taking into account that the maximal operator

M1+αf(x) = sup
T>0

1
(2T )1+α

∫ T

−T

|f(x + t)|(T − |t|)α dt,
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is pointwise equivalent to the sum of the operators M+
1+α and M−

1+α and that
Ap(1+α) = A+

p(1+α) ∩ A−p(1+α) we see that Theorem D is valid for M1+α, changing
the A+

p(1+α) classes by the Ap(1+α) classes.
On the other hand, in the study of the ergodic Hilbert transform in the Cesàro-α

sense appears (see Section 3) the following maximal operator

N1+αf(x) = sup
T>0

1
(2T )1+α

∫

T<|t|<2T

|f(x + t)|(|t| − T )α dt.

This operator was studies in [1] (Theorems 2.1 and 2.4), obtaining analogous results
to those ones for the operator M1+α. In the following theorem we collect these
results and the corresponding ones for M1+α.

Theorem E ([9] and [1]). Let −1 < α ≤ 0, 1
1+α ≤ p < ∞ and let w be a positive

measurable function on the real line. Let us denote by M either M1+α or N1+α.
(i) If 1

1+α < p < ∞ and w ∈ Ap(1+α), then there exists a constant C > 0 such that
∫

R
[Mf(t)]p w(t) dt ≤ C

∫

R
|f(t)|pw(t) dt,

for all f ∈ Lp(w(t)dt).
(ii) If p = 1

1+α and w ∈ A1, then there exists a constant C > 0 such that

w({t ∈ R : Mf(t) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;w
,

for all f ∈ L 1
1+α ,1(w(t)dt) and all λ > 0.

3. Boundedness for the ergodic maximal operators

This section is devoted to establish the boundedness of the maximal operators

S+
1+αf(x) = sup

T>0

1
T 1+α

∫ T

0

|f(τtx)|(T − t)α dt,

associated to the (C,α) ergodic averages A+
1+αf , and

R1+αf(x) = sup
T>0

1
(4T )1+α

∫ 2T

−2T

|f(τtx)| |T − |t||α dt,

which appears in the study of the maximal operator H∗
α = supε>0 |Hε,α| associated

with the Hilbert transform in the Cesàro-α sense. More precisely we shall prove
the following theorems.

Theorem 3.1. Let (X,F , ν), α, p and {τt : t ∈ R} be as in Theorem 1.1.
(i) If 1

1+α < p < ∞, then there exists a constant C > 0 such that for all f ∈ Lp(dν)

||S+
1+αf ||p;ν ≤ C||f ||p;ν .

(ii) If p = 1
1+α , then there exists a constant C > 0 such that for all f ∈ L 1

1+α ,1(dν)
and all λ > 0

ν({x ∈ X : S+
1+αf(x) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;ν
.
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Theorem 3.2. Let (X,F , ν), α, p and {τt : t ∈ R} be as in Theorem 1.3.
(i) If 1

1+α < p < ∞, then there exists a constant C > 0 such that for all f ∈ Lp(dν)

||R1+αf ||p;ν ≤ C||f ||p;ν .

(ii) If p = 1
1+α , then there exists a constant C > 0 such that for all f ∈ L 1

1+α ,1(dν)
and all λ > 0

ν({x ∈ X : R1+αf(x) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;ν
.

In order to prove these theorems, we need two lemmas. The proof of the first one
is very similar to the proof of the claim in the proof of Theorem 1 in [6]; therefore
we omit it.

Lemma 3.3. Let (X,F , ν), α, p and {τt : t ∈ R} be as in Theorem 1.1 or in
Theorem 1.3. Then, there exists a measure µ equivalent to ν such that the flow
{τt : t ∈ R} preserves the measure µ.

In what follows, the measure µ will be fixed and w will be the Radon-Nikodym
derivate of ν with respect to µ. It is clear that 0 < w < ∞ a.e.. Let us call wx to
the functions wx : R→ R such that wx(t) = w(τtx).

Lemma 3.4. Let (X,F , ν) be a finite measure space, −1 < α ≤ 0 and 1
1+α ≤ p <

∞. Let {τt : t ∈ R} be a nonsingular measurable flow on X.
(i) If (1.2) holds, then wx ∈ A+

p(1+α) for almost every x ∈ X and with the same
constant.

(ii) If (1.4) holds, then wx ∈ Ap(1+α) for almost every x ∈ X and with the same
constant.

Proof. We only sketch the proof of (i), since the proof of (ii) is similar (notice that
(ii) was already used in [6]). First, observe that if p = 1

1+α , then (i) holds by using
that the flow preserves the measure µ given in Lemma 3.3.

Assume now that q = p(1+α) > 1 and let q′ be its conjugated exponent. Taking
into account Lemma 3.3 we get, by (1.2), that

∫

X

∣∣∣A+
T,1f(x)

∣∣∣
q

w(x) dµ(x) ≤ C

∫

X

|f(x)|qw(x) dµ(x),

for all T > 0. Then by duality and calling σ = w1−q′ we can write the above
inequality as

∫

X

∣∣∣
(
A+

T,1

)∗
f(x)

∣∣∣
q′

σ(x) dµ(x) ≤ C

∫

X

|f(x)|q′σ(x) dµ(x),

where
(
A+

T,1

)∗
f(x) = 1

T

∫ 0

−T
f(τtx) dt is the adjoint operator of A+

T,1 with respect
to the measure µ. Let us define the following operators:

PT g =
[
A+

T,1

(
|g|q′w−1/q

)]1/q′

w
1

qq′ and QT g =
[(

A+
T,1

)∗ (
|g|qσ−1/q′

)]1/q

σ
1

qq′ .
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PT and QT are sublinear operators and PT , QT : Lqq′(dµ) → Lqq′(dµ) with
||PT ||, ||QT || ≤ C, where C is the constant in (1.2). Clearly, the same holds for the
operator PT + QT and ||PT + QT || ≤ 2C. Now, given f ∈ Lqq′(dµ), f > 0, let us
define

gT =
∞∑

i=0

(PT + QT )(i) f

(4C)i
,

where (PT + QT )(i) denotes the i-th iteration of PT + QT . Clearly gT ∈ Lqq′(dµ)
and verifies that

PT (gT ) (x) ≤ 4CgT (x) and QT (gT ) (x) ≤ 4CgT (x).

From these inequalities we can see that, if vT = gq′

T w−1/q and uT = gq
T σ−1/q′ , we

get that

(3.5) A+
T,1 (vT ) ≤ CvT and

(
A+

T,1

)∗
(uT ) ≤ CuT .

The lemma follows since w(x) = uT (x)v1−q
T (x) for almost every x ∈ X and as a

consequence we can prove that wx ∈ A+
q . In fact, let a, b and c be real numbers

such that a < b < c. If t ∈ (a, b), by the inequality for vT in (3.5) with T = c − a
we get

1
c− a

∫ c

b

vT (τsx) ds =
1

c− a

∫ c−t

b−t

vT (τrτtx) dr

≤ 1
c− a

∫ c−a

0

vT (τrτtx) dr

≤ CvT (τtx).

In the same way, by using the inequality for uT in (3.5) with T = c − a and for
t ∈ (c, d), we get that

1
c− a

∫ b

a

uT (τsx) ds ≤ CuT (τtx).

Then, from the last inequalities
∫ b

a

uT (τtx)v1−q
T (τtx) dt

(∫ c

b

u1−q′
T (τtx)vT (τtx) dt

)q−1

≤ C(c− a)q.

Proof of Theorem 3.1. We only prove (ii) since (i) follows in a similar way. Assume
α < 0. As we observe in Remark 2.3, in order to prove (ii) we only need to consider
characteristic functions, i.e., we need to prove that

ν({x ∈ X : S+
1+α (χE) (x) > λ}) ≤ C

λ
1

1+α

∫

X

χE(x) dν(x),

for all λ > 0 and all measurable sets E. We shall use a transference argument. For
fixed L > 0 we define

S+
1+α,Lf(x) = sup

0<T<L

1
T 1+α

∫ T

0

|f(τtx)|(T − t)α dt.
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Then, for all N > 0 we have

ν({x ∈ X : S+
1+α (χE) (x) > λ}) =

1
N

∫ N

0

∫

X

χ{x:S+
1+α(χE)(x)>λ}(τtx)w(τtx) dµ(x) dt

=
1
N

∫ N

0

∫

{x∈X:S+
1+α(χE)(τtx)>λ}

w(τtx) dµ(x) dt.

Since S+
1+α (χE) (τtx) ≤ M+

1+α

(
χx

Eχ(0,N+L)

)
(t), where χx

E(t) = χE(τtx) and wx

satisfies A+
1 for almost all x with the same constant (Lemma 3.4 (ii)), then Theorem

D (ii) implies that

ν({x ∈ X : S+
1+α (χE) (x) > λ}) ≤ 1

N

∫

X

∫

{t:M+
1+α(χx

Eχ(0,N+L))(t)>λ}
wx(t) dt dµ

≤ C

Nλ
1

1+α

∫

X

∫ N+L

0

χE(τtx)w(τtx) dt dµ

=
C(N + L)

Nλ
1

1+α

∫

X

χE(x) dν(x)

because the flow preserves the measure µ. Letting N → ∞ and then L → ∞ we
finish the proof for −1 < α < 0. The case α = 0 is proved in the same way but
using general functions f ∈ L1(dµ).

Proof of Theorem 3.2. The proof of Theorem 3.2 is completely similar to the proof of
Theorem 3.1. We only need to notice that the operator R1+α is pointwise equivalent
to the sum of the following two maximal operators:

R1
1+αf(x) = sup

T>0

1
(2T )1+α

∫ T

−T

|f(τtx)|(T − |t|)α dt

and

R2
1+αf(x) = sup

T>0

1
(2T )1+α

∫

T<|t|<2T

|f(τtx)|(|t| − T )α dt.

Then, when we apply the transference arguments we shall need to use the results
of Theorem E for the operators M1+α and N1+α.

Now, we establish the boundedness of the ergodic maximal operator H∗
α =

supε>0 |Hε,α|. First, we easily see that the ergodic truncations Hε,αf are well
defined. In fact, by Theorem 3.2, we get that

∫

ε<|t|≤1

|f(τtx)|
|t|

(
1− ε

|t|
)α

dt+
∫

1<|t|≤1/ε

|f(τtx)|
|t| (1− ε|t|)α

dt ≤ Cε R1+α(f)(x) < ∞,

for almost every x and f ∈ Lp(dν) if 1
1+α < p < ∞ or f ∈ L 1

1+α ,1(dν) if p = 1
1+α .

In order to prove the boundedness of the operator H∗
α we start proving the following

pointwise estimate.
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Lemma 3.6. Let (X,F , ν) be a finite measure space, −1 < α ≤ 0 and let {τt : t ∈
R} be a nonsingular measurable flow on X. Then, there exists a constant C > 0
such that

H∗
αf(x) ≤ C [R1+αf(x) + H∗

0f(x)] .

Proof. First, we write

Hε,αf(x) =
∫

ε<|t|≤2ε

f(τtx)
t

(
1− ε

|t|
)α

dt +
∫

2ε<|t|≤1

f(τtx)
t

[(
1− ε

|t|
)α

− 1
]

dt

+
∫

2ε<|t|<1/2ε

f(τtx)
t

dt +
∫

1<|t|<1/2ε

f(τtx)
t

[(1− ε|t|)α − 1] dt

+
∫

1/2ε≤|t|≤1/ε

f(τtx)
t

(1− ε|t|)α
dt = I + II + III + IV + V.

Clearly, |III| ≤ H∗
0f(x). We can easily see also that |I|, |V | ≤ CR1+αf(x). On

the other hand, by the mean value Theorem and decomposing the integral in II as
the sum of integrals over the sets {t : 2kε < |t| ≤ 2k+1ε}, we can see that |II| and
|IV | are bounded by a constant times the usual ergodic maximal operator M0f(x).
Then the lemma follows since for −1 < α ≤ 0, M0f(x) ≤ R1+αf(x).

Now, from the above lemma, Theorem 3.2 and Theorem 1 in [6], we obtain the
following result for the operator H∗

α.

Theorem 3.7. Let (X,F , ν), α, p and {τt : t ∈ R} be as in Theorem 1.3.
(i) If 1

1+α < p < ∞, then there exists a constant C > 0 such that for all f ∈ Lp(dν)

||H∗
αf ||p;ν ≤ C||f ||p;ν .

(ii) If p = 1
1+α , then there exists a constant C > 0 such that for all f ∈ L 1

1+α ,1(dν)
and all λ > 0

ν({x ∈ X : H∗
αf(x) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;ν
.

4. Proofs of Theorems 1.1 and 1.3

From Theorem B and Theorem 3.1 we can easily prove Theorem 1.1.

Proof of Theorem 1.1. We only prove (i) since the proof if (ii) is similar. By
Theorem 3.1, the Banach Principle and the dominated convergence Theorem it
will suffice to prove the a.e. convergence of the averages A+

1+αf for f in a dense
subset of Lp(dν). Using Theorem B we have the a.e. convergence of A+

1+αf for
f ∈ Lp(dν)∩L 1

1+α ,1(dµ) which is a dense subset of f ∈ Lp(dν). Then, the theorem
follows.

Proof of Theorem 1.3. As in the proof of Theorem 1.1 we only prove (i) and we only
have to show that the a.e. convergence holds for the functions in a dense subset of
Lp(dν).

Let us fix β and q such that p < 1
1+β < q and let µ be the measure given in

Lemma 3.3. On one hand, the set D = Lp(dν)∩Lq(dµ) is a dense subset of Lp(dν).
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On the other hand, for all f ∈ D and since µ is preserved by the flow, we have the
following results:

(a) By the classical result by Cotlar [3] (see also [11]) or by Theorem C, there exists
the limit limε→0 Hε,0f(x) = Hf(x) for almost every x ∈ X.

(b) By Theorem 3.7, H∗
βf is a.e. finite, because q > 1

1+β and the ergodic averages
AT,1 are uniformly bounded on Lq(1+β)(dµ).
In what follows we will prove that (a) and (b) imply, for all f ∈ D, the a.e.

existence of the limit limε→0 Hε,αf(x) and that limε→0 Hε,αf(x) = Hf(x). The
proof is an adaptation of Lemma 2.27 in [14].

For fixed f ∈ D, let x ∈ X such that there exists the limit limε→0 Hε,0f(x) =
Hf(x) and H∗

βf(x) is finite. We may assume without loss of generality that
Hf(x) = 0. Applying the formula

(4.1) (x− u)α+δ = C

∫ x

u

(t− u)α(x− t)δ−1 dt, δ > 0,

with δ = α − β, where C depends only on α and δ (in fact, C = Γ(α+δ+1)
Γ(α+1)Γ(δ) where

Γ is the Gamma function), we obtain that

(4.2) Hε,αf(x) = C εα

∫ 1/ε

1

(1/ε− t)α−β−1 tβ H1/t,βf(x) dt.

Given η > 0, let us fix θ with 1/2 < θ < 1 and (1− θ)α−β < η. Then,

Hε,αf(x) = C εα

∫ θ/ε

1

(1/ε− t)α−β−1 tβ H1/t,βf(x) dt

+ C εα

∫ 1/ε

θ/ε

(1/ε− t)α−β−1 tβ H1/t,βf(x) dt = I + II.

First, we estimate II and we obtain that

|II| ≤ C εα H∗
βf(x) (θ/ε)β (1/ε− θ/ε)α−β ≤ C H∗

βf(x) η.

To estimate I we integrate by parts and we use (4.2) with α = β + 1. Then we
obtain

I = C εα (1/ε− θ/ε)α−β−1

∫ θ/ε

1

sβH1/s,βf(x) ds

+ C εα

∫ θ/ε

1

(α− β − 1)(1/ε− t)α−β−2

∫ t

1

sβH1/s,βf(x) ds dt

= C εα

(
1− θ

ε

)α−β−1

(θ/ε)β+1
Hε/θ,β+1f(x)

+ C εα (α− β − 1)
∫ θ/ε

1

(1/ε− t)α−β−2tβ+1H1/t,β+1f(x) dt = III + IV.

Now, we claim that
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(c) H∗
β+δf(x) is finite for all δ > 0.

(d) There exists the limit limε→0 Hε,β+1f(x) = Hf(x) = 0.
The above claims follow from (4.1), (4.2), (a) and (b). Taking into account the

claims (c) and (d) we obtain that

|III| ≤ C (1− θ)α−β−1
θβ+1|Hε/θ,β+1f(x)| < η,

for ε small enough.
On the other hand, since α − β − 2 ∈ (−2,−1) and β > −1, we have (1/ε −

t)α−β−2 < (1/ε− θ/ε)α−β−2 and tβ+1 < (θ/ε)β+1 for all t ∈ (1, θ/ε). Then,

|IV | ≤ C ε

∫ θ/ε

1

|H1/t,β+1f(x)| dt,

which tends to zero as ε goes to zero because limt→∞H1/t,β+1f(x) = 0 and
H∗

β+1f(x) < ∞. Therefore we are done.
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bounded flows, Tôhoku Math. J. 46 (1994), 541-556.
7. F.J. Mart́ın-Reyes, New proofs of weighted inequalities for the one sided Hardy-Littlewood

maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698.
8. F.J. Mart́ın-Reyes, P. Ortega Salvador and A. de la Torre, Weighted inequalities for one-sided

maximal functions, Trans. Amer. Math. Soc. 319 (1990), 517-534.
9. F.J. Mart́ın-Reyes and A. de la Torre, Some weighted inequalities for general one-sided max-

imal operators, Studia Math. 122 (1997), no. 1, 1-14.
10. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer.

Math. Soc. 165 (1972), 207-226.
11. K. Petersen, Ergodic Theory, Cambridge Studies in Advanced Math. 2, Cambridge Univ.

Press, 1983.
12. E. Sawyer, Weighted inequalities for the one sided Hardy-Littlewood maximal functions, Trans.

Amer. Math. Soc. 297 (1986), 53-61.
13. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean spaces, Princeton Uni-

versity Press, 1971.
14. A. Zygmund, Trigonometric series, vol. I and II, Cambridge University Press, 1959.
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