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ABSTRACT.  The existence of the singular integral [ K (x, y) f(y) dy associated to a Calderon-Zygmund
kernel where the integral is wunderstood in the principal value sense Tf(x) =
lim,_, o+ fl x—y|>e K. ¥) f(yydy has been well studied. In this paper we study the existence of the above
integral in the Cesaro-a sense. More precisely, we study the existence of

I’3
lim [ FOK@x Y (l - ;) dy ae
>0t Jix—yl>e lx — yl

Jor =1 < a < 0in the setting of weighted spaces.

1. Introduction

Let K (x, y) be a Calder6n—Zygmund kernel (x, y € R"), defined as in [7] (see Section 2 in
this paper). If K satisfies that

there exists  lim K(x,y)dy for almost every x , 1.1)
€e—>0+ e<|x—y|<l

then there exists the integral [ K(x, y) f(y)dy in the principal value sense, i.e., there exists the
singular integral

Tf(x)= lim T.f(x) ae., where T.f(x)= / Kx,»f(»dy,
e—0% lx—y|>€
for every f € L”(wdx) if w belongs to the A, class of Muckenkoupt, 1 < p < 00, i€, ifwisa
nonnegative measurable function and there exists a positive constant C such that for every ball B

p—1
(/w)(fw—P_lf> < C|B)?, whenl < p<oo,
B B
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where | B| denotes the Lebesgue measure of B, and
1
— | w<Cw(x) ae.xeB, whenp=1.
|B| /B

In order to study the existence of the above limit, it is proved that the maximal operator
T* f(x) = sup | T f (x)]
€>0

is of strong type (p, p), 1 < p < o0, i.e.,

/|T*f|pw§C/|f|”w, l<p<oo, (1.2)

whenever w € Ap, and it is of weak type (1,1), i.e.,

/ wfgftflw, A>0, (1.3)
{T*f>A) A

ifw e A (see [7, 2, 6], and [1] for these results). These inequalities can be proved controlling T* f
by the Hardy-Littlewood maximal operator

1
A AT T S
where B(x, R) is the ball of center x and radius R. In fact, one uses that M verifies (1.2) and (1.3)
under the same assumptions on w (see [7, 2, 6], and [1]).

The aim of this paper is to study the existence of the singular integral [ K (x, y) f(y) dy in the
Cesaro-a (Cy) sense; that s to study the existence of the limitlim,_, g+ T f(x) = limg— o0 T1/r f(X)
in the C, sense (see [3, Section 5.14 and Notes on Chapter V]). This means that in the case o > 0
we want to study the limit

lim ——/ (R—1)*Ty f(x) drt .

R—>o00 R®

If feLP 1< p < oo, wecaninterchange the integrals and the parameter R by 1/¢ obtaining that
the above limit equals

lim f(y)K(x,y)(l— ¢ )dy.
lx — I

=0t Jx—y|>e€

In what follows and throughout the paper we shall write

¢ o
Keolx,y) =K(x,y) (1 - m) X{Ix—y|>e}()’) .

It turns out that if f is in the Schwartz class, then the integrals

Teof(x) = f FOKeolx,y)dy

make sense not only for ¢ > 0 but also for « > —1. In this way, we reach the goal of this paper, i.e.,
to determine spaces of functions for which the limit

. 1 6 )
el—l>r(r)l+ Teaf(x) = el—l>l})l+ FOIK®.Y) (1 B [x — y|> dy

lx—yl>€
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exists foralmostevery x. If thatlimitexists a.e., we shall say that the singular integral [ K (x, y) f (y) dy
exists a.e. in the Cy sense.

It can be proved that the existence in the Cy sense (i.e., in the principal value sense) implies
the existence in the C, sense for @ > 0. Since the case a = 0 has been well studied, we shall restrict
ourselves to the case @ < 0, although the statements of the theorems hold also fora = 0.

Throughout the paper the letter C means a positive constant not necessarily the same at each
occurrence and if 1 < p < oo then p’ denotes its conjugated exponent, i.e., 1/p +1/p’ = 1. If
E C R” is a measurable set and g is a nonnegative measurable function, then | E| and g(E) stand for
the Lebesgue measure of E and | £ 8(x) dx, respectively. Finally, if @ is a nonnegative measurable
function we shall consider the Lorentz spaces

L, (wdx) = {f:ufn,,,l;wdx =/0 [w({x : 1f )| > )P dr < oo}

and

Lpoo(wdx) = {f fllp.ooiwdr = suptlo({x | f ()] > VP < oo} .

t>0

If w = 1, we shall omit wdx.

2. Statements of the Results

In order to state the results, we begin establishing that a Calderén~Zygmund kernel (see [7,
p- 293, 305-306]) is a function K defined on R* x R" \ A, where A = {(x,y) : x = y}is the
diagonal, such that there exist constants C > O and y,0 < y < 1, so that

IK(x,»| < Clx—y™, @n
K,y - K (x,y)] < Je=xl 2|~ x| < Ix -yl 2.2)
’ LT Ty N '
K,y - K (e, y)] < D=y 2y~ <=y, 2.3)
T x —yjrty
/ v dx < CN" and f Xy dx <CN", 24
lx—xgl<N Jx—xpl<N
for all ¢, N and xq, where
Len(x) =/ K@y dy . Iy =/ K*(x.y) dy.,
e<|lx—y|<N e<jx—y|<N

and K*(x, y) = K (y, x) is the adjoint kernel of K.
To prove the almost everywhere existence of the limit lim, _, g+ T¢ o f (x) we study the operator
T; f = sup..g |Te,o f] which is controlled by T* = T and the maximal operator

1
Maf () = sup o | FON(x — ¥ — % dy .
e>0 € e<|x—y|<2e

More precisely, we have the following proposition.
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Proposition 1.
Let —1 < a < 0 and let K be a Calderon-Zygmund kernel. If f is a measurable function
such that T, o f (x) is defined for every € > 0, then there exists C > O independent of f such that

Trf(x) <C[Myf(x)+T*f®)] -

As we pointed out in the introduction, the strong type (p, p) inequalities, 1 < p < oo, and
the weak type (1,1) inequality for T* with respect to wdx hold if w satisfies A, and Ay, respectively.
However, as far as we know the boundedness of M, has been studied only for the Lebesgue measure
(w = 1). It follows from [5, Theorem 1] that M, is of restricted weak type (14+a' 1—41_—‘1) and,

consequently, it is bounded in LP(dx) if p > Tﬁ Since we shall work with measures wdx,
we have studied the boundedness of M, in weighted spaces, obtaining the following theorem for
Muckenhoupt weights.

Theorem 1.
Let —1 < « < 0, and assume that w is a nonnegative measurable function.

(i) Ifw € Ay, then there exists a constant C such that

Mo ((x : Mo f(x) > ADI™ < CHAIL L 10 »

forallA >0andall f e L]ﬁ‘l(wdx).

(ii) Ifp(1+a) > 1 and w € Ap(14q), then there exists a constant C such that

/ IMafI"a)SC/ [fIPw forall f € LP(wdx) .
R" R"

Remark. It is worth noting that M, is not of weak type (1_+a, H;a) fore < 0Oand w = 1. If

fO) = IyI7'"%log yI” x0.1/2 (), with =1 < y < —1 — a, we see that f € Lﬁ(dx) but
My f(x) =occforallx <0.

With this theorem and Proposition 1 we shall be ready to prove the main result of the paper.

Theorem 2.

Let —1 < a < O and let K be a Calderén-Zygmund kernel. Assume that w is a nonnegative
measurable function.

(i) Ifw € Aj, then there exists C such that

Mo (fe £ > A1 < UL e

forallx > 0andall f € LTx_ (wdx).
+a
(i) Ifp(l+a) > land w € Ap(14q), then there exists C such that

/ IT*fl”a)SC/ |fIPw forall f € LP(wdx) .
R"? R?

(iii) If K satisfies that

[+]
there exists  lim K(x,y) (1—| € I) dy ae. @2.5)
x—y

e—>0t e<|x—yl<l

then the singular integral exists a.e. in the Cy sense if f € LP(wdx) withw € Ap(1+q) and
pl+a)>loriff e LTI_ (wdx) withw € Ay.
+a’
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Remark. Observe that (2.5) is the natural substitute of (1.1).

The rest of the paper is organized as follows. We prove Theorem 1 in Section 3 while the
proofs of Proposition 1 and Theorem 2 are in Section 4. We finish the paper providing examples of
Calder6n—Zygmund kernels satisfying (2.5).

3. Proof of Theorem 1

Proof of Theorem 1(i). Applying Theorem 3.13 in [8, p. 195], we get that it is enough to prove
the inequality for characteristic functions. Therefore, we shall prove that

AT ({x 1 Myxp(x) > A}) < Co(E) 3.1)

for all A > 0 and all measurable set E. Inequality (3.1) is an easy consequence of the following
lemma together with the weak type (1,1) inequality with respect to w (x) dx of the maximal operator

1
Mg (x) = sup —————— I8l @
w8 ) = S o (B R) Jaeny
Lemma 1.

Let —1 < a < 0and w € A|. Then there exists C such that My xg < C (Mw)(E)H"" for all
measurable set E.

Proof of Lemma 1. It suffices to prove that there exists C such that

1 l+(1 1+a
RoO=D (-—— w) f xEO)(x =yl = R)*dy < C ( f w) 62
|Bar| JByg Cr ENBag

where Ck = {y : R < |x — y| < 2R} and Bog = B(x,2R). In order to prove (3.2) we apply
Ay and the Holder inequality for the Lorentz spaces [4]: || fgll1 < C||f||11_'ll|g||:1_'oo. Then the
left-hand side of (3.2) is dominated by

14a
CRY "D (ess inf w) IxEna ] 1 Ngll L o, < CR¥™V (@ (E N Bap)'** ligll 1
BZR o e

—a

where g(y) = (x — y| — R)* xc,- Therefore, we only need to prove that ||g||+.oo < CR™@=D,
To prove this last inequality, we write

gl o = suptl{yeCr:(x—yl—R*>1t}I™
* t>0
< sup t}{... 0%+ ssupt|{..IT¥=T+1II.

O<t<R® t>R*

Since {y e Cr: (Jx —y| — R)* >t} C Cg we getthat ] < CR~®"=1_ O the other hand, if we
call s = t1/* R—!, we have that

11 < CR™*™=D gup

O<s<l s

[(1+S)n—1]_u§CR_a("_”- 0

Proof of Theorem 1(ii). We shall need the following lemma.
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Lemma 2.

Let—1 < <0, p> ﬁ% and w € Ap(14q). Then, there exists a constant C such that

Mof(x) < C[M, (1F17)]'7 () .

Sor all measurable function f.

We postpone the proof of Lemma 2 and continue with the proof of (ii).

Let w € Ap(14+a). Then, there exists r, 1 < r < p(1 + w), such that w € A, (see [2], for
instance). By Lemma 2 we have that M, f(x) < C(M,(fI1")(x)V/S with s = I—G-La Then, since
M,, is of weak type (1,1) with respect to w(x)dx, we get that M, is of weak type (s, s) with respect
to w(x)dx. By interpolation, (ii) follows. ]

Proof of Lemma 2. Let Cg and B be as in the proof of Lemma 1. Assume that w € Ap(14)-
Then there exists r, 1 < r < p(1 + @), such that w € A,. Applying the Holder inequality with
exponent Ir’T_ll and using that w € A, we have that

r— —-r

-t ! __1L 7T op =
/w”_“(y)(lx—yl—R)“” dy < (/ wrff) (/ (Ix—yI—R)"-’dY)
Cr Bar Cr

—1
< C Rm(/ w)
|: Bar
1
. p—r]71
( (Ix—yI—R)Ff'rdy) }
Cr
e
< C[R”("Jr“) (/ w(y)dy) ] X (3.3)
Bar

Applying again the Holder inequality and (3.3), we obtain that

/ FOIx =yl = R dy = / F DI ? (o™ ()(Ix — y| = B dy
Cp CRr

1/p
(/ I f)OIPw(y) dY)
Byr

/ ’ l/p/
(/ o™ P/P(y)(1x — y| = R)*? dy)
Cr

l/p
CR™e ( f FOPo() dy)
Br

=1/p
( / (y) dy) .
Bar

Taking supremum over R > 0O we are done. O

IA

1A
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4. Proofs of Proposition 1 and Theorem 2

Proof of Proposition 1. Let us write

Teof(x) = /l - f(y)Ke,a(x,y)dy+/. SOK(x,y)dy
x—y|<2e

lx—y|>2¢

+/ f(y)K(x,y)[(1~ < ) —1] dy=1+1II+1II.
[x—y|>2€ [x — yi

Observe that |I1] = |Ta¢ f(x)| < T*f(x). On the other hand, since K is a Calder6n-Zygmund
kernel

m s cf oA
e<|x—y|<2e | I" ¢

1
c ( P / LFI(x —y| — ) dY) <CMyf(x).
€ e<jx—y|<2e

IA

Now, we estimate |I11). By the mean value theorem we get that

’f(y)K(x,y)Kl— € >—1]
|x — ¥

< O

|x
where £ € [1 — |x ek 1]. Then
€ a-1 €
I < c/ 1FO)] (1 - ) dy
oyis2e x—yl) Tx—yrt
o0 o—1
(lx=yl—9©
< Ce f ifoy A7
l; Ze<|x—y|<2A+le O [x = y|n+a
o0 2k _ 1 ]d i
< Z m / IF )l dy < CMf(x),
lx—y]<2k+le

=1

where M is the Hardy-Littlewood maximal function. Since Mf(x) < CM, f(x) we are done.
O

Proof of Theorem 2. We claim that the truncations T, o f (x) are well defined for the functions
considered in (i) and (ii), i.e., the functions y = f(¥)Keo(x,y) € L'(dy) for all x.

Proof of the Claim. Assume that f € L .. ((wdx) and w € Aj. We write
o

f | FO)Kealx, y)| dy=/ ---dy+/ coedy=I+11I.
jx—yi>e e<|x—y|<2e lx—y|>2€

Observe that [x — yl > 2¢ implies that (1 — ﬁ)u < (1/2)%. Then, II < oo since f €

L . 1(a)a’x)C;r‘ﬁﬂﬁ(wdx)anda)eA] CA -

" To prove that [ is finite, we apply the growth condition on K and the Holder inequality in
Lorentz spaces. Then we obtain

-/e<|x—y|§25 | fO)Kea (e, Y| dy < | fxB(x.20) "1:1;.1 llell L o -
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where g(z) = (llzT'l;Te{,ﬁxmpe}(z). Since w € Ay we have that |{y € B(x,2¢) : |f(¥)] > t}| =
1
o({y : 1f )| > 1}). Then

~1 1
Jyepwaonisorn @™ Mo dy <C (TB‘(x,z_e)t Jaw2e) “’)

] —(14a)
<Cl|—m .
| £ xBex.26) "&&1 < (|B(x,25)| e 20 w) ”f”ﬁ,uwdx) < 00

On the other hand, the function g is radial decreasing in {z : |z] > €}, g(z) = oo as |z| — €* and
8(z) — 0Oas |z| — oo. Therefore, fore > 0 and ¢ > 0 fixed, there exists z;, with |z;] > ¢, such that
8(z;) =1t. Since |{z : g(2) > t}| = {z : € < |z] < ||} = C(|z|" — €"), we have

- (e/ |z,|>")‘“ .

ligll L . < Csupt(iz|” —€") * <Csu 6—n(1+a)<
a0 t>I(:)’ ( ! ) p 1—6/|zt|

t>0
With this inequality we have that T, o f is defined for f € L o~ ((wdx) withw € Ay.
Fa

Now assume that f € LP(wdx), w € Ap,and p > 1_4-1'«? Let I and 17 be as above. As before,
I1 is finite. By (2.1), the Holder inequality, and (3.3),

€ “ _
I = f LFOIIK G, )l (1 - ——) o'/?(y)w™ 7 (y) dy
e<lx—y|<2e lx =yl

1/p . , 1/p'

< C(/Ifl”w) e~ (nte) (/ o T T(y)(lx — y| — )P dy)
e<|x—y|<2e

1/p ~1/p

< c(/mpw) (/ w(y)dy) <o,
Jx—y|<2e
Therefore, T¢ o f is defined for f € LP(wdx), w € Ap, and p > HLQ O

Once we have proved that the truncations are well defined, it is clear that (i) and (ii) in Theorem 2
follow from Proposition 1, Theorem 1, and the inequalities for 7* in weighted-L? spaces [see (1.2)
and (1.3)]. Finally, (iii) in Theorem 2 is a consequence of (i) and (ii) and the a.e. convergence of
Te o f for all f belonging to the Schwartz class S. In order to prove the a.e. convergence for f € S,
we write

Tof(x) = f IO = K dy
e<|lx—yj<le
+ f LFO) = FOIKealx, ) dy
2e<|x—y|<l

+ ) Kea(x,y)dy + f FO)Kealx, y) dy

Jx—yl<i Jx—y|>1

= I4+I1I+1I141V.
By (2.5) there exists the limit of /11 a.e.. By the mean value theorem, we easily see that

(jx =yl — €)*

1] < CIIV flloo S

dy < Cel|V flloo -

e<|x—y|<2e |x —
Therefore, lim,_, ¢+ I = 0. On the other hand, if 2¢ < |x — y| < 1, we have that |(f(y) — f(x))
K¢ olx, y)l < CI{V flloolx — yl‘"+lx{|x_y|<1}(y) and then, by the dominated convergence the-
orem, we conclude that there exists lim._,g+ II. Finally, if [x — y| > 1 and ¢ is small then
|f(y)Ke,o,(x, y)| < C|f(y)|. Keeping in mind that f € & we obtain, from the last inequality and
the dominated convergence theorem, that there exists lim._, o+ IV. O
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5. Examples of Kernels

In this section we give examples of Calder6n-Zygmund kernels satisfying (2.5). We only
verify (2.5), when necessary, because it is well known that they are Calder6n~Zygmund kernels.
Example 1. LetK(x,y) = x—l—y- be the kernel of the Hilbert transform or, with more generality,
consider, in dimension #, the kernel K (x, y) Re—Y) where 2 € C! (R” \ {0}) is a homogeneous

= it

function of degree zero and f, sn-1 2(8) do(0) = 0. Itis clear that K satisfies (2.5). 0

Example2. LetK(x,y) = % be the kernel associated with the first Calderén commutator

in one dimension, where A is a Lip-schitz function such that there exists A’(x) for all x € R. Let
x € [—-R, R], for some R > 0. Then for any € > 0 we get that

/ A(x) — A(y) (1 _ € )a dy
e<lx—y|<l (x — .Y)z Jx — |
TTEA(x) — A(y) ( € )a
= 1 — d
~/x—1 (x — y)? x =y Y
x+1 _ 4
+/ Ax) — A(y) (1 € ) dy=1.
e (v —=x)? y—x

Integrating by parts we obtain that

_ (1 _ 6)l+ot
= W[ZA()C) —_ A(X - 1) - A(X + 1)]

1 xX—€ I+o
- / A') (1 S ) dy
e(l+a) | Je- x=y
x+1 € I+a
— / A/(y) (1 — ———) dy| .
x+e y—X

Applying the L'Hopital rule we obtain

lim I = lirg+ —(1 —e)*2A(x) —A(x = 1) —Ax + 1))

e—>0t
A —R— € “
+ lim f M x-R-1.R+13(¥) (1_ ) dy
e—0F e<lx—yl<l xX—=y fx — YI

2AX)+Ax -D+AE+D+ 1ixg+ Heo (A X(-rR-1.R+1)) (¥)
€—>

A —R-
_/ M x=r-1.rR+1)()) dy
br—yiz1 =y

]

where Hc o is the C, truncation of the Hilbert Transform, i.e.,

f) ( € )“
Heof(x) = 1— dy .
' f(X) -/I‘x—y|>e X =Yy Ix - )’I Y

Now, since K(x,y) = x—l-y- satisfies (2.5) (Example 1) and A'(y)xj—r-1.r+1}(y) € LP, for all

p > 1, applying Theorem 2 we get that there exists lim,_, g+ He o (A’ X{~R—1,r+1])(*) for almost all
x € [—R, R). Then it follows that the kernel K (x, y) = A8=AW) qagisfies (2.5). [

(x—)?
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