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ABSTRACT. The existence qf the singular integral f K (x, y) f (y) dy associated to a Calderdn-Zygmund 

kernel where the integral is understood in the principal value sense T f (x) = 

l ime~0+ flx-yl>E K (x, y ) f  (y) dy has been well studied. In this paper we study the existence of  the above 

integral in the Cesfiro-et sense. More precisely, we study the existence t~" 

Iim f l  x f ( y ) K ( x ,  y) ( l -  ~ ) ~  dy a.e. 
~ 0  + -~, >~ Ix - Y[ 

fi)r - 1  < ct < 0 in the setting q]'weighted spaces. 

1. Introduct ion 

Let K(x, y) be a Calder6n-Zygmund kernel (x, y ~ Rn), defined as in [7] (see Section 2 in 
this paper). If K satisfies that 

there exists lim I K(x, y) dy for almost every x , (1.1) 
~-'>0+ JE < l x - y l <  1 

then there exists the integral f K(x, y)f(y)dy in the principal value sense, i.e., there exists the 
singular integral 

Tf(x) = lira TEf(x) a.e., where T~f(x) = ~ K(x,y)f(y) dy 
E~0+  , /Ix-yl>E 

for every f 6 LP(codx) if co belongs to the Ap class of Muckenkoupt, 1 < p < oo, i.e., if co is a 
nonnegative measurable function and there exists a positive constant C such that for every ball B 

(fBco)(fsco- )P-l<_c,B,', w h e n l  < p  < ~ ,  
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where ]B] denotes the Lebesgue measure of B, and 

IBI ~o<_Co)(x) a . e . x ~ B ,  w h e n p = l .  

In order to study the existence of the above limit, it is proved that the maximal operator 

T ' f  (x) = sup IT~f(x)l 

is of strong type (p, p), 1 < p < eo, i.e., 

f l T * f ] P w < C f l f l P w ,  l < p < o o ,  (1.2) 

whenever o2 6 Ap, and it is of weak type (1,1), i.e., 

w < - -  [fifo,  ) ~ > 0  (1.3) 
T*.f>X} -- X 

i fw ~ A1 (see [7, 2, 6], and [1] for these results). These inequalities can be proved controlling T* f  
by the Hardy-Littlewood maximal operator 

1 L Mf(x)  = sup I f l ,  
R>0 [B(x, R)I (x,R) 

where B(x, R) is the ball of center x and radius R. In fact, one uses that M verifies (1.2) and (1.3) 
under the same assumptions on o) (see [7, 2, 6], and [1]). 

The aim of this paper is to study the existence of the singular integral f K(x, y) f (y)  dy in the 
Ceshro-u (Ca) sense; that is to study the existence of the limit limE~0+ TE f (x)  = limR-+cr TI/g f (x) 
in the Ca sense (see [3, Section 5.14 and Notes on Chapter V]). This means that in the case a > 0 
we want to study the limit 

R 

lim - -  (R -- t )~-lTl / t f (x  )dt  . 
R~oo R u 

I f f  E L p, 1 < p < oo, we can interchange the integrals and the parameter R by 1/r obtaining that 
the above limit equals 

lim f f ( y )K(x , y )  (1 
E"+O+ dlx-yl>e 

In what follows and throughout the paper we shall write 

Ix -- y l" dy .  

E 
KE.ct(x, y) = K(x, y) 1 Ix - y[ X{Ix-yL>EI(Y) �9 

It turns out that if f is in the Schwartz class, then the integrals 

= f f(y)KE,a(x, y) dy TE,af (x) 

make sense not only for u > 0 but also for u > - 1 .  In this way, we reach the goal of this paper, i.e., 
to determine spaces of functions for which the limit 

lim TE,uf(x)= lira fl x f ( y ) K ( x , y ) ( 1  ~ )a 
E-'*O+ E"~O+ -y l>E IX y[ dy 
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exists for almost every x. If  that limit exists a.e., we shall say that the singular integral f K (x, y) f (y) dy 
exists a.e. in the Ca sense. 

It can be proved that the existence in the Co sense (i.e., in the principal value sense) implies 
the existence in the Ca sense for ot > 0. Since the case cz = 0 has been well studied, we shall restrict 
ourselves to the case a < 0, although the statements of the theorems hold also for a = 0. 

Throughout the paper the letter C means a positive constant not necessarily the same at each 
occurrence and if 1 < p < oo then pl denotes its conjugated exponent, i.e., 1/p + 1/p r = 1. If  
E C R n is a measurable set and g is a nonnegative measurable function, then I E] and g(E) stand for 
the Lebesgue measure of E and fE g(x) dx, respectively. Finally, if o) is a nonnegative measurable 
function we shall consider the Lorentz spaces 

{ /o } Lp.l(ogdx) = f : [[fllp,l:omx = [og({x �9 I f (x)[  > t})] I/p dt < oo 

and 

Lp,~(ogdx) = { f :  Ilfllp.oo:codx = supt[og({x : , > 0  I f (x) l  > t})] I/p < oo} . 

If  o9 = 1, we shall omit co dx. 

2. Statements of  the Results 

In order to state the results, we begin establishing that a Calder6n-Zygmund kernel (see [7, 
p. 293, 305-306]) is a function K defined on ]~n )< ]~n \ A, where A = {(x, y) : x = y} is the 
diagonal, such that there exist constants C > 0 and y, 0 < y < 1, so that 

IK(x,y)I < C I x -  yl -n , (2.1) 

Ix - x' l  
I K ( x , y ) - K ( x ' , y ) [  < C lx_y ln+•  if 21x-x'l<_lx-yl, (2.2) 

[ y -  y'{ y 
[ K ( x , y ) - K ( x , y ' ) [  < C ] x _ y l n + y ,  if 2 l y - y ' l < l x - y l ,  (2.3) 

[ I,,,N(x)I 2 dx < CN n and [ Ii,*m(x)l z dx < CN n , (2.4) 
alx -xol<N dlx-xol<N 

for all E, N and x0, where 

K(x , y )  dy , 1E.N(X) = K*(x ,y )  dy ,  
IE,N(X) -~ <lx-yl<N <[x-yl<N 

and K*(x, y) = i t (y ,  x) is the adjoint kernel of K. 

To prove the almost everywhere existence of  the limit lim~__,o+ TE.a f (x) we study the operator 
T ~ f  = supE>o ]TE,afl which is controlled by T* = To* and the maximal operator 

Motf(x) = sup 1 fE I f(y)l( lx - y[ - E) a dy . 
E>0 ~ <lx--yl<2E 

More precisely, we have the following proposition. 
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Propos i t ion  1. 
Let - 1 < ot < 0 and let K be a Calder6n-Zygmund kernel. I f  f is a measurable function 

such that TE,af (x) is defined for every ~ > O, then there exists C > 0 independent o f f  such that 

T ' f  (x) < C [May(x )  + T ' f  (x)] . 

As we pointed out in the introduction, the strong type (p, p) inequalities, 1 < p < o0, and 
the weak type (1,1) inequality for T* with respect to codx hold if 09 satisfies A p and A l, respectively. 
However, as far as we know the boundedness of  Ma has been studied only for the Lebesgue measure 
(co = 1). It follows from [5, Theorem 1] that Ma is of  restricted weak type ( 1 1 l+a, 1~-~) and, 
consequently, it is bounded in LP(dx)  if p > l--~--ffa" Since we shall work with measures w d x ,  
we have studied the boundedness of Ma in weighted spaces, obtaining the following theorem for 
Muckenhoupt weights. 

T h e o r e m  1. 
Let - 1  < ot < O, and assume that w is a nonnegative measurable function. 

(i) I f  co ~ Al,  then there exists a constant C such that 

)~ [co ({x : M a y ( x )  > )~})]l+a ___ CIIfll~+~,l;omx , 

for all )~ > 0 and all f E L~+~, l(codx). 

(ii) I f  p(1 + or) > 1 and co E Ap(l+n), then there exists a constant C such that 

f~ ,  lM~f lP og <- c f~  Iflpco f~  all f ~ Lp(codx) " 

R e m a r k .  It is worth noting that Ma is not of  weak type ( 1 1 ~+a' l~-ff)for ot < 0 and co = 1. If  
l 

f ( y )  = ly l - l -al logy[•  w i t h - 1  _< y < - l - a ,  w e s e e t h a t  f E L r - ~ ( d x ) b u t  
M a y ( x )  = oo for a l lx  < 0. 

With this theorem and Proposition 1 we shall be ready to prove the main result of  the paper. 

T h e o r e m  2. 
Let - 1  < ot < 0 and let K be a Calder6n-Zygmund kernel. Assume that co is a nonnegative 

measurable function. 

(i) If  o9 E A1, then there exists C such that 

x [co({x : rf(x) > x})] _< cIIyil ,,.,  x, 
for all )~ > 0 and all f ~ L ~+~, 1 (codx). 

(ii) If  p(1 + a )  > 1 and o9 E Ap(l+a), then there exists C such that 

fR  ' T * f ' P o J < C L  'flPco fora l l  f ~ L P ( c o d x ) .  

(iii) I f  K satisfies that 

there exists lim K(x ,  y) 1 - dy  a.e. (2.5) 
~'~0+ <lx-y[< 1 IX y[ 

then the singular integral exists a.e. in the Ca sense if  f ~ L P (codx) with o9 ~ Ap(l+a) and 
p(1 +t~)  > 1 o r i f  f ~ LrL_+~,l(codx ) witho9 ~ a l .  
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Remark. Observe that (2.5) is the natural substitute of (1.1). 
The rest of  the paper is organized as follows. We prove Theorem 1 in Section 3 while the 

proofs of  Proposition 1 and Theorem 2 are in Section 4. We finish the paper providing examples of  
Calder6n-Zygmund kernels satisfying (2.5). 

3. Proof  of  Theorem 1 

P r o o f  o f  T h e o r e m  1(i). Applying Theorem 3.13 in [8, p. 195], we get that it is enough to prove 
the inequality for characteristic functions. Therefore, we shall prove that 

1 
~. +Y~ to ({x : MaZE(X) > ~.}) < Cto (E) ,  (3.1) 

for all ~. > 0 and all measurable set E. Inequality (3.1) is an easy consequence of  the following 
lemma together with the weak type (1,1) inequality with respect to to (x) dx of the maximal operator 

, f. Mo2g(x) = sup Igl to. 
R>0 to(B(x,  R)) (x.R) 

L e m m a  1. 
Let - 1  < el < 0 and co ~ A1. Then there exists C such that MaXE < C (MwxE)l+a for  all 

measurable set E. 

P r o o f  o f  L e m m a  1. It suffices to prove that there exists C such that 

'+. ( f ) ' + "  "'~'-"(i,~,If,.') fc. z'(y)(Ix-yl-R)ady<-C ,,en,.. to: (3.2) 

whereCR = {y : R < I x - y l  < 2 R } a n d B 2 R  = B ( x , 2 R ) .  In order to prove (3.2) we apply 
AI and the H61der inequality for the Lorentz spaces [4]: l l fgll l  _ < CIIf l l  +~,,lllgll =,~ oo" Then the 

left-hand side of  (3.2) is dominated by 

CRa(n- l )  (ess inf og) l+a B2, / 11XEnSzRll ,a__~ , t l lg l l_ -~oo<cea(" - l ) (w(gNB2R)) l+al lg l l~  �9 - ' 

< C R - u ( n - 1 ) .  where g(y)  = (ix - Yl - R)aXcR. Therefore, we only need to prove that I l g l l ~ . ~  - 

To prove this last inequality, we write 

= sup t l { y ~ C R : ( I x - - y I - R )  a > t } l  - a  
t>0  

< sup t I { . . .  }1 - a  + sup t I{... }1 - a  = I + I I  . 
O<t <R u t > R ~ 

Since {y 6 C R  " ( I X  - -  Yl - R) '~ > t} C CR we get that I < CR  -a(n-U. On the other hand, if we 
call s = t l / aR  - l ,  we have that 

i i  < C R - a ( n - l )  sup [ ( l + s ) ' - l ]  -~ _ --  < C R  - c t ( n - l )  . [ ]  

0 < s < l  S 

Proof of Theorem l(i i) .  We shall need the following lemma. 
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L e m m a  2. 

1 and co E Then, there exists a constant C such that L e t - 1  < ot < O, p > TT-6 Ap(l+a). 

May(x) <_ C[M OylO] 1/" (x) 

for all measurable function f . 

We postpone the proof of  Lemma 2 and continue with the proof of  (ii). 

Let co 6 Ap(l+c0. Then, there exists r, 1 < r < p(1 + or), such that 09 6 Ar (see [2], for 
instance). By Lemma 2 we have that M u f ( x )  < C(Mco(IflS)(x)) 1Is with s = r Then, since 

- -  1 + ~  " 

Mo~ is of  weak type (1,1) with respect to co (x)dx, we get that Ma is of weak type (s, s) with respect 
to w(x)dx.  By interpolation, (ii) follows. [ ]  

P r o o f  o f  L e m m a  2. Let CR and B2R be as in the proof of  Lemma 1. Assume that w ~ Ap(l+a). 
Then there exists r, 1 < r < p(1 + ~), such that 09 E A r .  Applying the H61der inequality with 

p - - I  exponent ~ and using that 09 6 Ar we have that 

SC i co - "--:7- (y)(Ix - Yl - R) ~p' dy 
R 

< co-~---:r (Ix - Yl - R)p-,  dy 
2 .  R 

"< C [Rnr IfB2 co)-' 
I 

(Sc (,x _ yi _ R)~-. dy)p-r] p-z-f- 
I 

. C[RP(n+a)(iB2 co(y) dy)-i]p-wr- (3.3) 

Applying again the H61der inequality and (3.3), we obtain that 

f c  I f(y)l(Ix - yl - R) a dy 
R 

= f c  If(y)lcol/P(Y)W-VP(Y)(lx - y l -  R) a dy 
R 

< ( fB2RI f (y ) lPco(y)dy)  I/p 

(ft. ,. ( y ) ( x - y , - - R )  "p' d r )  I/p' 

<_ I f ( y ) l P w ( y ) d y )  I/p 
2R 

(fn.. CO(Y)dY) -I/p" 

Taking supremum over R > 0 we are done. [ ]  
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4.  P r o o f s  o f  P r o p o s i t i o n  1 a n d  T h e o r e m  2 
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Proof of Proposition 1. Let us write 

TE,af (x) fllx-yl<2, f (y)K~,,~(x, y) dy + ]l~_yl>2E f (y)K (x, y) dy 
I "  

f x I( - 1  d y =  l + I I  + I I I  . 
-~- - y l > 2 ,  f ( y )K(x ,  y) 1 Ix - Yl 

Observe that Illl  = IZ2Ef(x)l ~ T*f(x) .  On the other hand, since K is a Calder6n-Zygmund 
kernel 

III < C f ,  I f (y ) l ( Ix  - yl - E) '~ 
<lx_yl<2E IX - -  yl n+~ dy 

) < C If(Y)l(Ix - Yl - E) '~ dy < C M a f ( x ) .  
<Ix-y[<_2~ 

Now, we estimate II11]. By the mean value theorem we get that 

- 1 < Clf(y)les ~-1 
y) 1 - Ix - Yl - Ix -- Yl n+l 

where ~ E [1 ix~yl, 1]. Then 

IIIII < C f x  [ f ( y ) l ( 1  ~ ) a - i  
-y1>2r IX -- y[' IX -- y[n+l dy 

oo 

< C ~ E  f2 If(Y)l(Ix - Yl - E) =- l  
k = l  %<lx--yl--<2k+lE IX -- yl n+a dy 

[(2 k - 1) e] a - I  f x  If(Y)l dy < C M f ( x ) ,  
~___ C(~ k=lE i2-k-(~" ~ _yl___2k+, ' -- 

where M is the Hardy-Littlewood maximal function. Since Mf(x )  < CMaf (x )  we are done. 
[] 

Proof of  T h e o r e m  2. We claim that the truncations TE,,xf(x) are well defined for the functions 
considered in (i) and (ii), i.e., the functions y ~ f(y)KE.ot(x, y) ~- Ll(dy) for all x. 

P r o o f  o f  t he  C la im .  Assume that f ~_ L~+~.l(09dx ) and o9 E A1. We write 

fx If(y)K,,,~(x,y)l d y =  f~ . . . d Y +  f x  . . . d y =  I + I I .  
-yl>E <lx-yl<2E -yl>2~ 

Observe that Ix - Yl > 2~ implies that (I - ~ K-z~ ) < (1/2) a. Then, I I  < c~ since f E 
1 

L~+~,l(09dx) C Lr4Z(wdx)and09 ~ AI C A I . 

To prove that I is finite, we apply the growth condition on K and the H61der inequality in 
Lorentz spaces. Then we obtain 

fE tf(Y)K,,a(x, Y)t dy < ]IfXB(x,2,)ll~,l I lg l l~ ,oo ,  
<lx-yl<2E 
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Since co ~ A1 we have that [{y e B(x,2E) : If(Y)l > t}l where g(z) = izL,+~ X{izl>El(Z). = 

flyeB(x 2~):lf(y)l>O co-l(y)co(y) dy <_ C ~ fs(x,2E) co co({Y : If(Y)l > t}). Then 

IlfxB(x,2,)ll ,  _ c IB(x .2 , ) l  (x,2,)co Ilfll~+.,l(~odx) < ~ .  

On the other hand, the function g is radial decreasing in {z : Izl > El, g(z) ~ ~ as Izl ~ ~+ and 
g(z) ~ 0 as Izl ~ ~ .  Therefore, for E > 0 and t > 0 fixed, there exists zt, with Iztl > ~, such that 
g(zt) =- t. Since I{z " g(z) > t}l = I{z : E < Izl < Iztl}l = C(Iztl n - En), we have 

Ilgll l ~ < C s u p t  Ozt[ n _ ,n)-c~ < C supe-n(l+a) ( l_--_(~/._/ Iztl)n ~ -a 
--~' - -  t > 0  - -  />0 1 -- E/Iztl ,] < oo .  

With this inequality we have that T~,af is defined for f ~ L~+~,l(codx) with co ~ Al. 

Now assume that f ~ LP(codx), co ~ Ap, and p > l--~ �9 Let I and I I  be as above. As before, 
I I  is finite. By (2.1), the H61der inequality, and (3.3), 

I = f~ I f (Y) l lK(x ,y ) l (1  , )a  <lx-yl_<2E IX -- Yl col/p (y)co-1/p (y) dy  (/ )l,. , )l,., 
< C IflPco E - ( " + ' )  co-P-a-r- (Y)(Ix - Yl - E) cw' dy 

<lx-y l<2~  

(/ )"' (/. )-,,. < C IflPco co(y) dy < eo.  
-yl_<2E 

Therefore, TE,af is defined for f ~ LP(wdx), co ~ Ap, and p > 1 [ ]  
l + a "  

Once we have proved that the truncations are well defined, it is clear that (i) and (ii) in Theorem 2 
follow from Proposition 1, Theorem 1, and the inequalities for T* in weighted-L p spaces [see (1.2) 
and (1.3)]. Finally, (iii) in Theorem 2 is a consequence of (i) and (ii) and the a.e. convergence of  
TE,ct f for all f belonging to the Schwartz class 8.  In order to prove the a.e. convergence for f ~ 8 ,  
we write 

TE,ctf (x) = _ I<lx_yl<_2E[f (y) -- f (x)]KE,a(x, y) dy 

+ ] [ f ( y )  -- f(x)]K,,ct(x, y) dy 
d2 E<lx-yl<l 

I x  K'c~(x'y) d Y +  f x  f (y)K, ,a(x ,  y )dy  + f (x )  - y l < l  ' - y l > l  

= I + I I + I I I + I V .  

By (2.5) there exists the limit of I I I  a.e.. By the mean value theorem, we easily see that 

f (Ix - y {  - e) a dy < C E I I V f l I ~  III <__ C l l V f l l ~  d'<Ix--yI<2E IX .~ y--i,-g-a_-2--f _ 

Therefore, limE~o+ I = 0. On the other hand, if2E < Ix - Yl < 1, we have that I(f(Y) - f (x ) )  
KE,a(x, y)[ _< Cl lV f l l~ lx  - yl-n+lx{Ix-y[<l}(y) and then, by the dominated convergence the- 
orem, we conclude that there exists limE~0+ I I .  Finally, if Ix - Yl >__ 1 and E is small then 

x, Y)I <- c I f (y ) l .  Keeping in mind that f ~ S we obtain, from the last inequality and 
the dominated convergence theorem, that there exists limE--,0+ IV .  [] 
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5. Examples of Kernels 
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In this section we give examples of Calder6n-Zygmund kernels satisfying (2.5). We only 
verify (2.5), when necessary, because it is well known that they are Calder6n-Zygmund kernels. 

E x a m p l e  1. Let K(x, y) = ~ be the kernel of the Hilbert transform or, with more generality, 

~(x-y) where f2 ~ Cl(• n \ {0}) is a homogeneous consider, in dimension n, the kernel K(x, y) = Ix-yl" ' 

function of degree zero and fs.-, f~ (0) dcr (0) = 0. It is clear that K satisfies (2.5). [ ]  

A(x)-a(y) be the kernel associated with the first Calder6n commutator E x a m p l e 2 .  Le tK(x ,  y) = (x_y)2 

in one dimension, where A is a Lipschitz function such that there exists A~(x) for all x ~ R. Let 
x 6 [ - R ,  R], for some R > 0. Then for any E > 0 we get that 

a 

fE<lx_vl<lA(X)-A(Y) (1 - y )  dy 
�9 j x  

fxX-, A (x )_ A (y )  ( , )a 
-1 -~ - ~ 1 x y dy 

fX+l A(x)-a(Y) ( E__E_.~_x)a + 1 -  d y = I .  
x+, -'('Y --X-)'2 Y 

Integrating by parts we obtain that 

I = 
(1 - -  ~ ) l + a  

[2A(x) - A(x - 1) - A(x + 1)] 
E(1 + oO 

,[jxX, l , i  A' (y) 1 
E(I + or) -1 x - y 

- f x X ~  ' (1 - E--E-~)i+a d r  1 A'(y) Y 

dy 

Applying the L'Hopital rule we obtain 

lim I 
E--+0 + 

= lim - (1  - E)a[2A(x) -- A(x - 1) -- A(x + 1)] 
E--+0 + 

(, + lim f A'(Y)XI-R-1.R+II(Y) E dy 
,~0+dE<lx_yl<l x ~ y Ix Yl 

= -2A(x)  + A(x - 1) + A(x + 1) + lim HE,a (A'xI-R-I,R+ll) (x) 
E--+0 + 

f x  A'(y)X[-R-I'R+II(Y) - -  dy,  
_ y E > _ l  x - y 

where HE,a is the Ca truncation of the Hilbert Transform, i.e., 

f x  f(Y) (1 E ) a HE,uf (x) = -yl>, x -- y Ix - y[ dy . 

Now, since K(x, y) = ~ satisfies (2.5) (Example 1) and Ar(y)X|_R-I,R+II(Y) E L p, for all 

p > 1, applying Theorem 2 we get that there exists limE~0+ HE,u (AIxt-R-kR+II)(X) for almost all 
A(x)-a(v) x ~ [ - R ,  R]. Then it follows that the kernel K(x, y) = ~ satisfies (2.5). [ ]  



152 A.L. Bernardis and EJ. Martfn-Reyes 

Referenees 

[1] Coifman, R.R. and Fefferman, C. (1974). Weighted norm inequalities for maximal functions and singular integrals, 
Studia Math., 51,241-250. 

[2] Garcia-Cuerva, J. and Rubio de Francia, J.L. (1985). Weighted Norm Inequalities and Related Topics, North-Holland, 
Amsterdam. 

[3] Hardy, G.H. (1973). Divergent Series. Clarendam, Oxford, XV1. 

[4] Hunt, R.A. (1966). On L(p, q) spaces, L'Ens. Math., 12, 249-275. 

[5] Jourkat, W. and Troutman, J. (1979). Maximal inequalities related to generalized a.e., Trans. Am. Math. Soc., 252, 
49-64. 

[6] Muckenhoupt, B. (1972). Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165, 
207-226. 

[7] Stein, S. (1993). Harmonic Analysis, Princeton University Press, Princeton, NJ. 

[8] Stein, E. and Weiss, G. (1971). Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, 
Princeton, NJ. 

Received April 12, 1999 

INTEC, Giiemes 3450, 3000 Santa Fe, Argentina 
e-mail: bernard @ alpha.arcride.edu.ar 

An~ilisis Matem~tico, Facultad de Ciencias, Universidad de Maiaga, 29071 M~laga, Spain 
e-mail: martin @ anamat.cie.uma.es 


