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The existence of nondegenerate invariant bilinear forms is one of the most important
tools in the study of Kac–Moody Lie algebras and extended affine Lie algebras. In
practice, these forms are created, or shown to exist, either by assumption or in an
ad hoc basis. The purpose of this work is to describe the nature of the space of invariant
bilinear forms of certain algebras given by faithfully flat descent (which includes the
affine Kac–Moody Lie algebras, as well as Azumaya algebras and multiloop algebras)
within a functorial framework. This will allow us to conclude the existence, uniqueness
and nature of invariant bilinear forms for many important classes of algebras.
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1. Introduction

One of the key ingredients for the study of Kac–Moody Lie algebras is the (gener-
alized) Casimir operator. The existence of this operator is in turn based upon the
existence of a symmetric invariant nondegenerate bilinear form on the Lie algebra.
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Kac–Moody Lie algebras admitting such bilinear forms are called symmetrizable,
and the most important example of these is given by the affine Kac–Moody Lie
algebras.

It is also known [26] that the affine algebras are precisely the twisted forms
(given by Galois, hence also faithfully flat descent) of the “split” affine algebras,
namely of algebras of the form g ⊗k k[t±1] where g is a finite-dimensional simple
Lie algebra over an algebraically closed field k of characteristic 0. In this paper we
shall establish the representability (in a functorial sense) and explicit description
of the space of invariant k-bilinear forms for a large class of (in general infinite
dimensional) algebras given by faithfully flat descent.

The techniques developed in this paper not only apply to Lie algebras, but to
other classes of algebras as well, such as Azumaya algebras, octonion, alternative or
Jordan algebras; see Sec. 6 for an (incomplete) list of examples. Just as in the theory
of Kac–Moody Lie algebras, the existence of a nondegenerate or even nonsingular
invariant bilinear form on these algebras has important structural consequences. We
therefore follow the approach of [23] and study invariant bilinear forms of arbitrary
(nonassociative) algebras.

Among other things we will recover [18, Lemma 2.3], which considers this ques-
tion for Lie algebras in the untwisted case. The need to consider graded invariant
forms in the study of extended affine Lie algebras will require a “graded version” of
our main results. This will be given towards the end of the paper in Sec. 7, where
we will provide, among other things, a classification-free proof of Yoshii’s theorem
[32] for multiloop Lie tori stating that graded invariant bilinear forms are unique
up to scalars. We will also obtain new (as well as shed new light on known) results
on Azumaya algebras (Theorem 6.10).

The technique that we use to describe the nature of invariant bilinear forms of
algebras is based on two crucial ingredients:

• That invariant bilinear forms are functorial in nature and that this functor is
representable.

• Descent theory.

This leads us to outline a general theory of descent within a functorial setting which
we find to be of independent interest. It is developed in Sec. 2 and later applied to
the functor IBF representing invariant bilinear forms.

2. Descent for Functors Stable Under Base Change

The goal of this section is to show that functors from the category of algebras to the
category of modules that are stable under base change preserve descended forms.
Relevant to our paper is the special case of the “functor of invariant bilinear forms”
IBF as stated in Corollary 4.4. To write the proof in this particular case, however,
obscures the more general nature of the construction that is taking place. We have
thus chosen a framework that allows the essence of the argument to come across.
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Our setting, while somewhat abstract, is sufficiently ample for our purposes and
of independent interest. By appealing to fibered categories, an even more general
set up is possible in which the concept of functors stable under base change can be
defined. It is nevertheless a delicate question to identify, within this more general
setting, which arrows play the (crucial) role of faithfully flat base change and their
accompanying descent theory. We leave it to the interested reader to explore such
more general scenarios.

Definition 2.1 (Categories k-alg, k-ALG, k-MOD). We fix once and for all
a commutative associative unital ring k.

We denote by k-alg the category of commutative associative unital k-algebras
with unital k-linear algebra homomorphisms as morphisms. The symbol R ∈ k-alg
means that R is an object in k-alg. We also use the notation R/k to describe this
situation. By definition, R comes accompanied with a “structure” ring homomor-
phism σR,k : k → R under which R is viewed as a k-module.

Of course since R is a commutative ring, we also have the category R-alg. An
object S ∈ R-alg will be viewed as an object of k-alg via σS,k = σS,R ◦ σR,k. The
arrows of R-alg are then arrows of k-alg and we have a natural forgetful functor
R-alg → k-alg.

Let α : R → S be a morphism in k-alg, M be an R-module and N be an S-
module. We say that a map f : M → N is an α-semilinear module homomorphism
if it is additive and satisfies f(rm) = α(r)f(m) for all r ∈ R and m ∈ M . Such
a map f is necessarily k-linear, namely if M and N are viewed as k-modules by
means of the structure maps σR,k and σS,k then f(cm) = cf(m) for all c ∈ k and
m ∈ M . If M and N have algebra structures and f preserves multiplication, then
we say that f is an α-semilinear algebra homomorphism.

Given an α-semilinear module homomorphism f : M → N as above and a mor-
phism β : S → T in k-alg, there exists a unique β-semilinear module homomorphism
f ⊗ β : M ⊗R S → N ⊗S T satisfying (f ⊗ β)(m⊗ s) = f(m)⊗ β(s). It is clear that
if f is an algebra homomorphism, then so is f ⊗ β.

The objects of the category k-ALG are pairs (R, A) consisting of an R ∈ k-alg
and an R-algebra A. By this we mean an R-module A together with an R-bilinear
map A×A → A, (a1, a2) &→ a1a2. In particular, we do not require any further iden-
tities (even though Lie algebras are our main interest, all algebras are considered).
A morphism in k-ALG, written as (α, f) : (R, A) → (S, B), is a pair consisting of
a morphism α : R → S in k-alg together with an α-semilinear algebra homomor-
phisms f : A → B.a

The category k-MOD is defined in complete analogy to k-ALG, with algebras
replaced by modules and algebra homomorphisms replaced by module homomor-
phisms. Thus, an object in k-MOD is a pair (R, M) consisting of some R ∈ k-alg
and an R-module M and a morphism in k-MOD is a pair (α, f) : (R, M) → (S, N)

aThe category k-ALG appears in similar form in [17, 3.2].
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consisting of a morphism α : R → S in k-alg and an α-semilinear module homo-
morphism f : M → N .

Definition 2.2 (Base change). Both categories k-ALG and k-MOD admit base
change by objects of k-alg. We explain this for k-ALG and at the same time also set
up our notation. Let α : R → S be a morphism in k-alg and let A be an R-algebra.
Viewing S as an R-algebra via α, the tensor product A⊗R S is an S-algebra whose
product is given by (a1⊗s1)(a2⊗s2) = (a1a2)⊗ (s1s2) for ai ∈ A and si ∈ S. Since
we will in this section repeatedly use different algebra homomorphisms between R
and S, it will be useful to temporarily employ the more precise notation A ⊗α S
instead of the traditional A⊗R S. We will also appeal to this notation elsewhere in
the paper whenever it is necessary to emphasize the structure map α. We define

αA :A → A ⊗α S, a &→ a ⊗ 1S ,

and note that (α, αA) : (R, A) → (S, A ⊗α S) is a morphism in k-ALG. Moreover,
for any morphism (α, f) : (R, A) → (S, B) in k-ALG there exists a unique S-linear
algebra homomorphism fα : A ⊗α S → B satisfying fα(a ⊗ s) = sf(a). It is clear
from the definitions that

(R, A)
(α,f) !!

(α,αA) ""!
!!!!!!!!!

(S, B)

(S, A ⊗α S)
(IdS ,fα)

##""""""""""

(2.1)

is a commutative diagram in k-ALG. Assume that β : S → T is another morphism
in k-alg. We can then add to the diagram (2.1) the morphism (β, βB) : (S, B) →
(T, B ⊗β T ) and obtain the diagram

(R, A)
(α,f) !!

(α,αA)

$$

(S, B)

(β,βB)

$$
(S, A ⊗α S)

(β,f⊗β)
!! (T, B ⊗β T )

(2.2)

which commutes since (β, f⊗β) = (β, βB) ◦ (IdS , fα). One should view this diagram
as the base change of (α, f) by β.

Definition 2.3 (Functors over k-alg). The projection onto the first component
defines functors ΠA : k-ALG → k-alg and ΠM : k-MOD → k-alg. We say that a
functor F : k-ALG → k-MOD is a functor over k-alg if ΠM ◦ F = ΠA, i.e.

k-ALG
F !!

ΠA %%#
######## k-MOD

ΠM&&$$
$$$

$$$
$$

k-alg

is a commutative diagram. Such a functor F maps an object (R, A) ∈
k-ALG to F (R, A) = (R, FR(A)) for some R-module FR(A), and it sends a
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morphism (α, f) : (R, A)→ (S, B) to F (α, f)= (α, Fα(f)) for some α-semilinear
map Fα(f) : FR(A)→FS(B).

Convention. In what follows and without further explication, if R = S and α = IdS

then we will simply write F (f) instead of Fα(f).
Given a morphism α : R → S in k-alg and (R, A) ∈ k-ALG, we can apply F to

the morphism (α, αA) : (R, A) → (S, A⊗α S) in k-ALG of Definition 2.2 and get a
morphism in k-MOD

F (α, αA) = (α, Fα(αA)) : (R, FR(A)) → (S, FS(A ⊗α S)).

Since this map is α-semilinear, it induces an S-linear map

νF
A,α : FR(A) ⊗α S → FS(A ⊗α S), m ⊗ s &→ sFα(αA)(m) (2.3)

of S-modules. These maps will play an essential role in our work for they constitute
the essential ingredient in the definition of functors stable under base change. For
convenience in what follows, if F is fixed in the discussion, we will denote νF

A,α

simply by νA,α.

Lemma 2.4. Suppose that F : k-ALG → k-MOD is a functor over k-alg.

(a) (F and ν commute) Let (α, f) : (R, A) → (S, B) be a morphism in k-ALG and
let β : S → T be a morphism in k-alg. Then the diagram

FR(A) ⊗α S
Fα(f)⊗β !!

νA,α

$$

FS(B) ⊗β T

νB,β

$$
FS(A ⊗α S)

Fβ(f⊗β)
!! FT (B ⊗β T )

commutes.
(b) (Transitivity) Let R

α−→ S
β−→ T be morphisms in k-alg and let (R, A) ∈

k-ALG. Then the diagram

FR(A) ⊗α S
IdFR(A) ⊗β

!!

νA,α

$$

FR(A) ⊗β◦α T

νA,β◦α

$$
FS(A ⊗α S)

Fβ(IdA ⊗β)
!! FT (A ⊗β◦α T )

commutes.

Proof. (a) The maps f ⊗ β and Fα(f) ⊗ β are described in Definitions 2.1 and
2.2. The bottom horizontal arrow is obtained by applying F to (β, f ⊗ β). For
m ∈ FR(A) and s ∈ S we have

(νB,β ◦ (Fα(f) ⊗ β))(m ⊗ s) = β(s)Fβ(βB)(Fα(f)(m)), while

(Fβ(f ⊗ β) ◦ νA,α)(m ⊗ s) = β(s)Fβ(f ⊗ β)(Fα(αA)(m)).
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It therefore suffices to show that Fβ(βB) ◦ Fα(f) = Fβ(f ⊗ β) ◦ Fα(αA). But this
follows by applying the functor F to the commutative diagram (2.2).

(b) With the notation of (a) we have

(νA,β◦α ◦ (Id⊗β))(m ⊗ s) = β(s)Fβ◦α((β ◦ α)A)(m), while

(Fβ(IdA ⊗β) ◦ νA,α) (m ⊗ s) = β(s)Fβ(IdA ⊗β)Fα(αA)(m).

It is therefore sufficient to show that F ((β ◦α)A) = Fβ(IdA ⊗β) ◦Fα(αA). By func-
toriality, this is a consequence of ((β ◦ α), (β ◦ α)A) = (β, IdA ⊗β) ◦ (α, αA).

Definition 2.5 (Functors stable under base change). Let F :k-ALG →
k-MOD be a functor over k-alg. We will say F is stable under base change if for
all morphisms α ∈ k-alg and all (R, A) ∈ k-ALG the S-module homomorphism
νF

A,α : FR(A) ⊗α S → FS(A ⊗α S) defined in (2.3) is an isomorphism.

Example 2.6. An example of a functor stable under base change is the “invari-
ant bilinear form functor” IBF of Definition 3.5, see Proposition 4.3(b), which
is most relevant to our work. Of course the quintessential example of a functor
F : k-ALG → k-MOD over k-alg stable under base change is the “tensor product”
functor that attaches to (R, A) the R-module A ⊗R A with the natural definition
of F at the level of arrows. The stability of base change is given by the canonical
S-module isomorphism (A ⊗R A) ⊗R S ≃ (A ⊗R S) ⊗S (A ⊗R S).

To justify the generality of this section we give another example. Let A be an
R-algebra. Recall that its derived algebra is defined by

D(A) = SpanR{a1a2 : ai ∈ A} = SpanZ{a1a2 : ai ∈ A}.

If (α, f) : (R, A) → (S, B) is a morphism in k-ALG, then f(D(A)) ⊂ D(B). Hence
by restriction we obtain a map Dα(f) : D(A) → D(B). If we view D(A) as a sub-
module of the R-module A it is immediate that (α, Dα(f)) : (R, D(A)) → (S, D(B))
is a morphism in k-MOD and that the assignment

(R, A) &→ (R, D(A)) and (α, f) &→ (α, Dα(f))

defines a functor D : k-ALG → k-MOD over k-alg.
The explicit nature of the map νD

A,α : D(A)⊗αS → D(A⊗αS) is clear: a1a2⊗s &→
(a1 ⊗ s)(a2 ⊗ 1) = a1a2 ⊗ s = (a1 ⊗ 1)(a2 ⊗ s). Thus νD

A,α is always surjective. This
map, however, needs to be injective since there is no reason for the natural map
D(A) ⊗α S → A ⊗α S to be so (it is, for example, if α : R → S is flat).

Consider a new functor F :k-ALG → k-MOD over k-alg which assigns to
(R, A) the pair (R, A/D(A)) and is defined at the level of arrows in the natu-
ral way. We leave it to the reader to check that the surjectivity of νD

A,α easily
implies that νF

A,α is an isomorphism of S-modules. Thus F is stable under base
change.
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Remark 2.7. The results of this section can be generalized by replacing k-alg,
k-ALG and k-MOD by subcategories stable under base change and by modifying
the Definition 2.3 correspondingly. As we shall see, the most relevant case for us is
that of functors which are stable under faithfully flat base change. We will leave it
to the interested reader to work out the necessary axioms.

Descent Theory 2.8 (Faithfully flat descent of modules and algebras). We
give a short review of the descent theory of modules and algebras. Our ultimate
objective is to outline a descent theory in the setting of functors stable under
faithfully flat base change. We also use the opportunity to introduce notation and
a presentation of descent theory that is implicitly, but not explicitly used in the
standard references ([13; 29; 30]), cf. [25]. Without these the formalism for descent
in the functorial setting is impossible to redact.

Assume that S/R is faithfully flat. We let S′′ = S ⊗R S and denote by αi : S →
S′′, i = 1, 2, the “projections” defined by

α1(s) = s ⊗ 1 and α2(s) = 1 ⊗ s,

which allow us to view S′′ as an S-algebra in two different ways. Note that since
α : R → S is faithfully flat, α1 ◦ α = α2 ◦ α. Suppose M and N are R-modules
and that N is an S/R-form of M . Thus there exists an S-module isomorphism
θ : (M⊗αS) → (N⊗αS). To θ and i = 1, 2 we associate the S′′-module isomorphisms
θi defined by the following commutative diagram:

(M ⊗α S) ⊗αi S′′ θ⊗αiIdS′′

≃
!!

τM
i ≃

$$

(N ⊗α S) ⊗αi S′′

τN
i≃

$$
M ⊗αi◦α S′′ θi

≃
!! N ⊗αi◦α S′′

(2.4)

Here τi : S ⊗αi S′′ → S′′ is defined by τi(s1 ⊗ s2 ⊗ s3) = αi(s1)(s2 ⊗ s3), e.g.,
τ2(s1 ⊗ s2 ⊗ s3) = (s2 ⊗ s1s3), while τM

i

(
(m⊗ s1)⊗ s2 ⊗ s3

)
= m⊗αi(s1)(s2 ⊗ s3).

The maps τN
i are defined similarly. In what follows, τM

i and τN
i are viewed as

S′′-linear maps.
The situation can be summarized by the following commutative diagram:

0 !! M ≃ M ⊗IdR R
IdM ⊗α !! M ⊗α S

IdM ⊗α1 !!

IdM ⊗α2

!!

≃ θ

$$

M ⊗αi◦α S′′

θ1

$$
θ2

$$
0 !! N ≃ N ⊗IdR R

IdN ⊗α !! N ⊗α S
IdN ⊗α1 !!

IdN ⊗α2

!! N ⊗αi◦α S′′

(2.5)

The rows are exact since α : R → S is faithfully flat, e.g., IdM ⊗α is injective and
its image M ⊗ 1S is the R-submodule M ⊗α S where IdM ⊗α1 and IdM ⊗α2 agree.
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The S/R-cocycle u defining the S/R-form N is

u = θ−1
2 ◦ θ1 ∈ AutS′′(M ⊗α1◦α S′′) = AutS′′(M ⊗R S′′)

as we now explain.b Let

L = {x ∈ M ⊗α S : u
(
(IdM ⊗α1)(x)

)
= (IdM ⊗α2)(x)}. (2.6)

It is clear that L is an R-submodule of M ⊗α S = M ⊗R S, and a simple diagram
chase in (2.5) above shows that the restriction of θ to L induces an isomorphism
with N ⊗ 1S ⊂ N ⊗α S = N ⊗R S. In other words, up to R-module isomorphism,
our module N corresponds to the cocycle u.

It is well-known (and easy to check in any case) that u is a cocycle, i.e. that
u ⊗ α1,3 = (u ⊗ α2,3) ◦ (u ⊗ α1,2) where the αi,j : S′′ → S′′′ = S ⊗α S ⊗α S are the
natural S′′-algebra morphisms defined by putting 1S in the position l ̸= i, j. The
cocycle condition can be rewritten in the form θ1,3 = θ2,3 ◦ θ1,2 where the θi,j are
automorphisms of the S′′′-module M ⊗αi,j◦αi◦α S′′′ = M ⊗R S′′′ defined using a
diagram similar to (2.4).

For R-algebras the situation is identical. Say that both A and B are R-algebras
and that our isomorphism θ above is now an S-algebra isomorphism. Then u is an
S′′-algebra automorphism of A⊗RS′′, the descended R-module L is an R-subalgebra
of A ⊗α S = A ⊗R S and the restriction of θ induces an R-algebra isomorphism
between L and B ≃ B ⊗ 1S.

Theorem 2.9. Let A be an R-algebra, and let B be an S/R form of A determined
by the cocycle u as described in Descent Theory 2.8 above. If F : k-ALG → k-MOD
is a functor over k-alg stable under base change, then FR(B) is an S/R-form of
the R-module FR(A) which is isomorphic as an R-module to the one given by the
cocycle

ν−1
A,α2◦α ◦ F (u) ◦ νA,α1◦α ∈ AutS′′(FR(A) ⊗R S′′).

Proof. We fix an S-algebra isomorphism θ : A⊗α S → B ⊗α S. The cocycle deter-
mining B (up to R-algebra isomorphism) is then u = θ−1

2 ◦ θ1 ∈ AutS′′(A ⊗R S′′).
The result to establish can thus be rephrased by saying that

(a) z := (ν−1
A,α2◦α◦F (θ2)−1◦νB,α2◦α)◦(ν−1

B,α1◦α◦F (θ1)◦νA,α1◦α) ∈ AutS′′(FR(A)⊗R

S′′) is a cocycle.
(b) The R-module determined by the cocycle z is isomorphic to FR(B).

bNote that u can indeed be viewed as an S′′-module automorphism M ⊗α1◦α S′′ because α1 ◦α =
α2 ◦α. In what follows we will view S′′ as an R-algebra via either one of these two (equal) maps.
The notation M ⊗R S′′ responds to this convention.
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Let us define F ν(θ) = ν−1
B,α ◦ F (θ) ◦ νA,α by means of the diagram

FR(A) ⊗α S
F ν(θ)

!!

νA,α

$$

FR(B) ⊗α S

FS(A ⊗α S)
F (θ)

!! FS(B ⊗α S)

(νB,α)−1

''

In view of the descent of modules construction explained in Descent Theory 2.8, to
prove (a) and (b) it will suffice to show that

ν−1
B,αi◦α ◦ F (θi) ◦ νA,αi◦α = (F ν(θ))i for i = 1, 2. (2.7)

Both cases i = 1, 2 are similar and we check in detail the case i = 1 only. We will
use the following commutative diagram of S′′-module isomorphisms:

FR(A) ⊗α1◦α S′′

`
F ν (θ)

´
1 !!

(IdFR(A) ⊗τ1)−1

$$

νA,α1◦α

((

FR(B) ⊗α1◦α S′′

(IdFR(B) ⊗τ1)−1

$$

νB,α1◦α

))

FR(A) ⊗α S ⊗α1 S′′
F ν(θ)⊗IdS′′ !!

νA,α⊗IdS′′

$$

FR(B) ⊗α S ⊗α1 S′′

νB,α⊗IdS′′

$$
FS(A ⊗α S) ⊗α1 S′′

F (θ)⊗IdS′′ !!

νA⊗αS,α1

$$

FS(B ⊗α S) ⊗α1 S′′

νB⊗αS,α1

$$
FS′′

`
(A ⊗α S) ⊗α1 S′′´ F (θ⊗α1 IdS′′ ) !!

F (τA
1 )

$$

FS′′
`
(B ⊗α S) ⊗α1 S′′´

F (τB
1 )

$$
FS′′ (A ⊗α1◦α S)

F (θ1) !! FS′′(B ⊗α1◦α S′′)

The top rectangle commutes by definition of F ν(θ1); the second rectangle com-
mutes by applying the base change α1 : S → S′′ to the diagram defining F ν(θ); the
third rectangle commutes by Lemma 2.4(a) for (R, A), (S, B), (α, f) and β replaced
by (S, A ⊗α S), (S, B ⊗α S), (IdS , θ) and IdS′′ respectively; the bottom rectangle
commutes by applying F to the diagram (2.4) defining θ1. For the proof of (2.7)
it is therefore sufficient to show that the dotted maps equal νA,α1◦α and νB,α1◦α

respectively. We check the case of νA,α1◦α by following explicitly the arrows on the
left of the diagram. The case of νB,α1◦α, which is similar, is left to the reader. Let
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m ∈ FR(A) and s1, s2 ∈ S. Then

m ⊗ s1 ⊗ s2
(IdFR(A) ⊗τ1)

−1

−−−−−−−−−−→ m ⊗ s1 ⊗ 1S ⊗ s2

νA,α⊗IdS′′−−−−−−−→ (s1Fα(αA)(m)) ⊗ (1S ⊗ s2)
νA⊗αS,α1−−−−−−→ (1S ⊗ s2)(Fα1(α

A⊗αS
1 )(s1Fα(αA)(m)))

= (1S ⊗ s2)(α1(s1)Fα1(α
A⊗αS
1 )(Fα(αA)(m)))

= (1S ⊗ s2)(s1 ⊗ 1S)(Fα1 (α
A⊗αS
1 )(Fα(αA)(m)))

= (s1 ⊗ s2)(Fα1 (α
A⊗αS
1 )(Fα(αA)(m)))

F (τA
1 )−−−−→ (s1 ⊗ s2)F (τA

1 )(Fα1 (α
A⊗αS
1 )(Fα(αA)(m)))

= (s1 ⊗ s2)Fα1◦α((α1 ◦ α)A(m)).

This completes the proof since by definition νA,α1◦α(m ⊗ s1 ⊗ s2) = (s1 ⊗
s2)Fα1◦α((α1 ◦ α)A(m)).

Remark 2.10. In the case that we are most interested in, the R-algebra A is of
the form A = a⊗k R for some k-algebra a. The isomorphism θ can now be thought
as an S-algebra isomorphism (also denoted by θ)

θ : a ⊗k S ≃ (a ⊗k R) ⊗R S = A ⊗R S → B ⊗R S,

where we have denoted ⊗α by ⊗R. Under the canonical S′′-isomorphism a⊗k S′′ ≃
(a⊗ kR)⊗RS′′ (where we recall that S′′ is viewed as an R-algebra via α1 ◦ α =
α2 ◦ α) we can view the corresponding cocycle u as an S′′-algebra automorphism
of a ⊗k S′′. The descended module L is then given by

L = {x ∈ a ⊗k S :u((Ida ⊗α1)(x)) = (Ida ⊗α2)(x)}. (2.8)

For future reference we record the following “descent setting” that covers the
case that we are most interested in:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a is an algebra over k;

R ∈ k-alg is such that R/k is flat;

S ∈ R-alg is such that S/R is faithfully flat;

B is an R-algebra which is an S/R-form of A = a ⊗k R.

(2.9)

3. Invariant Functions

Unless stated otherwise, k is a commutative associative unital ring, R is a commu-
tative associative unital k-algebra, namely R ∈ k-alg in the notation of Sec. 2, M
is an R-module, V is a k-module and B is an arbitrary (not necessarily associative,
unital. . .) R-algebra, i.e. (R, B) ∈ k-ALG. Our goal is to study invariant bilinear
functions B × B → V . We begin with pertinent definitions.

Definition 3.1 ((R, k)-bilinear functions). A k-bilinear function β : M×M → V
is called (R, k)-bilinear if β(rm1, m2) = β(m1, rm2) holds for all mi ∈ M and r ∈ R.
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We denote by L 2
(R,k)(M ; V ) the R-module of (R, k)-bilinear maps M × M → V .

Its R-module structure is given by (rβ)(m1, m2) = β(rm1, m2) for r ∈ R and
β ∈ L 2

(R,k)(M ; V ). We abbreviate L 2
R(M) = L 2

(R,R)(M ; R).
It is immediate from [8, II, Sec. 4.1] that one has a commutative triangle

Homk(M ⊗R M, V ) x

≃
!!

≃
y

**%%%%%%%%%%%%%%%%%
L 2

(R,k)(M ; V )

HomR(M, Homk(M, V ))

z
≃

++&&&&&&&&&&&&&&
(3.1)

of R-linear isomorphisms: For ϕ ∈ Homk(M⊗RM, V ) one defines (x(ϕ))(m1, m2) =
ϕ(m1 ⊗m2). This is an R-linear map with respect to the R-action on Homk(M ⊗R

M, V ) given by (rϕ)(m1⊗m2) = ϕ(rm1⊗m2) for r ∈ R. Also, (y(ϕ))(m1) maps m2

onto ϕ(m1⊗m2). The map y is R-linear if we view Homk(M, V ) as an R-module via
(rh)(m) = h(rm) for h ∈ Homk(M, V ). To β ∈ HomR(M, Homk(M, V )) one asso-
ciates the (R, k)-bilinear function z(β) defined by (z(β))(m1, m2) = (β(m1))(m2).

One calls β ∈ L 2
(R,k)(M ; k) nondegenerate (respectively, nonsingular) if

z−1(β) ∈ HomR(M, M∗), M∗ = Homk(M, k), is injective (respectively, bijective).c

In more familiar terms β ∈ L 2
(R,k)(M ; k) is nondegenerate if and only if β(b, M) = 0

implies b = 0. If k is a field, the existence of a nonsingular bilinear form on a k-
algebra B forces B to be of finite dimension. Moreover, for a finite-dimensional
B a form is nondegenerate if and only if it is nonsingular. See Lemma 6.16 for a
generalization.

Definition 3.2 (Invariant functions). We call β ∈ L 2
(R,k)(B; V ) invariant if

β(ab, c) = β(a, bc) = β(b, ca) (3.2)

holds for all a, b, c ∈ B.
Clearly, the set IBF(R,k)(B; V ) of all invariant (R, k)-bilinear functions B×B →

V is a submodule of the R-module L 2
(R,k)(B; V ). The following special cases of

IBF(R,k)(B; V ) are of particular interest:

IBFk(B; V ) := IBF(k,k)(B; V ),

IBF(R,k)(B) := IBF(R,k)(B; k),

IBFk(B) := IBFk(B; k) = IBF(k,k)(B).

The elements of IBFk(B) are called invariant k-bilinear forms. Of particular impor-
tance is the case k = R; these are the invariant R-bilinear forms on B.

Remark 3.3. The above definition works equally well for invariant bilinear func-
tions on dimodules of algebras (for the definition of a dimodule see [23] as well

cThe asymmetry in these definitions (one should, strictly speaking, speak of left and right nonde-
generacy and nonsingularity) will not play a major role in this paper since our main interest later
will be in invariant bilinear forms of perfect algebras which, by Remark 3.4, are symmetric.

1450009-11



February 7, 2015 10:14 WSPC/S0219-1997 152-CCM 1450009

E. Neher et al.

as Lemma 3.7 supra). This is not without interest as these types of bilinear forms
are an important tool for the study of the representation theory of the algebras in
question, for example for the existence of the Jantzen filtration of Verma modules.
We will not pursue this more general set up in this work.

Remark 3.4. If B is perfect, namely if B = BB, where BB = SpanR{ab :a, b,∈
B}, every invariant bilinear function is symmetric: β(ab, c) = β(a, bc) = β(b, ca) =
β(bc, a) = β(c, ab). Moreover, any k-bilinear function is already (R, k)-bilinear:

IBFk(B; V ) = IBF(R,k)(B; V ) (B perfect).

Indeed, β(r(ab), c) = β(a(rb), c) = β(a, (rb)c) = β(a, b(rc)) = β(ab, rc).

Definition 3.5 (Universal invariant function). Let IBFR(B) be the quotient
of the R-module B ⊗R B by the submodule

ibfR(B) = SpanR{ab ⊗ c − a ⊗ bc, ab ⊗ c − b ⊗ ca :a, b, c ∈ B}

= SpanZ{ab ⊗ c − a ⊗ bc, ab ⊗ c − b ⊗ ca : a, b, c ∈ B}

= SpanZ{ab ⊗ c − a ⊗ bc, a ⊗ bc − bc ⊗ a : a, b, c ∈ B}, (3.3)

where the last equality follows from (bc⊗ a− a⊗ bc)+ (ab⊗ c− b⊗ ca) = (ab⊗ c−
a ⊗ bc) + (bc ⊗ a − b ⊗ ca). Denoting by iB : ibfR(B) → B ⊗R B the inclusion and
by qB the canonical quotient map

qB : B ⊗R B → IBFR(B), a ⊗ b &→ a ⊗ b,

we have an exact sequence of R-modules

0 → ibfR(B) iB−→ B ⊗R B
qB−−→ IBFR(B) → 0. (3.4)

We define an invariant R-bilinear function

βuni : B × B → IBFR(B), βuni(a, b) = a ⊗ b, (3.5)

called the universal invariant R-bilinear function.d This terminology is justified
because of the following natural R-module isomorphism

Homk(IBFR(B), V ) ≃−→ IBF(R,k)(B; V ), f &→ f̃ = f ◦ βuni. (3.6)

Its inverse

IBF(R,k)(B; V ) ≃−→ Homk(IBFR(B), V ), β &→ β̄ (3.7)

assigns to β ∈ IBF(R,k)(B, V ) the unique k-linear map

β̄ : IBFR(B) → V, β̄(a ⊗ b) = β(a, b). (3.8)

In other words, IBFR(B) represents the obvious functor IBF(B;−) : k-mod →
R-mod. The isomorphism (3.6) determines IBFR(B) up to a unique k-linear iso-
morphism. We will describe IBFR(B) for several cases of interest in this paper.

dWe want to thank K.-H. Neeb for bringing this concept to our attention.
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The most important situation is captured by the following result that we state in
the form of a principle.

IBF-principle 3.6. Assume B is an R-algebra for some R ∈ k-alg. Let β ∈
IBFR(B) be such that the induced map β̄ : IBFR(B) → R, b1 ⊗ b2 &→ β(b1, b2) is an
R-module isomorphism. Then for any k-module V the map

Homk(R, V ) → IBF(R,k)(B; V ), ϕ &→ ϕ ◦ β (3.9)

is an isomorphism of R-modules. In particular,

(a) the map R∗ = Homk(R, k) → IBF(R,k)(B), ϕ &→ ϕ ◦ β is an isomorphism, and
(b) every γ ∈ IBFR(B) is of the form γ = rβ for a unique r ∈ R.

Proof. This follows from the isomorphism (3.6) and the equality β = β̄ ◦ βuni.

We will say that (B, β) satisfies the IBF-principle if the assumptions and hence
also the conclusions of IBF-principle 3.6 hold. Note that in this case we have a
precise and explicit description of all invariant (R, k)-bilinear functions on B.

While the connection between invariant bilinear forms and centroids does not
feature prominently in this paper, it has nevertheless been an important guid-
ing principle for our work. Besides the conceptual importance of this connection,
another reason for elaborating on it is Corollary 3.7 relating invariant forms and
the centroid of an algebra. Not only will this provide the reader with a means to
determine the module IBF(R,k)(B), but it will also be useful in Sec. 6 when we will
be looking at algebras with a “one-dimensional” IBF(R,k)(B).

In preparation for these results, we first present the necessary background. Using
the terminology of [23], we recall that a (B, R)-dimodule is an R-module M together
with R-bilinear maps B × M → M and M × B → M . For example, B itself is a
(B, R)-dimodule with respect to the left and right multiplications of the algebra B,
called the regular dimodule and denoted Breg. Also the R-module Homk(B, V ) is a
(B, R)-dimodule with respect to the B-actions

(
b1 ·ϕ

)
(b2) = ϕ(b2b1) =

(
ϕ · b2

)
(b1).

For any (B, R)-dimodule M the centroid of B with values in M is

CtdR(B, M) = {χ ∈ HomR(B, M) : χ(b1b2) = b1 · χ(b2) = χ(b1) · b2

for all b1, b2 ∈ B}.

Taking as M the regular dimodule Breg, we recover the usual notion of the centroid
of B : CtdR(B) = CtdR(B, Breg). We note that CtdR(B) is isomorphic to the usual
center if B is a unital algebra, where, we recall, the center of an arbitrary algebra
B consists of those c ∈ B which commute with all b ∈ B, i.e. cb = bc, and which
associate with all b1, b2 ∈ B, i.e. (c, b1, b2) = (b1, c, b2) = (b1, b2, c) = 0 where
(x, y, z) = (xy)z − x(yz). There exists a natural map R → CtdR(B) given by
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r &→ χr where χr(b) = rb for all b ∈ B. We call B a central R-algebra if this map is
an isomorphism. In this situation we will often identify R with CtdR(B) without
any further explicit reference.

We can now describe the connection between invariant functions and centroids.

Lemma 3.7. The restriction of the R-isomorphism z of (3.1) to CtdR(B,
Homk(B, V )) induces an R-linear isomorphism CtdR(B, Homk(B, V )) ≃
IBF(R,k)(B; V ). In particular,

CtdR(B, B∗) ≃ IBF(R,k)(B).

Proof. The result is a straightforward consequence of the various definitions.

Corollary 3.8. Assume β ∈ IBF(R,k)(B) is nonsingular. Then

CtdR(B) ≃ IBF(R,k)(B) (isomorphism of R-modules).

If furthermore B is a central R-algebra, then IBF(R,k)(B) is a free R-module of
rank 1 admitting β as a basis :

IBF(R,k)(B) = Rβ ≃ R. (3.10)

Proof. By assumption χβ = z−1(β) ∈ CtdR(B, B∗) is an isomorphism of R-
modules. The fact that χβ is centroidal amounts to saying that Breg ≃ B∗ as
dimodules, whence IBF(R,k)(B) ≃ CtdR(B, B∗) ≃ CtdR(B) ≃ R. Via these iso-
morphism we have β &→ χβ &→ χ−1

β ◦ χβ = IdB &→ 1R. Since 1R is a basis of R, β is
a basis of IBF(R,k)(B).

As we will see in Sec. 6, there are many natural types of algebras satisfying the
assumptions of Corollary 3.8. The following result will allow us to transition from
the general setting to the specific examples.

Proposition 3.9. Assume that B is a central R-algebra, that β ∈ IBFR(B) is
nonsingular with β(B, B) = R, and that IBFR(B) is projective. Then the IBF-
principle 3.6 holds for (B, β).

Proof. By assumption β̄ is surjective. Denoting by K the kernel of β̄, we obtain a
split exact sequence

0 → K → IBFR(B) β̄−→ R → 0

of R-modules and consequently a split exact sequence

0 → HomR(R, R) β̂−→ HomR(IBFR(B), R) → HomR(K, R) → 0

with β̂(r IdR) = r IdR ◦ β̄ = rβ̄ for r ∈ R. The R-module isomorphism (3.6) sends
β̄ to β. We also know that IBFR(B) ≃ R by Corollary 3.8 (applied to the case
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k = R). Hence the diagram

HomR(R, R)
β̂ !! HomR(IBFR(B), R)

≃
$$

R

≃

''

≃ !! IBFR(B)

r IdR
' !! rβ̄

(

$$
r
(

''

' !! rβ

commutes, proving that β̂ is an isomorphism. This in turn forces K(∗) :=
HomR(K, R) = {0}.e Since IBFR(B) ≃ K ⊕ R is projective, so is K. But then
the canonical map K → (K(∗))(∗) = 0 is injective. Thus K = 0.

4. Functorial Nature of IBF

As in the previous section k will denote a commutative associative unital ring and
R ∈ k-alg. The main purpose of this section is to describe the functorial nature of
IBF and study its behavior under base change.

Let (α, f) : (R, M) → (S, N) be a morphism in k-MOD (see Definition 2.1), i.e.
α : R → S is a morphism in k-alg and f : M → N is α-semilinear, and suppose V
is a k-module. Then for any κ ∈ L 2

(S,k)(N ; V ) the map

f∗(κ) : M × M → V, (m1, m2) &→ κ(f(m1), f(m2)) (4.1)

is (R, k)-bilinear. We obtain in this way a k-linear map

f∗ : L 2
(S,k)(N ; V ) → L 2

(R,k)(M ; V ), κ &→ f∗(κ).

If (β, g) : (S, N) → (T, P ) is another morphism in k-MOD, it is immediate that
(g ◦ f)∗ = f∗ ◦ g∗. Observe that this in particular defines a right action of the
group GLR(M) on L 2

(R,k)(M ; V ) (see Remark 5.2 for a functorial version of this
observation).

Base Change 4.1. Let κ : M×M → R be an R-bilinear form and let α : R → S be a
morphism in k-alg. There exists a unique S-bilinear form κα : M⊗αS×M⊗αS → S
satisfying κα(m1 ⊗ s1, m2 ⊗ s2) = α(κ(m1, m2))s1s2. In case α is clear from the
context, we will denote κα = κS and call κS the base change of κ by S. We then
have the equation κS(m1 ⊗ s1, m2 ⊗ s2) = κ(m1, m2)s1s2.

Base change can also be understood in terms of the isomorphism x : HomR(M⊗R

M, R) ≃−→ L 2
R(M) of (3.1). Let x−1(κ) = κ̃ : M ⊗R M → R be the R-linear map

associated to κ. Then x−1(κS) = κ̃S is obtained from κ̃ ⊗ IdS with the aid of two
canonical S-module isomorphisms, namely

κ̃S : (M ⊗R S) ⊗S (M ⊗R S) ≃ (M ⊗R M) ⊗R S
κ̃⊗IdS−−−−→ R ⊗R S ≃ S.

The following lemma collects some results using base change.

eTo avoid any possible confusion we use (∗) as opposed to ∗ to denote the R-dual given that, by
convention, ∗ always refers to the k-dual.
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Lemma 4.2. (a) (Transitivity of base change) Let κ ∈ L 2
R(M), let R

α−→ S
β−→ T be

morphisms in k-alg, and let ζ : (M⊗αS)⊗β T → M⊗β◦αT, m⊗s⊗t &→ m⊗(β(s))t,
be the canonical isomorphism of T -modules. Then

ζ∗κβ◦α = (κα)β . (4.2)

(b) Let M and N be R-modules, λ ∈ L 2
R(N), f : M → N be an R-linear map

and α : R → S be a morphism in k-alg. Then

(f∗(λ))α = (f ⊗ IdS)∗(λα). (4.3)

(c) Let κ, κ′ ∈ L 2
R(M). Then κ = κ′ if and only if κS = κ′

S for some faithfully
flat extension S ∈ R-alg.

(d) Assume that M is finitely presented. Let κ ∈ L 2
R(M) and let S ∈ R-alg be

such that S is a flat R-module. If κ is nondegenerate (respectively, nonsingular),
then κS is nondegenerate (respectively, nonsingular). The converse holds in both
cases if S/R is faithfully flat.

Proof. The proofs of (a) and (b) are immediate from the definitions. In (c) suppose
κS = κ′

S for some faithfully flat S ∈ R-alg. Then (x−1(κ))S = x−1(κS) = x−1(κ′
S) =

(x−1(κ′))S as maps (M ⊗R S) ⊗S (M ⊗R S) → S by Base Change 4.1. But then
x−1(κ) = x−1(κ′) by faithfully flat descent, whence κ = κ′.

(d) Since M is finitely presented and S/R is flat, the canonical map
ω : HomR(M, R) ⊗R S → HomS(M ⊗R S, S) is an isomorphism. Recall from (3.1)
the R-linear map z−1(κ) : M → HomR(M, R). It is immediate from the definitions
that

M ⊗R S
z−1(κ)⊗IdS !!

z−1(κS) ,,)))))))))))))
HomR(M, R) ⊗R S

ω
--***************

HomS(M ⊗R S, S)

is a commutative diagram. Hence z−1(κS) is injective (respectively, bijective) if
and only if z−1(κ) is so. The claim then follows from standard properties of flat
(respectively, faithfully flat) extensions.

Proposition 4.3 (IBF and ibf as functors). (a) Let (α, f) : (R, B) → (S, C) be
a morphism in k-ALG. The map

f ⊗ f : B ⊗R B → C ⊗S C, b1 ⊗ b2 &→ f(b1) ⊗ f(b2)

is α-semilinear and maps ibfR(B) to ibfS(C). We denote by ibfα(f) : ibfR(B) →
ibfS(C) the restricted map and by IBFα(f) : IBFR(B) → IBFS(C) the induced
quotient map.
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(b) The assignments

(R, B) → (R, IBFR(B)) and (α, f) &→ (α, IBFα(f))

define a functor IBF :k-ALG → k-MOD over k-alg which is stable under base
change in the sense of Definition 2.5.

(c) The assignments

(R, B) → (R, ibfR(B)) and (α, f) &→ (α, ibfα(f))

define a functor ibf : k-ALG → k-MOD over k-alg which is stable under flat base
change.

Proof. Part (a) is straightforward. We will prove (b) and (c) at the same time. It
is easy to verify that IBF and ibf are functors over k-alg.

We have already noted in Example 2.6 that B &→ B⊗RB and (α, f) &→ (α, f⊗f)
defines a functor over k-alg which is stable under base change. Indeed, for any
morphism α : R → S the map νB,α of (2.3) is the well-known isomorphism

νB,α : (B ⊗R B) ⊗R S → (B ⊗R S) ⊗S (B ⊗R S), b1 ⊗ b2 ⊗ s &→ b1 ⊗ 1R ⊗ b2 ⊗ s.

In the following we will abbreviate ν = νB,α and ν̄ = ν̄B,α : IBFR(B) ⊗α S →
IBFS(B ⊗α S). We have the following diagram with exact rows

0
(c)

!!((( ibfR(B) ⊗R S

$$
'
'
'

iB⊗IdS !! (B ⊗R B) ⊗R S
qB⊗IdS !!

ν≃
$$

IBFR(B) ⊗R S

ν

$$

!! 0

0 !! ibfS(B ⊗R S)
iB⊗RS

!! (B ⊗R S) ⊗S (B ⊗R S)
qB⊗RS

!! IBFS(B ⊗R S) !! 0

(4.4)

where the top row is obtained by tensoring (3.4) with S and the bottom row is (3.4)
for B⊗RS (under assumption (c), namely when S/R is flat, then iB⊗IdS is injective.
This is reflected by the dashed line at the top left of the diagram). One easily
verifies that ν sends the S-submodule (iB ⊗ IdS)(ibfR(B)⊗RS) of (B ⊗RB)⊗S
onto ibfS(B⊗R S) ⊂ (B⊗R S)⊗S (B⊗R S). It follows that by restriction ν induces
an S-module isomorphism between (iB ⊗ IdS)(ibfR(B) ⊗R S) and ibfS(B ⊗R S).
Since from the definitions of ν and ν the right-hand side square of diagram (4.4)
commutes, a simple diagram chase shows that ν is an isomorphism. In case S is a
flat extension, the dashed vertical arrow is injective, hence bijective.

Corollary 4.4. Let B be an S/R-form of A = a⊗kR as in the descent setting (2.9).
Let u ∈ Aut(a)(S′′) be a cocycle determining B up to R-algebra isomorphism (see
Remark 2.10). We denote by ν : IBFk(a) ⊗k S′′ → IBFS′′(a ⊗k S′′) the isomor-
phism (2.3) for F = IBF. Then IBFR(B) is an S/R-form of IBF(a ⊗k R) which
is isomorphic as an R-module to the one given by the cocycle ν−1 ◦ IBF(u) ◦ ν.

Proof. This is a special case of Theorem 2.9.
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Remark 4.5. In the above corollary we can take k = R. The result then applies
to an arbitrary R-algebra A.

Lemma 4.6. Let B be an R-algebra, β ∈ IBFR(B), and S ∈ R-alg.

(a) We denote by ν : IBFR(B) ⊗R S → IBFS(B ⊗R S) the isomorphism (2.3) for
F = IBF, by (β̄)S the base change of β̄ : IBFR(B) → R and by (βS) the map
(3.8) associated to the bilinear form βS. Then, after identifying R ⊗R S = S,
we have (β̄)S = (βS) ◦ ν:

IBFR(B) ⊗R S
(β̄)S !!

ν ≃
$$

R ⊗R S

IBFS(B ⊗R S)
(βS) !! S

(b) Assume that B is finitely presented as an R-module and that S/R is flat. If
(B, β) satisfies the IBF-principle 3.6, then so does (BS , βS). The converse is
true whenever S/R is faithfully flat.

Proof. Part (a) is immediate from the definitions. In (b) we know from (a) that
βS is an isomorphism. The assertion about faithful flatness is standard.

5. Descent of Bilinear Forms

In this section we will study the descent of bilinear forms in the setting of (2.9).
We are interested in having a full understanding of all k-bilinear forms on B. The
guiding principle is that this ought to be possible if one knows the nature of the
k-bilinear forms of a, for example if a is a finite-dimensional central-simple Lie
algebra over a field of characteristic 0 (Theorem 6.5).

That this may be possible at all, is somehow surprising. The twisted nature and
descent theory related to B view B as an object over R (note that it is not the case
that B is in any meaningful way a twisted form of a ⊗k R or a as k-algebras). Yet
the information that we will get is about k-bilinear forms B×B → k. As mentioned
before, it is the k- (and not R-) bilinear forms on B which are often of interest (such
as in the case of infinite-dimensional Lie theory as exemplified, for example, by the
affine Kac–Moody Lie algebras. See also Secs. 6 and 7 below).

Assume that κ is a k-bilinear form on a. We want to know when, in a natural
fashion, we can attach to κ an R-bilinear form κB on B. It will be κB that will
lead us to fully understand all k-bilinear functions on B. The key assumption that
makes this construction possible and natural is that κ be invariant under algebra
automorphisms. We define this concept before proceeding with the main results.

Automorphism Invariance 5.1. For an R-algebra B we denote by Aut(B) the
automorphism group functor of B. We remind the reader that Aut(B) is the functor
from the category R-alg to the category of groups that attaches to S ∈ R-alg the
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group AutS(B ⊗R S) of automorphisms of the S-algebra B ⊗R S, and to an arrow
S → T in R-alg and f ∈ AutS(B ⊗R S) the automorphism f ⊗ IdT of B ⊗R T ≃
(B ⊗R S) ⊗S T . We say that β ∈ L 2

R(B) is Aut(B)-invariant if f∗(βS) = βS

holds for all S ∈ R-alg and all f ∈ Aut(B)(S), where we remind the reader that
f∗(βS)(b1 ⊗ s1, b2 ⊗ s2) = βS

(
f(b1 ⊗ s1), f(b2 ⊗ s2)

)
. In other words, β is Aut(B)-

invariant if and only if βS is AutS(B ⊗R S)-invariant in the obvious sense for all
S ∈ R-alg.

Remark 5.2. Automorphism invariance has a functorial interpretation. Namely,
we have a functor L 2(B) : R-alg → R-MOD which assigns to the extension S/R
the S-module L 2

S (B ⊗R S), and is given at the level of arrows by Base Change
4.1. The automorphism group functor Aut(B) acts on the functor L 2(B) from the
right. A bilinear form β ∈ L 2

R(B) is Aut(B)-invariant if and only if it is invariant
under this action.

In particular, the above considerations apply to modules, viewed as trivial alge-
bras. If M is an R-module, the R-group functor GL(M) acts naturally on L 2

R(M).

Automorphism invariance behaves nicely with respect to base change and faith-
fully flat descent.

Lemma 5.3. Let B be an R-algebra, β ∈ L 2
R(B) and S ∈ R-alg. If β is Aut(B)-

invariant, then βS is Aut(B ⊗R S)-invariant. The converse holds if S/R is faith-
fully flat.

Proof. (I) We begin with a general observation. Let T be an extension of S.
The canonical T -linear algebra isomorphism ζ : (B ⊗R S) ⊗S T → B ⊗R

T of Lemma 4.2(a) induces a group isomorphism

AutT ((B ⊗R S) ⊗S T ) ≃−→ AutT (B ⊗R T ), f &→ ζ ◦ f ◦ ζ−1

(we view T as an object in R-alg in the obvious way). Since (ζ−1)∗((βS)T ) = βT

by (4.2), it follows that (βS)T is AutT ((B ⊗R S) ⊗S T )-invariant if and only if βT

is AutT (B ⊗R T )-invariant.
(II) It is immediate from (I) and the definitions that if β is Aut(B)-invariant

then βS is Aut(B ⊗ S)-invariant.
(III) Assume now that S/R is faithfully flat and that βS is Aut(B ⊗R S)-

invariant. To prove that β is Aut(B)-invariant, let S′ ∈ R-alg and let f ∈
Aut(B)(S′). The extension T = S ⊗R S′ of S′ is faithfully flat. Hence, by
Lemma 4.2(c), we have f∗(βS′) = βS′ as soon as (f∗(βS′))T = (βS′)T ∈ L 2

T ((B ⊗R

S′)⊗S′ T ). Note that (f∗(βS′))T = (f ⊗ IdT )∗((βS′)T ) by (4.3). Applying the con-
siderations of (I) to the isomorphism ζ′ : (B ⊗R S′)⊗S′ T → B ⊗R T shows that we
need to prove that βT is AutT (B ⊗R T )-invariant. But by (I) again this is indeed
the case.

Theorem 5.4 (Descent of Aut-invariant forms). Assume that we are under
the descent setting of (2.9): a is a k-algebra, R ∈ k-alg is flat, and we are given an
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R-algebra B which is a twisted form of A = a ⊗k R, hence split by some faithfully
flat extension of R. Assume that κ ∈ L 2

k (a) is an Aut(a)-invariant bilinear form.

(a) There exists a unique R-bilinear form κB ∈ L 2
R(B) such that (κB)S = θ∗(κS)

whenever S/R is faithfully flat and θ : B ⊗R S → a ⊗k S is an isomorphism of
S-algebras. Moreover, κB is Aut(B)-invariant.

(b) If κ is invariant, then so is κB.
(c) If a is finitely presented and κ is nondegenerate (respectively, nonsingular), then

so is κB.

Proof. (a) Throughout the proof we fix S and θ as in (a). We let α : R → S be
the structure map and κS the base change of κ to S. It will be convenient to first
point out a general observation, which is immediate from the definitions.

If β : S → T is a homomorphism in k-alg, then (Ida ⊗β)∗(κT ) = β ◦ κS. (5.1)

We first show the existence of an R-bilinear form κθ
B ∈ L 2

R(B) satisfying
(κθ

B)S = θ∗(κS). The notation κθ
B indicates that, a priori, the form depends on

θ (which in turn involves an S). According to (2.8) and Remark 2.10 the cocycle
corresponding to the S-algebra isomorphism θ−1 is u = θ2θ

−1
1 and we have

θ(B ⊗ 1) = {x ∈ a ⊗k S : u((Ida ⊗α1)(x)) = (Ida ⊗α2)(x)}. (5.2)

We identify B ⊂ B ⊗R S via b &→ b ⊗ 1 and claim that the restriction of θ∗(κS) to
B×B, which a priori takes values in S, actually takes values in R. In other words, for
b, b′ ∈ B and x = θ(b), x′ = θ(b′) ∈ a ⊗k S we claim θ∗(κS)(b, b′) = κS(x, x′) ∈ R.
With αi : S → S′′ as before we have, using (5.1), (5.2) and the automorphism-
invariance of κS′′ ,

α1(θ∗(κS)(b, b′)) = α1(κS(x, x′)) = κS′′((Ida ⊗α1)(x), (Ida ⊗α1)(x′))

= κS′′(u((Ida ⊗α1)(x)), u((Ida ⊗α1)(x′)))

= κS′′((Ida ⊗α2)(x), (Ida ⊗α2)(x′))

= α2(κS(x, x′)) = α2(θ∗(κS)(b, b′)). (5.3)

This shows that θ∗(κS)(b, b′) belongs to the equalizer of α1 and α2 in S, but these
are precisely the elements of R (viewed as elements of S). Hence the restriction
κθ

B of θ∗(κS) to B is an R-bilinear form on B. Clearly, by its very definition,
(κθ

B)S = θ∗(κS).
We next aim to show that κθ

B is independent of the trivialization θ. Thus, let
S′/R be another faithfully flat extension, say with structure map α′ :R → S′, and
let θ′ : B ⊗R S′ → a ⊗k S′ be an S′-algebra isomorphism. By what we just have
shown, we have an R-bilinear form κθ′

B satisfying (κθ′

B )S = (θ′)∗(κS), and we claim
κθ

B = κθ′

B . The vehicle to show this will be the algebra T = S ⊗R S′ which we
view in an obvious way as an S- and S′-algebra, say with structure maps β and β′
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respectively. For simplicity we denote by ρ :k → R the structure map σR,k of R.
We have the following commutative diagram:

S
β

..+
++

++
++

+

k
ρ !! R

α

//,,,,,,,,

α′
..+

++
++

++
T

S′
β′

00,,,,,,,

We remind the reader that T is faithful flat over S, S′ and R. Let ξ : (a⊗α◦ρ S)⊗β

T → a⊗β◦α◦ρT = a⊗k T be the canonical T -linear algebra isomorphism, and define
θ̃ : a ⊗β◦α◦ρ T → B ⊗β◦α T by the composition of maps

θ̃ : a ⊗β◦α◦ρ T
ξ−1

!! (a ⊗α◦ρ S) ⊗β T
(θ⊗Id)−1

!! (B ⊗α S) ⊗β T
ζ !! B ⊗β◦α T.

Then θ̃∗ maps (κθ
B)β◦α ∈ L 2

T (B ⊗β◦α T ) onto a bilinear form in L 2
T (a ⊗k T ). In

fact,

θ̃∗((κθ
B)β◦α) = (ζ ◦ (θ−1 ⊗ Id) ◦ ξ−1)∗((κθ

B)β◦α)

= (ξ−1 ∗ ◦ (θ−1 ⊗ Id)∗ ◦ ζ∗)(κθ
B)β◦α)

(4.2)
= (ξ−1 ∗ ◦ (θ−1 ⊗ Id)∗)(((κθ

B)α)β)

= (ξ−1 ∗ ◦ (θ−1 ⊗ Id)∗)((θ∗κα◦ρ)β)

(4.3)
= (ξ−1 ∗ ◦ (θ−1 ⊗ Id)∗ ◦ (θ ⊗ Id)∗)((κα◦ρ)β)

= ξ−1 ∗ (
(κα◦ρ)β)

(4.2)
= κβ◦α◦ρ = κT .

We define θ̃′ : a ⊗k T → Bβ′◦α′T by replacing θ ⊗ Id by θ′ ⊗ Id in the definition of
θ̃ above. By symmetry (θ̃′∗)(κθ′

B )β′◦α′ = κT . Since θ̃−1 ◦ θ̃′ ∈ Aut(a)(T ), we get

(κθ′

B )β′◦α′ = (θ̃′)−1∗(κT ) = θ̃−1 ∗(κT ) = (κθ
B)β◦α

so that Lemma 4.2(c) implies κθ
B = κθ′

B . We are now justified to define κB = κθ
B.

Finally, we use Lemma 5.3 to establish that κB is Aut(B)-invariant: κ is Aut(a)-
invariant ⇒ κS is Aut(aS)-invariant ⇒ θ∗(κS) = (κB)S is Aut(B ⊗α S)-invariant
⇒ κB is Aut(B)-invariant.

(b) κB is invariant since invariance of bilinear forms is stable under base ring
extensions and, by Lemma 4.2(c), also under faithfully flat descent.

(c) The argument is analogous to that of (b), using Lemma 4.2(d) and the fact
that being finitely presented is a property which is invariant under arbitrary base
change and faithfully flat descent.

Corollary 5.5. Let B be an S/R-form of A = a⊗kR as in the descent setting (2.9).
We further assume that a is finitely presented as a k-module and that κ ∈ IBFk(a) is
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Aut(a)-invariant. Let κB be the R-bilinear form on B associated to κ as described
in Theorem 5.4. If the IBF-principle holds for (a, κ), then the IBF-principle holds
for (B, κB) a well.

Proof. By faithfully flat descent, the associated map κB : IBFR(B) → R is an iso-
morphism as soon as the extended map (κB)S has this property. By Lemma 4.6(a)
applied to β = κB we have (κB)S = (κB)S ◦ ν. Since ν is an isomorphism, we are
reduced to showing that (κB)S is an isomorphism. By the theorem, (κB)S = θ∗(κS).
From the definitions, the reader easily checks that θ∗(κS) = κS ◦ IBF(θ). By func-
toriality IBF(θ) is an isomorphism while κS is an isomorphism by Lemma 4.6(b).
Hence (κB)S = κS ◦ IBF(θ) is an isomorphism. This completes the proof.

6. Applications to Lie and Other Classes of Algebras

We now look in detail at our general results in some important special cases. Unless
stated otherwise, we use our basic setting: k is a commutative associative unital
ring and R ∈ k-alg. If f is an endomorphism of a finitely generated and projective
R-module, we denote by tr(f) its trace. For details on this notion, see, for example,
[8, II, Sec. 4.3] or [13].

6.1. Lie algebras

We start by discussing the Killing form of a Lie algebra L, defined by κ(l1, l2) =
tr

(
(ad l1) ◦ (ad l2)

)
for li ∈ L.

Proposition 6.1. Let L be a Lie algebra over R whose underlying R-module is
finitely generated and projective.

(a) The Killing form κ of L is an invariant and Aut(L)-invariant R-bilinear
form. For any S ∈ R-alg the base change κS is the Killing form of the Lie algebra
L ⊗R S.

(b) Suppose f is an α-semilinear automorphism of L for some α ∈ Autk(R).
Then κ(f(l1), f(l2)) = α(κ(l1, l2)) holds for li ∈ L.

Proof. (a) The invariance of κ follows from tr(fg) = tr(gf) for endomorphisms
f, g of L. This identity also implies that κ is AutR(L)-invariant: For f ∈ AutR(L)
we have ad(f(l)) = f(ad l)f−1 and hence κ(f(l1), f(l2)) = tr(f(ad l1)(ad l2)f−1) =
κ(l1, l2). The adjoint maps of the Lie S-algebra L⊗R S are obtained by base change
from the adjoint maps of L. Since the trace is invariant under base change, the
Killing form of the Lie algebra L⊗R S is the base change of κ by S. It then follows
that κ is Aut(L)-invariant.

(b) We first prove an auxiliary formula. Namely, assume that g is an α−1-
semilinear endomorphism of L. Then

tr(fg) = α(tr(gf)) (6.1)
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(observe that both fg and gf are R-linear). By descent it is sufficient to show (6.1)
in case L is free of finite rank. Let F and G be matrices representing f and g in some
R-basis of L. We denote by α · G the matrix obtained from G by applying α to all
its entries. Then fg and gf are represented by F (α ·G) and G(α−1 ·F ) respectively,
whence tr(fg) = tr(F (α · G)) = tr((α · G)F ) = tr(α · (G(α−1 · F ))) = α(tr(gf)).
We can now establish (b): κ(f(l1), f(l2)) = tr(f(ad l1 ad l2f−1)). Applying (6.1)
with g = ad l1 ad l2f−1 shows that tr(f(ad l1 ad l2f−1)) = α(tr(ad l1 ad l2f−1f)) =
α(κ(l1, l2)).

Corollary 6.2. In the descent setting (2.9) suppose that a is a Lie algebra whose
underlying k-module is finitely generated and projective. Let κ be the Killing form
of a. Then

(a) B is a finitely generated projective R-module and the unique R-bilinear form
κB on B associated to κ in Theorem 5.4 is the Killing form of the Lie algebra
B. If B is realized as an R-subalgebra of a⊗k S as explained in (2.8),f the form
κB is the restriction of the Killing form κS of a ⊗k S to B.

(b) If κ is nonsingular, then the Killing form of B is nonsingular.
(c) If κ is nonsingular and a is a central k-algebra, then B is a central R-algebra,

and IBFR(B) is free R-module of rank 1 admitting κB as a basis. In particular
IBFR(B) = RκB.

Proof. (a) By Proposition 6.1, κS is the Killing form of the S-Lie algebra a⊗k S.
The property of being finitely generated and projective is stable under arbitrary
base change and faithfully flat descent. Hence the R-module B is finitely generated
and projective. By Proposition 6.1, βS is the Killing form of BS . Let θ :B ⊗R S →
a ⊗k S be a trivialization. Since the isomorphism θ preserves Killing forms, we get
βS = θ∗(κS). Now (a) follows from the uniqueness assertion in Theorem 5.4.

(b) This follows from (a) and Lemma 4.2(d) (we remind the reader that every
finitely generated projective module is finitely presented).

(c) By [25, Lemma 3.1] the S-algebra a⊗k S is central. The faithfully flat descent
reasoning of [11, Lemma 4.6(3)] then shows that the R-algebra B is a central. The
last claim now follows from Corollary 3.8.

At this point a very natural question arises: What are interesting examples of
Lie algebras for which the IBF-principle 3.6 holds with respect to the Killing form?
To convince the reader that (over rings) one cannot expect easy answers, we will
look at one of the simplest and innocent looking Lie algebras.

Example 6.3 (sl2(k)). Let sl2(k) be the Lie algebra of all traceless 2×2-matrices
with entries in our ring k. Its underlying module is free of rank 3, with the following

fWhich is always possible up to R-isomorphism — this is the content of (2.8).
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matrices forming the standard basis:

e =
(

0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

A straightforward calculation shows that ibfk
(
sl2(k)

)
is spanned by

h ⊗ e, e ⊗ h, f ⊗ h, h ⊗ f, 2e ⊗ e, 2f ⊗ f, h ⊗ h − 2f ⊗ e, h ⊗ h − 2e ⊗ f.

Hence

IBFk(sl2(k)) = ((k/2k)e ⊗ e) ⊕ ((k/2k)f ⊗ f) ⊕ Spank{e ⊗ f, f ⊗ e}.

Consequently:

• If 2k = 0, then IBFk(sl2(k)) is free of rank 4, with basis {e ⊗ e, f ⊗ f,
e ⊗ f, f ⊗ e}.

• If 2 ∈ k×, i.e. 2 ∈ k is invertible, then IBFk(sl2(k)) is free of rank 1, e.g., with
basis {h ⊗ h}.

Using the isomorphism (3.6) and the description of IBF(sl2(k)) above, we can
define an invariant bilinear form γ ∈ IBFk(sl2(k)), sometimes called the normalized
Killing form or the normalized invariant form, by

γ(e, e) = 0 = γ(f, f), γ(e, f) = 1 = γ(f, e).

Note that γ(h, h) = 2 and that all other values of γ on the standard basis of sl2(k)
are zero, in particular γ is symmetric. The description of IBFk(sl2(k)) above implies
that:

If 2 is not a zero divisor in k, then IBFk(sl2(k)) = kγ is free of rank 1.

Moreover, by calculating the discriminant of γ one obtains:

γ is nonsingular ⇔ 2 ∈ k× ⇔ the IBF-principle holds for (sl2(k), γ).

In this case, γ is Aut(sl2(k))-invariant, which can be seen by noting that (adx)3 −
2γ(x, x) ad x = 0 is the generic minimal polynomial of sl2(k).

It is straightforward that 12γ is the Killing form of sl2(k). In particular, the
Killing form vanishes if 2k = 0 (not surprising since then sl2(k) is a 2-step nilpotent
Lie algebra) or if 3k = 0 (somewhat surprising since sl2(k) is a simple Lie algebra
when k is a field of characteristic 3). The conclusion is that for the setting of this
paper the normalized Killing form γ is better behaved than the Killing form itself.
A case in point is a revised version of Corollary 6.2 for a = sl2(k) and 2 ∈ k×. Since
sl2(k) is then central,g the proof of Corollary 6.2 shows that:

• If 2 ∈ k×, any S/R-form B of sl2(R) is central and has a nonsingular invariant
bilinear form β (not necessarily the Killing form), for which IBFR(B) = Rβ is
free of rank 1.

gCentrality only requires that 2 not be a zero divisor.
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It is instructive to summarize what we have shown above for the special case k = Z.

• The k-module IBFZ(sl2(Z)) is neither projective nor cyclic, in particular, the
IBF-principle does not hold for sl2(Z). Yet IBFZ(sl2(Z)) = Zγ is free of rank 1.

• All invariant bilinear forms of sl2(Z) are symmetric (even though sl2(Z) is not
perfect, cf. Remark 3.4).

• All nonzero invariant bilinear forms of sl2(Z) are nondegenerate, but none of
them is nonsingular.

Remark 6.4 (Generalizations of Example 6.3). We note that Example 6.3
can be generalized by replacing sl2(k) = sl2(Z) ⊗Z k by G ⊗Z k where G is the Lie
algebra of a split simple simply connected Chevalley–Demazure group scheme. In
terms of Lie algebras, G is a Chevalley order of a split simple Lie algebra (g, h) over
Q, say with root system ∆, which is compatible with the root space decomposition
of (g, h) and satisfies G ∩ h = SpanZ{hα :α ∈ ∆} (with the standard notation).
In this setting the existence of an invariant bilinear form γ as above follows from
[29, 12]. It is uniquely determined by the condition γ(hα, hα) = 2 for any long
root α. Details will be left to the reader.

In what follows we restrict our presentation to base fields of characteristic 0.
To abide by standard notation we denote our algebra a, which is now a finite-
dimensional semisimple Lie algebra defined over a field k of characteristic 0, by g. We
are interested in twisted forms of g⊗k R for some R ∈ k-alg. In the case when k is
algebraically closed, g is simple and R is the Laurent polynomial ring k[t±1

1 , . . . , t±1
n ],

the twisted forms in question are related to the affine Kac–Moody Lie algebras (the
case n = 1) and more generally to multiloop algebras (see [2, 11, 22, 25] and Sec. 7
for further details and references).

Theorem 6.5. Let g be a finite-dimensional semisimple Lie algebra over a field
k of characteristic 0. Let B be a twisted form of g ⊗k R, split by a faithfully flat
extension S/R.

(a) Then B is a finitely generated projective R-module and perfect as a Lie
algebra. The Killing form of the R-algebra B coincides with the bilinear form κB

associated to the Killing form κ of g in Theorem 5.4. In particular the Killing form
of B is nonsingular and Aut(B)-invariant. If B is realized as an R-subalgebra of
g ⊗k S, the Killing form of B is the restriction of the Killing form κg⊗S to B.

(b) Assume henceforth that g is central, hence central-simple. Then B is a cen-
tral R-algebra, IBFR(B) is a free R-module of rank 1 admitting κB as a basis, and
(B, κB) satisfies the IBF-principle 3.6.

Proof. With the exception of the perfectness statement, (a) and the first part of
(b) is a re-statement of Corollary 6.2. But being perfect is a property (of arbitrary
algebras) which is stable under arbitrary base change and faithfully flat descent.
Since B⊗R S ≃ g⊗k S and the latter is perfect, B is perfect. That (B, κB) satisfies
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the IBF-principle is a special case of Corollary 5.5 keeping in mind that (g, κ)
satisfies the IBF-principle in view of Proposition 3.9.

Remark 6.6. In the special case when R = S and B = g ⊗k R, our result says
that

IBF(g ⊗k R) ≃ R ≃ IBFk(g) ⊗k R. (6.2)

This formula is also a special case of [33, Theorem 4.1] which, using methods from
Lie algebra homology, determines the “predual” of the space of symmetric bilinear
forms of a Lie algebra of type L ⊗k R for k a field of characteristic ̸= 2 and L
any Lie algebra over k. Assuming for comparison reasons that L is perfect, we
know (Remark 3.4) that all invariant bilinear maps are symmetric and thus [33,
Theorem 4.1] becomes (6.2) for Lie algebras of type L ⊗k R. We emphasize that
the approach of [33] cannot be applied to the case of twisted forms of g ⊗k R.
Developing method that would apply to these algebras was the original motivation
for our work. As already observed, such twisted algebras already arise in the affine
Kac–Moody setting and are crucial for EALA theory.

An immediate consequence of (6.2) is that every invariant bilinear form β ∈
IBF(R,k)(g ⊗k R) = IBFk(g ⊗k R) has the form ϕ ◦ κR for a unique ϕ ∈ R∗ =
Homk(R, k), i.e. β(x1 ⊗ r1, x2 ⊗ r2) = κ(x1, x2)ϕ(r1r2) for xi ∈ g and ri ∈ R.
This latter fact has recently been re-proven in [18, Lemma 2.3] in case k is an
algebraically closed field of characteristic 0, using the structure theory of g.

The untwisted case was, out of necessity, the first objective of our work. The
methods to be developed, however, had to be compatible with descent theory so
that results about twisted algebras could be obtained. In retrospect, we “knew” that
the functor on k-spaces IBFk(g ⊗k S,−) is represented by S (one can reinterpret
[33] or [18] this way). But how does one recover S from g ⊗k S? The answer is as
its centroid. By descent, the centroid of B is in this case naturally isomorphic to R.
Our result shows that the representability of IBFk(B,−) in terms of the centroid
is indeed the correct point of view.

Remark 6.7. For crucial use in [27], we note the following. Since the IBF-principle
holds by Theorem 6.5(b), composing the isomorphism (3.9) with the inverse of
the isomorphism given in Lemma 3.7, we have an isomorphism Homk(R, V ) →
CtdR

(
B, Homk(B, V )

)
, ϕ &→ ϕ̃ such that ϕ̃(b)(b′) = ϕ

(
κB(b, b′)

)
.

6.2. Unital algebras

In this subsection we will discuss invariant bilinear forms of unital algebras B
defined over some R ∈ k-alg. To do so, we will use the associator module and
commutator module defined for an arbitrary algebra B by

(B, B, B) = SpanZ{(a, b, c, ) :a, b, c ∈ B} and [B, B] = SpanZ{[a, b] :a, b ∈ B}
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respectively, where (a, b, c) = (ab)c − a(bc) is the associator and [a, b] = ab − ba is
the commutator in B.h It is immediate that (B, B, B) and [B, B] are R-submodules
of B. We define

ac(B) = (B, B, B) + [B, B] and AC(B) = B/ac(B).

Let 1B ∈ B be the identity element of B. Thus b 1B = b = 1B b for all b ∈ B. A
unital algebra is perfect, whence IBF(R,k)(B; V ) = IBFk(B; V ) for any k-module V
by Remark 3.4.

For convenience for the remainder of this section we will denote the identity
element of B by 1.

Lemma 6.8. Let B be a unital R-algebra. Then the multiplication map µ : B ⊗R

B → B, µ(a ⊗ b) = ab, induces an isomorphism

µ̄ : IBFR(B) → AC(B), µ̄(a ⊗ b) = ab

with inverse given by ā &→ 1 ⊗ a = a ⊗ 1. Hence, for any k-module V the natural
map

Homk(AC(B), V ) → IBFk(B; V ),

which assigns to ϕ ∈ Homk(AC(B), V ) the bilinear function (a, b) &→ ϕ(ab), is an
isomorphism of R-modules. Its inverse is given by assigning to β the linear function
b̄ &→ β(b, 1), where b ∈ B.

Proof. By (3.3), ibfR(B) is spanned by elements of the form ab ⊗ c − a ⊗ bc and
a ⊗ b − b ⊗ a. It is clear that µ(ibfR(B)) = ac(B). Hence µ̄ is well-defined and
surjective. Let ν : B → B ⊗k B be defined by ν(a) = 1 ⊗ a. Then we have

ν((a, b, c)) = 1 ⊗ (ab)c − 1 ⊗ a(bc) ≡ ab ⊗ c − a ⊗ bc ≡ 0 mod ibfR(B), and

ν([a, b]) = 1 ⊗ ab − 1 ⊗ ba ≡ a ⊗ b − b ⊗ a ≡ 0 mod ibfR(B).

We thus get a well-defined k-linear map ν̄ : AC(B) → IBFR(B) satisfying ν̄(b̄) =
b ⊗ 1 = 1 ⊗ b. Because of (ν ◦ µ)(a⊗ b) = 1⊗ ab = (1⊗ ab− 1a⊗ b) + a⊗ b ≡ a⊗ b
mod ibfR(B), we have ν̄ ◦ µ̄ = IdIBF(B), proving injectivity and thus bijectivity of
µ̄. Under the isomorphism µ̄, the universal bilinear map βuni : B × B → IBFR(B)
becomes βuni,u : B×B → AC(B) with βuni,u(a, b) = ab. In view of (3.7) this implies
the last claim.

hIf B happens to be a Lie algebra, the commutator as defined here is twice the Lie algebra product.
This notational conflict should not cause any problems since in the following we will employ the
notation [a, b] for non-Lie algebras only.
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Corollary 6.9. Let B be a unital R-algebra and assume that B = Rb0 ⊕ ac(B)
for some b0 ∈ B where Rb0 is free with basis {b0}. Let π : B → R be defined by
b = π(b)b0 ⊕ bac where bac ∈ ac(B), and define

β0 : B × B → R, β0(a, b) = π(ab).

Then β0 ∈ IBFR(B), and (B, β0) satisfies the IBF-principle. Furthermore

β̃0 : AC(B) → R, b̄ &→ β0(b, 1)

is a well-defined R-module isomorphism.

Proof. The proof is straightforward.

6.3. Azumaya algebras

This subsection fits within the descent setting (2.9): k is base ring, R ∈ k-alg is flat
as a k-module (for example k = R), and S ∈ R-alg is a faithfully flat R-module.
We let a = Mn(k). Then our S/R-form B of Mn(k)⊗k R = Mn(R) is an Azumaya
algebra over R of constant rank n2.

We start by recording some facts about a. As a unital algebra, a is perfect. It is
also well-known that a is central. Moreover, a has a natural invariant bilinear form,
the trace form κ defined by

κ(x, y) = tr(xy),

where this last is the usual trace of the matrix xy. It is easy to see (using the
standard dual basis of the elementary matrices Eij) that κ is nonsingular. Moreover,
κ is Aut(a)-invariant. Indeed, since a⊗k K = Mn(K) for any K ∈ k-alg, it suffices
to verify that κ is automorphism-invariant. Thus let σ ∈ Autk(a) and x, y ∈ a.
To show that xy and σ(x)σ(y) have the same trace, it is enough to prove that for
all p ∈ Spec(k) the two elements (xy)p and (σ(x)σ(y))p of Mn(kp) have the same
trace. Clearly (xy)p = xpyp and (σ(x)σ(y))p = σp(xp)σp(yp) where σp = σ ⊗ Idkp .
We may therefore assume that k is a local ring. But then, by the Skolem–Noether
theorem for local rings [13, IV, Corollary 1.3], σ is given by conjugation by an
invertible matrix M ∈ GLn(k), whence σ(x)σ(y) = MxyM−1, and so clearly xy
and σ(x)σ(y) have the same trace. We also have

a = kE11 ⊕ [a, a], [a, a] = {x ∈ a : tr(x) = 0} = ac(a)

since any x =
∑

i,j xijEij can be uniquely written as

x =
(

x11 +
∑

1<i

xii

)
E11 +

∑

1<i

xii(Eii − E11) +
∑

i̸=j

xijEij (6.3)

and [a, a] is spanned by matrices of type [Eii, Eij ] = Eij and [Eij , Eji] = Eii−Ejj =
(Eii − E11) − (Ejj − E11) for i ̸= j. Formula (6.3) implies that the trace form κ is
the bilinear form of Corollary 6.9. Hence (a, κ) satisfies the IBF-principle.
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Theorem 6.10. Let B be an S/R-form of Mn(R) and let κB be the bilinear form
associated to the trace form κ of Mn(k) in Theorem 5.4.

(a) Then κB is a nonsingular, invariant and Aut(B)-invariant bilinear form and
a basis of IBFR(B).

(b) IBFR(B) ≃ AC(B) ≃ R, and the map IBFR(B) &→ R, b ⊗ b′ &→ κB(b, b′) is an
isomorphism of R-modules. Hence (B, κB) satisfies the IBF-principle 3.6.

(c) If B is realized as an R-subalgebra of Mn(S), see Remark 2.10, κB coincides
with the restriction of the trace form of Mn(S) to B.

Proof. Parts (a) and (b) follow from Theorem 5.4, Corollary 5.5 and Corollary 6.9.
For the proof of (c) one uses the automorphism invariance of the trace of Mn(S′′)
and the reasoning in (5.3) to conclude that the restriction λ of the trace form
of Mn(S) to B has values in R. Since λS is the trace form of Mn(S) and thus
coincides with (κB)S , we get λ = κB from uniqueness in Theorem 5.4 (or from
Lemma 4.2(c)).

Remark 6.11. The form κB is, by definition, nothing but the reduced trace form
of the Azumaya algebra B as defined in [13]. This proves (without the construction
of the characteristic polynomial as done in [13]) that the reduced trace form, which
a priori takes values in S, does take values in R.

Corollary 6.12. Every Azumaya algebra B over R has a nonsingular, invari-
ant and Aut(B)-invariant bilinear form κB such that (B, κB) satisfies the IBF-
Principle 3.6. In particular, IBFR(B) is a free R-module with basis {κB}.

Proof. If B has constant rank, then B is an S/R-form of some Mn(R) and the
result follows from Theorem 6.10. In general, we can decompose the identity element
1R of R into a sum 1R = e1 + · · · + es of orthogonal idempotents ei ∈ R such that
B = B1 ! · · · ! Bs is a direct product of ideals Bi = eiB, each Bi is an Azumaya
algebra of constant rank ρi over Ri = eiR, and ρi ̸= ρj for i ̸= j (if ρi = ρj then
we replace ei, ej by ei + ej). We then define κB as the orthogonal sum of the forms
κBi constructed previously. Nonsingularity follows from HomR(B1 ! · · ·!Bs, R) ≃⊕s

i=1 HomRi(Bi, Ri) and the nonsingularity of the κBi . Finally, Aut(B)-invariance
holds since the decomposition B = B1 ! · · · ! Bs is preserved under base ring
extensions and automorphisms.

6.4. Octonion algebras

As in the previous subsection, k here is an arbitrary base ring and R ∈ k-alg.
Following [7, 17, 24] we call an algebra B over R an octonion algebra if its underlying
R-module is projective of constant rank 8, contains an identity element 1B, and
admits a quadratic form nB : B → R, the norm of B, satisfying the following two
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conditions.

(i) The associated bilinear form nB : B ×B → R, nB(a, b) = nB(a + b)− nB(a)−
nB(b), is nonsingular, and

(ii) nB(ab) = nB(a)nB(b) holds for all a, b ∈ B.

For an octonion algebra B the linear form tB = nB(1B,−) is called the trace of B.
An example of an octonion algebra is the algebra Zor(R) of Zorn vector matrices ,
defined on the R-module

Z = Zor(R) =
[
R R3

R3 R

]

with product
[
α1 u
x α2

] [
β1 v
y β2

]
=

[
α1β1 − tuy α1v + β2u + x × y

β1x + α2y + u × v −txv + α2β2

]

for αi, βi ∈ R and u, v, x, y ∈ R3. Here tuy and x×y are the usual scalar and vector
product of vectors in R3. For this octonion algebra and a = [ α1 u

x α2 ] ∈ Z one has

1Z =
[
1 0
0 1

]
, nZ(a) = α1α2 + tux, trZ(a) = α1 + α2.

For our approach to octonion algebras it is important that an R-algebra B is an
octonion algebra if and only if there exists a faithfully flat (even faithfully flat and
étale) S ∈ R-alg such that B⊗R S ≃ Zor(S) (see [17, Corollary 4.11]). The algebra
Zor(R) is referred to as split octonions.

Theorem 6.13. Let B be an octonion algebra over R.

(a) B is a central R-algebra satisfying ac(B) = (B, B, B) = [B, B].
(b) The bilinear form τ : B × B → R, defined by τ(x, y) = tr(xy), is an invariant,

nonsingular and Aut(B)-invariant R-bilinear form. It coincides with the form
τB associated in Theorem 5.4 to the bilinear form τ of Zor(R) with respect to
any splitting B ⊗R S ≃ Zor(S) of B.

(c) (B, τ) satisfies the IBF-principle.

Proof. The algebra B fits into our descent setting with k = R and a = Zor(R).
We first prove all assertions for a. Straightforward calculations (admittedly tedious
in the case of the associator module) show that:

(i) [a, a] = (a, a, a) = ac(a), a = Re ⊕ ac(a) for e = [ 1 0
0 0 ], a is central.

(ii) For a, b as in the product formula above we have τ(a, b) = α1β1 +α2β2− tuy−
txv. Hence τ is nonsingular and symmetric.

(iii) τ(ac(a)) = 0, τ(e) = 1, whence τ is the bilinear form associated to the decom-
position a = Re ⊕ ac(a) in Corollary 6.9.
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This corollary now implies that (a, τ) satisfies the IBF-principle. To establish that
τ is Aut(a)-invariant, we recall that since a is a quadratic algebra the trace linear
form tr of a is uniquely determined by the unital algebra a (see [24, Lemma 1.2]).
For any extension K ∈ k-alg, the base change τK is therefore the bilinear form
τa⊗K of the K-algebra a⊗R K = Zor(K). Uniqueness of the trace then implies that
trK is AutK(aK)-invariant.

We now consider an arbitrary octonion algebra B over R and choose a faithfully
flat extension S ∈ R-alg such that B⊗R S ≃ Zor(S) as S-algebras. In the first part
of the proof we have established all claims for a = Zor(R), whence also for Zor(S).
The assertions in (a) now hold for B since they are all preserved by faithfully flat
descent. In (b) it suffices to establish the second part, but this follows from the fact
that the base change of the trace form τ of B to S is the trace form of Zor(S).
Part (c) is a special case of Corollary 5.5.

Remark 6.14 (Quadratic algebras). The experts will undoubtedly have noticed
that the automorphism-invariance of the bilinear form κB comes from the fact that
octonions are quadratic algebras, see, e.g., [24, 1.1]. Hence our techniques can also
be applied to certain quadratic algebras whose trace forms are invariant.

6.5. Alternative algebras

We consider alternative algebras, always assumed to be unital, over some base ring
R. Recall (see [7]) that an alternative algebra B is called separable if for every
algebraically closed field K in R-alg the K-algebra B ⊗R K is finite-dimensional
and a direct sum of simple ideals. Equivalently, the unital universal multiplication
envelope of B is a separable associative algebra. By [7, Proposition 2.11], an R-
algebra B is central separable and alternative if and only if R = R1 ! R2 is a
direct sum of two ideals such that B1 = R1B is an Azumaya algebra over R1 and
B2 = R2B is an octonion algebra over R2. It is now straightforward to extend the
results of Secs. 6.3 and 6.4 to central separable alternative algebras. We leave the
details to the reader and only mention the following.

Corollary 6.15. A central separable alternative B over R has a nonsingular invari-
ant bilinear form κB such that IBFR(B) is a free R-module with basis {κB}.

6.6. Jordan algebras

Central separable Jordan algebras over rings R containing 1
2 (see [6, 15]) are another

class of algebras to which our results apply.
By definition, a unital Jordan algebra J over R is separable if and only if J⊗RK

is finite-dimensional semisimple for all fields K ∈ R-alg. A central separable Jordan
algebra J is generically algebraic (see [16, Example 2.4(d)]). Let tr ∈ HomR(J, R) be
its generic trace. By Proposition 2.7 of [16] the associated bilinear form τ , defined by
τ(a, b) = tr(ab), is invariant, Aut(J)-invariant and commutes with extensions and
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faithfully flat descent. Since separability and being generically algebraic is invariant
under base ring extensions, τ is in fact Aut(J)-invariant. By [14, Corollary 16.16],
τ is nondegenerate for separable Jordan algebras over fields. From Lemma 6.16 we
then get that τ is nonsingular.

Lemma 6.16. Let M be a finitely generated projective R-module and let β ∈
L 2

R(M). Then β is nonsingular if and only if βK is nondegenerate for all K ∈ k-alg
which are fields.

Proof. This is an application of [9, II, Sec. 3.3, Theorème 1, Sec. 3.2, Corrollaire
de la Prop. 6 and Sec. 5.3, Theorème 2].

Thus, in view of Corollary 3.8 we have the following.

Theorem 6.17. The generic trace form τ of a central separable Jordan algebra
J over a ring R containing 1

2 is an invariant nonsingular and Aut(J)-invariant
bilinear form, and IBFR(J) is a free R-module admitting {τ} as a basis.

We leave it to the interested reader to look into the following possible improve-
ment of this last result.

Question 6.18. For J as in Proposition 6.17, is the R-module IBFR(J) projective?

Since J is central and therefore a faithful R-module, we have κJ(J, J) = R by
[10, I, Corollary 1.10]. Hence, if the question has a positive answer, Proposition 3.9
applies and yields that (J, τ) satisfies the IBF-principle. In particular, Theorem 6.17
then becomes a corollary.

7. Graded Invariant Bilinear Forms

In this section we classify graded invariant bilinear forms, which are particularly
important for infinite-dimensional Lie theory. We will therefore concentrate on these
(except for preliminaries considerations), and leave the extension to other classes
of algebras to the reader.

We begin with some generalities about gradings and graded forms. Unless spec-
ified otherwise, we continue with our standard setting: k is a base ring and B is an
arbitrary R-algebra for some R ∈ k-alg. Throughout, Λ is an abelian group.

Definition 7.1 (Graded algebras and graded invariant bilinear forms). A
Λ-graded algebra is a pair (C, C ) consisting of a k-algebra C and a family C =
(Cλ)λ∈Λ of k-submodules Cλ of C satisfying C =

⊕
λ∈Λ Cλ and CλCµ ⊂ Cλ+µ

for all λ, µ ∈ Λ. We will say that a k-algebra C is Λ-graded if (C, C ) is a Λ-
graded algebra for some family C . We point out that it is allowed that some of
the homogeneous submodules Cλ vanish. If C is a unital algebra, then necessarily
1C ∈ C0.

Assume C is Λ-graded. We call κ ∈ L 2
k (C) a graded bilinear form if κ(Cλ,

Cµ)=0 whenever λ + µ ̸= 0.
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Definition 7.2 (Graded S/R-forms of algebras). In the following we assume
that R ∈ k-alg is Λ-graded, say R =

⊕
λ∈Λ Rλ. An R-algebra B is then called a

Λ-graded R-algebra if B =
⊕

λ∈Λ Bλ is Λ-graded as a k-algebra and the Λ-gradings
of R and B are compatible in the sense that RλBµ ⊂ Bλ+µ for all λ, µ ∈ Λ.
For example, for any k-algebra a the R-algebra a ⊗k R is canonically a Λ-graded
R-algebra by defining the λ-homogeneous submodule (a ⊗k R)λ = a ⊗k Rλ.

In the descent setting (2.9) we suppose that R ∈ k-alg is Λ-graded and that
S ∈ R-alg is a Λ-graded R-algebra. We view a ⊗k S with its canonical Λ-grading.
An S/R-form B of a ⊗k R is called graded if B is a Λ-graded R-algebra and there
exists an S-algebra isomorphism θ : B ⊗R S → a ⊗k S which respects the gradings:
θ(bλ ⊗ sµ) ∈ a ⊗k Sλ+µ for bλ ∈ Bλ and sµ ∈ Sµ.

We now specialize to Lie algebras and derive a graded version of Theorem 6.5.
Following the notation used in Theorem 6.5 we change a to g.

Proposition 7.3. Let g be a finite-dimensional semisimple Lie algebra over a field
k of characteristic 0 with Killing form κ. Assume that R ∈ k-alg and S ∈ R-alg
are Λ-graded, S/R is faithfully flat and B is a graded S/R-form of g ⊗k R.

(a) If κB is the form attached to κ in Theorem 5.4, then κB is the Killing form of
the R-algebra B and satisfies κB(Bλ, Bµ) ⊂ Rλ+µ for all λ, µ ∈ Λ.

(b) If g is central (and hence simple), every graded invariant bilinear form β ∈
IBFk(B) can be written in the form ϕ◦κB for a unique ϕ ∈ {ϕ ∈ R∗ : ϕ(Rλ) =
0 for λ ̸= 0} ≃ (R0)∗.

Proof. (a) That κB is the Killing form of B, was established in Corollary 6.2. Since
there exists an S-algebra isomorphism θ :B⊗R S → g⊗k S respecting the gradings,
there is no harm to assume that B ⊂ g⊗kS with Bλ = Bλ⊗1S ⊂ g⊗Sλ. Recall from
Corollary 6.2 that κB = κg⊗kS |B × B where κg⊗kS is the Killing form of the S-
algebra g⊗kS, and that κg⊗kS coincides with the base change κS of κ by S. Because
κS(g ⊗k Sλ, g ⊗k Sµ) ⊂ Sλ+µ, it suffices to show that Rλ = Sλ ∩ R for all λ ∈ Λ.
To see this last statement, we use that 1S ∈ S0, so that Rλ = Rλ1S ∈ RλS0 ⊂ Sλ.
Then Rλ ⊂ Sλ ∩ R follows. The other inclusion is immediate.

(b) We have seen in Theorem 6.5(b) that (B, κB) satisfies the IBF-principle. It
follows that R = SpanZ{κB(b1, b2) : bi ∈ B}. Let now β ∈ IBFk(B) be a graded
invariant bilinear form. Again by Theorem 6.5 there exists a unique ϕ ∈ R∗ such
that β = ϕ ◦ κB. We claim ϕ(r) = 0 for any r ∈ Rλ, λ ̸= 0. Indeed, there exist
finitely many bi ∈ Bµi and b′i ∈ Bλ−µi such that r =

∑
i κB(bi, b′i). Hence ϕ(r) =∑

i β(bi, b′i) = 0. That, conversely, every ϕ ∈ (R0)∗ gives rise to a graded invariant
bilinear form, is of course obvious.

Proposition 7.3 can be applied to multiloop algebras based on simple finite-
dimensional Lie algebras. We recall their definition: g is a finite-dimensional
simple Lie algebra over an algebraically closed field k of characteristic 0, and
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σ = (σ1, . . . , σN ) is a family of commuting automorphisms of g, which have finite
orders m1, . . . , mN respectively. We fix a set of primitive mth roots of unity ζm ∈ k
which are compatible in the sense that ζl

ln = ζn, and put

R = k[t±1
1 , . . . , t±1

N ] ⊂ S = k[t
± 1

m1
1 , . . . , t

± 1
mN

N ].

The multiloop algebra L = L(g, σ) associated to these data is the Lie algebra

L =
⊕

i1,...,iN∈ZN

gi1,...,iN ⊗k t
i1

m1
1 . . . t

iN
mN
N ,

where gi1,...,iN = {x ∈ g :σj(x) = ζij
mj x for all j}. Since gi1,...,iN = gi1+k1,...,iN+kN

for (k1, . . . , kN ) ∈ m1Z ⊕ · · ·⊕ mNZ, it is clear that L is an R-Lie algebra. It is in
fact an S/R-form of g ⊗k R (see [3, Theorem 3.6]).

To enter the grading into the picture, we let Λ = 1
m1

Z × · · · × 1
mN

Z. Then
Λ ≃ ZN and we have a natural Λ-grading on S and R (the reader will note that the
homogeneous elements of R have degrees in Z× · · ·×Z ⊂ Λ). The Lie algebra g⊗k S
is naturally Λ-graded and this makes L also naturally into a Λ-graded Lie algebra.
It is immediate from the definitions that L is R-graded and a graded S/R-form of
g ⊗k S. Since in our situation R0 = k, Proposition 7.3 yields the first part of the
following.

Corollary 7.4. Let L be a multiloop Lie algebra based on a simple finite-
dimensional Lie algebra over an algebraically closed field k of characteristic 0. Then,
up to scalars in k, the ZN -graded Lie algebra L has a unique graded invariant k-
bilinear form β. It is given by

β(x ⊗ t
j1
m1
1 . . . t

jN
mN
N , y ⊗ t

l1
m1
1 . . . t

lN
mN
N ) = κ(x, y)δj1+l1,0 . . . δjN+lN ,0,

where κ is the Killing form of g. The form β is nondegenerate. Every k-linear
automorphism of L is orthogonal with respect to β.

Proof. The nondegeneracy of κ implies that β | Lλ×L−λ is a nondegenerate pairing
for all λ, which in turn forces β to be nondegenerate.

Let now f ∈ Autk(L). The map χ &→ f ◦ χ ◦ f−1 is an automorphism of the
centroid of L. Since L is central, f is α-semilinear for some k-linear automorphism
α of R. By Proposition 6.1(b), we then know κL ◦ (f × f) = α ◦ κL for κL the
Killing form of the R-algebra L. The form β is obtained by composing κL with the
canonical projection ϵ :R → R0 = k. It is therefore enough to show ϵ = ϵ ◦ α. But
this is indeed the case: Every k-linear automorphism of R fixes R0 pointwise and
permutes the Rλ, λ ̸= 0. To see this, we realize Autk(R) as GLN (Z)! (k×)N in the
natural fashion.

This corollary is of interest for the construction of extended affine Lie algebras
based on centerless Lie tori, which heavily depends on the existence of a graded

1450009-34



February 7, 2015 10:14 WSPC/S0219-1997 152-CCM 1450009

Invariant bilinear forms of algebras given by faithfully flat descent

invariant nondegenerate bilinear form on a Lie torus. The reader is referred to
[1, 20–22] for background material on extended affine Lie algebras and Lie tori.
More precisely, we will deal here with Lie-ZN -tori.

Corollary 7.5. Up to scalars, a centerless Lie-ZN -torus has a unique graded
invariant nondegenerate bilinear form.

Proof. By [19] a centerless Lie-ZN -torus is either finitely generated over its cen-
troid or is a Lie torus with a root system of type A. Concerning the latter type,
one knows from [4, 5, 31] that they are graded isomorphic to sln(kq) for a quantum
torus kq, and for these types of Lie algebras the claim follows from [22, 7.10]. If L
is a centerless Lie-ZN -torus which is finitely generated over its centroid, then The-
orem 3.3.1 of [2] says that L is graded-isomorphic to a multiloop algebra so that
we can apply Corollary 7.4.

Corollary 7.5 has been proven in [32, Theorem 7.1] for Lie tori graded by a
torsion-free group Λ, using the structure theory of these types of Lie tori.
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