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Abstract

Model predictive control (MPC) has become very popular both in process industry and academia due to its effectiveness in dealing
with nonlinear, multivariable and/or hard-constrained plants.
Although linear MPC can be applied for controlling nonlinear processes by obtaining a linearized model of the plant, this is only valid in

a limited region. Therefore, a substantial improvement can be achieved by using the whole knowledge of the process dynamics, specially
in the presence of marked nonlinearities. This effect can be strong if the process to control is open-loop unstable.
The purpose of this paper is to introduce a nonlinear model predictive controller (NMPC) based on nonlinear state estimation, in order

to exploit the knowledge of the nonlinear dynamics and to avoid modeling simplifications or linearization.
A state-space formulation is proposed to achieve the control objective. To update the optimization involved in NMPC strategy, state

estimation based on the measured outputs is proposed.
As a particular application, we consider an open-loop unstable jacketed exothermic chemical reactor. This CSTR is widely recognized

as a difficult problem for the purpose of control. In order to achieve the control goal, a NMPController coupled with a state observer are
designed. The observer is also used to estimate some unmeasured disturbances. Finally, computer simulations are developed for showing
the performance of both the nonlinear observer and the control strategy.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A typical feature of chemical process control is the ex-
istence of various operative constraints due to economic or
safety concerns as well as restrictions related to valve sizes
and actuator dynamics. Consequently, all these issues limit
the expected performance of the controlled system. To cope
with this fact, many techniques such as model predictive
control (MPC) have emerged. It is a well-known result that
MPC has often shown to provide improved performance than
conventional feedback control schemes. The use of MPC in
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the chemical engineering field started in the process indus-
tries, which is not a common fact among other control tech-
niques (Ogunnaike and Ray, 1994). This fact is basically due
to flexible constraint-handling capabilities of MPC as well
as its robustness properties (Bemporad and Morari, 1999).
The name MPC arises from the intention of using an ex-

plicit model of the process to be controlled which is used to
predict the future output behavior. This capacity of predic-
tion allows solving optimal control problems on line, where
tracking error, i.e. the difference between the predicted out-
put and the desired reference, is minimized over a future
horizon. As regards linear plants control, superior behavior
has been achieved using MPC in the case of non-minimum
phase processes or systems with input constraints where fu-
ture set points are known, as well as for stabilizing unstable
linear plants (Eaton and Rawlings, 1992).
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Moreover, this control scheme has also proven to be use-
ful for regulating many nonlinear plants. Many recent at-
tempts to include nonlinear models in MPC have exhibited
an improved performance, particularly for those applications
where varying operating conditions over nonlinear regions
are expected (García et al., 1989; Pröll and Karim, 1994).
The inherent feature of MPC is the reiterated optimiza-

tion of an open-loop performance objective over the predic-
tion horizon. There are many methods available in order to
update the optimization problem. For instance, the reset of
the model’s initial conditions, estimation of model’s param-
eters and/or states or inference of output disturbances can
be performed (Eaton and Rawlings, 1992).
The advantages of employing state estimation instead of

the frequently used approach of the additive output distur-
bance (commonly used in dynamic matrix control), have
been shown in the works by Ricker (Ricker, 1990; Lee
and Ricker, 1994). He used linear, time-invariant state-space
models and applied state estimation theory.Sistu and Be-
quette (1991)addressed many important issues in nonlinear
predictive control of chemical processes. They treated the
selection of initial state conditions as a very important fact,
specially under plant/model mismatch. To cope with this is-
sue they introduced a nonlinear programming-based process
identification scheme. An interesting alternative for estimat-
ing state variables, particularly when many or all of them are
unmeasurable, is to use an state observer. The use of state ob-
servers based on measured outputs has already been consid-
ered for solving state space formulations of MPC problems.
However, those approaches are limited to the use of Kalman
filters ( Li et al., 1989; Gattu and Zafiriou, 1992; Nagrath
et al., 2002). A particular drawback in using this estimator
for nonlinear control purposes is the linear nature of the es-
timator. This problem is magnified when the process to be
controlled is unstable. In this case, any mismatch between
real and estimated states could deteriorate the closed-loop
performance or even drive the process to instability.
In spite of the fact that theories and applications for linear

systems are well developed, the highly nonlinear essence of
many processes has given rise to the development of nonlin-
ear observers. These observers are designed in such a way
that they can cope with the intrinsic nonlinearities. How-
ever, the construction of nonlinear observers still provides
an open research field because the advance in this area of-
ten faces many typical obstacles. Among others, the main
barriers are the very restrictive conditions to be satisfied, un-
certainty in the performance and robustness and/or poor es-
timation results in the presence of noisy sensors. Depending
on the obtainable information about the process, there ex-
ist many possible kinds of estimators to be used depending
on the mathematical structure of the process model (Wang
et al., 1997). In this sense, the standard extended Kalman
filter (EKF) is one of the most (if not the most) widely
diffused observer among other nonlinear observers based
on linearization techniques (Stephanopoulos and San, 1984;
Tadayyon and Rohani, 2001). For instance,Lee and Ricker

(1994) proposed a state observer based MPC strategy us-
ing successive linearization. They derived a recursive EKF-
type state estimator, providing the minimum-variance state
estimates. The linear approximations of state/measurement
equations are calculated at each sampling time. The main
drawback of the traditional EKF approach consists in the
difficulties to determine a priori its convergence and speed
of convergence. In the EKF approach, a Riccati equation
must be solved to obtain the estimator gain. This approach
assumes the knowledge of the noise model in order to ob-
tain the estimated value. However, that model is frequently
unknown and it must be assumed. Hence, wrong noise as-
sumptions could lead to biased estimates or even diverge
(Ljung, 1979).
A method based on extended linearization has also been

developed to carry out state estimation (Baumann and Rugh,
1986). The procedure is based on linearizing with respect
to a fixed operating point, and involves finding a function
of the output in order to keep the system poles invariant in
the vicinity of the mentioned point. Hence, the design pro-
cedure is subject to very tight conditions, and even when
the output function is found (which is not an easy task) only
local performance is ensured. A detailed discussion on the
current available state estimation techniques applicable to a
broad class of nonlinear systems, is provided byMouyon
(1997). Another comprehensive evaluation of various non-
linear observers was presented byWang et al. (1997).
In this paper, we show how to combine state estimation

with NMPC to both satisfy the manipulated variable con-
straints and to provide the desired output value, even in the
presence of unmeasured disturbances. Therefore, nonlinear
state estimators are introduced to provide the NMPCon-
troller the estimated value of the internal state of a nonlinear
unstable process. We present two alternatives to state esti-
mation: the EKF and a nonlinear high gain observer. Both of
them are tested for extended estimation when unmeasured
disturbances have to be estimated for control purposes.
In particular, both the state estimation methodologies and

the NMPC technique are here focused to the control of a
jacketed CSTR. This kind of reactors are highly nonlinear,
and are known to be an interesting challenge to overcome by
any new control technique. It must be highlighted that this
type of reactors present interesting operational problems
due to complex open-loop behavior such as input and output
multiplicities, ignition/extinction behavior, parameter sensi-
tivity and even nonlinear oscillations (Russo and Bequette,
1995and references therein). These characteristics explain
the need for and the difficulty of feedback control system
design. Additionally, it is often desirable to operate CSTRs
under open-loop unstable conditions. This is because the
reaction rate may yield good productivity while the reactor
temperature is still low enough to prevent side reactions or
catalyst degradation. Another important example of a prac-
tical reactor operated at an open-loop unstable steady state
is the styrene polymerization reactor dealt with in the work
by Prasad et al. (2002). The reasons why polymerization
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processes present challenging control applications are
therein addressed. Particularly, as polymer properties are
generally not measurable on-line model based approaches
are used for control purposes. Moreover, the inclusion of an
estimator is required to handle state variable and parameter
estimation.
The previous reasons evidence why CSTRs are known as

an interesting barrier to be overcome by any new control
technique proposal.
The work is organized as follows. The controller synthesis

is developed in Section 2. In Section 3, the observers design
procedure are dealt with. The evaluation of the observer-
based controller performance is presented via simulation in
Section 4. Finally, in Section 5, the conclusions are pre-
sented.

2. Nonlinear model-predictive controller

When applying MPC, the controller is designed in order
to generate a manipulated variable profile to optimize some
open-loop performance objective on a time intervalp known
as prediction horizon. The feedback loop is incorporated
because the measurement is used to update the optimization
problem for the next time step.
One of the main advantages of MPC is its capability for

handling control problems where off-line computation of
the control law is complicated or even impossible. More-
over, MPC is one of the scarce methods suitable for control-
ling hardly constrained plants. In MPC strategy, the current
control action arises from the solution of an on-line, finite
horizon open-loop optimal control problem. This problem
is solved at each sampling instant, using the current state of
the plant as the initial state. Once the optimization is per-
formed, an optimal control sequence is obtained and only
the first control in the sequence is implemented on the plant.
Although in many applications in the field of nonlinear

processes the control problem is solved via Taylor lineariza-
tion techniques, it is possible to achieve an improved con-
trol performance from an exploitation of the exact nonlin-
ear model structure using nonlinear control techniques. In
NMPC the model of the process is formulated in the form
of nonlinear differential equations. This control strategy in-
volves a computation at each sampling time in order to pre-
dict the values of future outputs and the minimization of
output deviations from their setpoints. This information is
obtained for calculating the future manipulated variables.
The sequence of steps to be followed in order to achieve

the control action can be described as follows. First of all,
the nonlinear original single input/multiple output (SIMO)
model is

ẋ=f (x)+ g(x)u, (1)

y=h(x), (2)

where the vectorx (x ∈ Rn) stands for the state variables
and the inputu (u ∈ R) represents the manipulated variable

to accomplish the control goal. The measured outputs are
represented by vectory (y ∈ Rl ). A discretized representa-
tion of system (1)–(2) can be written in the following form:

xk+1=F(xk)+G(xk)uk,
yk=h(xk). (3)

The optimization problem for the prototypical NMPC for-
mulation is (Meadows and Rawlings, 1997)

min
u(k|k),u(k+1|k),...,u(k+m−1|k) J

=�[x(k + p|k)] +
p−1∑
j=0

L[x(k + j |k),

u(k + j |k),�u(k + j |k)], (4)

whereu(k+1|k) is the inputu(k+1) calculated from infor-
mation available at timek, x(k+1|k) is the statex(k+1) cal-
culated from information available at timek, �u(k+ j |k)=
u(k + j |k)− u(k + j − 1|k), m is the control horizon,p is
the prediction horizon and� andL are (possibly) nonlinear
functions of their arguments. The optimization problem is
solved subject to the constraints discussed below. The func-
tions� andL can be chosen to satisfy a wide variety of ob-
jectives. In many applications, it is meaningful to consider
quadratic functions of the following form:

L=[x(k + j |k)− xs(k)]TQ[x(k + j |k)− xs(k)]
+[u(k + j |k)− us(k)]TR[u(k + j |k)− us(k)]
+�u(k + j |k)TS�u(k + j |k), (5)

�=[x(k + p|k)− xs(k)]TQ[x(k + p|k)− xs(k)], (6)

whereus(k) andxs(k) are steady-state targets foru andx,
respectively.Q is a symmetric positive semi-definite penalty
matrix on the states,R is a symmetric positive definite
penalty matrix on the inputs, andS is a symmetric positive
semi-definite penalty matrix on the rate of change in the in-
puts. The main tuning parameters of the controller arem, p,
Q, R, Sand the sample period�t .
The predicted states are obtained from the nonlinear

model given by Eq. (3). Successive iterations of the model
equations yield:

x(k + 1|k)=F(x(k|k))+G(x(k|k))u(k|k)
≡G1(x(k), u(k|k)),

x(k + 2|k)=G1(x(k + 1|k), u(k + 1|k))
=G1((x(k), u(k|k)), u(k + 1|k))
≡G2(x(k), u(k|k), u(k + 1|k))
...

x(k + j |k)=Gj(x(k), u(k|k),
u(k + 1|k), . . . , u(k + j − 1|k)),

wherex(k|k) = x(k) is a vector of current state variables.
The control horizonm is less than the prediction horizonp,
then, the output predictions are generated by setting inputs
beyond the control horizon equal to the last computed value:
u(k+j |k)=u(k+m−1|k),m�j�p. Note that the prediction
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y(k + j |k) depends on the current state variables, as well
as the calculated input sequence. Therefore, NMPC requires
measurements or estimates of the state variables. This is
discussed in more detail below.
Solution of the NMPC problem yields the input sequence:

u(k|k), u(k + 1|k), . . . , u(k + m − 1|k). Only the first in-
put vector in the sequence is actually implemented:u(k)=
u(k|k). Then, the prediction horizon is moved forward one
time step, and the problem is solved using new process
measurements. This receding horizon formulation yields im-
proved closed-loop performance in the presence of unmea-
sured disturbances and modeling errors.
An important characteristic of process control problems

is the presence of constraints on input, state and output vari-
ables. Input constraints arise due to actuator limitations such
as saturation and rate-of-change restrictions. State and out-
put constraints are usually associated with operational limi-
tations such as equipment specifications and safety consid-
erations. These constraints can be posed as

uL�u(k + j |k)�uU , 0�j�m− 1
�uL��u(k + j |k)��uU , 0�j�m− 1
xL�x(k + j |k)�xU , 1�j�p − 1
yL�y(k + j |k)�yU , 1�j�p − 1

where the superscriptsL and U stand for the admissible
lower and upper bounds for the variables.
Therefore, the model is used to predict the system re-

sponse and, consequently, to optimize it subject to con-
straints on input, output and state variables.
From the explanation above, it is clear that some infor-

mation about the state vector is demanded. However, the
whole state vector is hardly ever available through measure-
ment. In order to provide variables estimates, based on the
available measured outputs, a suitable state observer will be
incorporated. Then, the information brought by the observer
can be used to obtain corrected values for the initial states
even when they are measured. This is because a suitable es-
timator with good stability properties can improve the val-
ues provided by noisy sensors. Moreover, the advantage of
introducing an appropriate observer is that the internal state
estimation will be more reliable than the one obtained by
running the open-loop model (specially in the presence of
dynamics uncertainty or in the present case of unstable sys-
tems). Therefore, we now turn to the observer design prob-
lem.

3. Nonlinear full-order observers

The objective of this section is to introduce an observer
for estimating the whole state vector. In order to perform
the estimation, two different observers are developed. First
of all, a modified version of the widely diffused EKF is
proposed.

3.1. EKF

It is a well-known fact that when the mathematical model
of the process includes high nonlinearities, the performance
of the standard linear Kalman filter deteriorates. In such
cases, it may be suitable to apply the extended version of the
Kalman filter in order to deal with the process nonlinearities.
The derivation of this approach can be found inJazwinski
(1970).
Given the process model (1)–(2) and the initial values

x̂(0|0), PK(0|0), QK andRK , where the symbol(∧) stands
for the estimated variables, then the predicted statex̂ and
weighting matrixPK are computed at the instantk + 1 by
performing the integration of the following equations:

˙̂x=f (x̂)+ g(x̂)u, (7)

ṖK=[fx(x̂)+ gx(x̂)u]PK + PK [fx(x̂)+ gx(x̂)u]T +QK
(8)

wherek is the number of iterations the algorithm has al-
ready been accomplished;fx andgx are the Jacobian matri-
ces off andg on x̂. Note that this particular approach of the
EKF uses the knowledge of the nonlinear model to update
the state of the process. This is an improved version of the
EKF with respect to the most diffused approach in which
both the predicted states and the covariancematrix are calcu-
lated using the linearized model (Bastin and Dochain, 1990;
Tadayyon and Rohani, 2001).
It must be noticed that for the Kalman filter as a linear

unbiased minimum variance estimator, the parametersPK ,
RK andQK have all physical meaning. Particularly,PK is
the estimation covariance matrix,RK is the covariance ma-
trix of the white noise sequences in the measurements and
QK is the covariance matrix of the white noise sequences in
the states. However, when used in the EKF, they lost their
original meaning and turn out to be only tuning parame-
ters. Nevertheless, the speed of estimation convergence is
strongly influenced by the initial value of matrixPK . Since
this value is unknown, it must be guessed in order to start
the EKF algorithm.
In a second step, the filter gain is calculated as follows:

KEKF (k + 1)=PK(k + 1|k)hTx (x̂(k + 1|k))
×[hxPK(k + 1|k)hTx + RK ]−1, (9)

with hx , the Jacobian matrix ofh on x.
Afterwards, the measurementy(k + 1) is processed:

x̂(k + 1|k + 1)=x̂(k + 1|k)+KEKF (k + 1)

×[y(k + 1)− h(x̂(k + 1|k))] (10)

and then, the new weighting matrix is computed:

PK(k + 1|k + 1)

=[I −KEKF (k + 1)hx]PK(k + 1|k)
×[I −KEKF (k + 1)hTx ]
+KEKF (k + 1)RKK

T
EKF (k + 1). (11)
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Then, the counterk is incremented in one and the algorithm
is executed again.
The EKF algorithm is an approximation of the original

linear Kalman filter to deal with nonlinear processes. It is
important to note that when linearization techniques are ap-
plied, convergence and speed of convergence are local prop-
erties, i.e. the estimation error can converge in a given time
interval and diverge in another one.
Another alternative to carry out the state estimation in

this type of systems is to implement an observer based on
a nonlinear design criterion to cope with the information
brought by the process model.

3.2. Luenberger-like nonlinear observer (LNO)

Different approaches to the nonlinear observer problem
have been used. One of the classical solutions consists in the
design of a high gain observer. This method is useful when
there exists a coordinates change that transforms the system
in a canonical form of uniform observability with respect
to the inputs (Gauthier et al., 1992; Ciccarella et al., 1993;
García et al., 2000; Aguilar et al., 2002). This is the type
of design approach herein followed. A high gain observer
is introduced to perform the estimation, and its exponential
convergence in the absence of noise is established (see Ap-
pendix).
To perform the state estimation of the process given by

Eqs. (1)–(2), the following Luenberger-like nonlinear ob-
server (LNO) is developed:

˙̂x = f (x̂)+ g(x̂)u+ O−1(x̂)KLNO(y − h(x̂)). (12)

The system in Eq. (12) is a nonlinear observer for the state
vector x. Note that the error, calculated as the difference
between the measured outputy and its evaluation on the
estimated statesh(x̂), is used to improve the estimation and
works as a correction factor. The productO−1(x̂)KLNO is
the nonlinear gain of the observer, whereKLNO is a vector
of constants to be designed andO is the Jacobian of the
vector�(x). This vector�(x) is defined as:

�(x)=




h(x)

Lf h(x)
...

Ln−1
f h(x)


 , (13)

whereLf h(x) represents the Lie derivative ofh(x) in the di-
rection off (x) (Isidori, 1995). Hence, the following equal-
ities behave:

Lf h(x)=�h(x)
�x

f (x), (14)

L
j
f h(x)=

�Lj−1
f h(x)

�x
f (x). (15)

The vector� constitutes a nonlinear change of coordinates
and it is used to designKLNO such that the dynamics of the

Fig. 1. Scheme of jacketed CSTR.

estimation error̃x, defined as̃x = x − x̂, is stable. Provided
that O is invertible, and that the inputu is bounded (see
Appendix), given the initial condition̂x(0), the following
property behaves for any�>0:

‖x̃(t)‖��e−�t‖x̃(0)‖, (16)

with �>0. The gainKLNO must be appropriately chosen
to guarantee stability. A detailed demonstration based on
Lyapunov arguments is presented in the appendix where
the observer convergence and its relationship with the gain
selection are dealt with.
Therefore, a stable observer has been developed for the

nonlinear system (1)–(2). Provided the stability hypotheses
are held, the observer brings an on-line estimation of the
whole process state. The observer can be easily implemented
and it only uses the information brought by the output
measurements. Moreover, the observer was built using the
whole process model, and this nonlinear procedure avoids
losing information about the dynamics as well as simplifi-
cations, order reduction, or the frequently used linearization
methods.

4. Application to a continuous stirred tank reactor
(CSTR)

4.1. Process description

The performance of the proposed estimation algorithms
will be compared and illustrated through the application to a
jacketed tank reactor. The constructive features of the reactor
are depicted inFig. 1.
The mathematical model of the CSTR, where an exother-

mic irreversible first-order reaction takes place, has been
constructed using three nonlinear ordinary differential
equations. The material and energy balances based on the
assumptions of constant volume inside the reactor, perfect
mixing and constant physical parameters allow to obtain
the dynamical model. The differential equations can be
written in a dimensionless form as follows (Russo and
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Table 1
CSTR model parameters

Dimensionless parameter Value

� 0.072
� 8.0
� 0.3
� 20
q 1.0
�1 10
�2 1.0
x1f 1.0
x2f 0.0
x3f −1.0

Bequette, 1995):

dx1
d	

=q(x1f − x1)− �x1
(x2), (17)

dx2
d	

=q(x2f − x2)− �(x2 − x3)− ��x1
(x2), (18)

dx3
d	

=�1[qc(x3f − x3)+ ��2(x2 − x3)], (19)

with 
:


(x2)= ex2/(1+x2/�). (20)

The state variablesx1, x2 andx3 stand for the dimension-
less reactant concentration, the reactor temperature and the
cooling jacket temperature, respectively. The symbolqc rep-
resents the cooling jacket flow rate (manipulated variable)
and the other symbols represent constant parameters whose
values are defined inTable 1. These values were taken from
Nagrath et al. (2002). Russo and Bequette (1995)reported
that this set of parameters cause a particular operation of the
reactor given by ignition/extinction behavior. The process
dynamics is nonlinear due to the Arrhenius rate expression
which describes the dependence of the reaction rate constant
(
) on the temperature (x2). That is why the CSTR exhibits
an open-loop unstable performance as well as operational
and control problems.Fig. 2 shows the plot of the steady
state values forx2 (denoted asxss2 ) versus the inputqc. The
other states are related with these values by the following
expressions:

xss1 = qx1f

q + �
(xss2 )
, (21)

xss3 = qcx3f + ��2xss2
qc + ��2

. (22)

As shown inFig. 2, the reactor presents multiplicity be-
havior with respect to the jacket temperature and jacket flow
rate (Nagrath et al., 2002). The CSTR modeled by Eqs.
(17)–(19) behaves as an open-loop unstable system if the
temperature inside the reactor is between 1.5 and 3.0. How-
ever, from an economical point of view, it is often desirable
to operate the reactor inside this region. Hence, the selected
control strategy must allow to operate the process in the re-
quired point. The control objective is to make the dimen-

Fig. 2. Steady state points for the jacketed CSTR.

sionless temperature inside the reactor (x2) follow a desired
trajectory. Both temperaturesx2 and x3 are measured. In
this work, we propose a NMPC technique, which demands
the knowledge of the internal state of the process. It must
be pointed out that MPC combined with a Kalman filter,
has already been used for temperature control in a CSTR
(Nagrath et al., 2002). Although it proved to work for regu-
lation purposes (i.e. to setx2 to a fixed value), it is not valid
for tracking objectives. This is because the Kalman filter is
based on a linearization around a fixed point and it hardly
works when trying to follow the unstable open-loop steady-
state region.

4.2. Model predictive control

The flow qc is the manipulated variable and its optimal
value is calculated at each sampling instant using NMPC
methodology. For this application the sample time, predic-
tion horizon and the control horizon were�t = 0.05 min,
p = 20 andm= 5, respectively. The values selected for the
weights in the objective function used for the optimization
along the finite horizon wereQ = diag{0,104,0}, R = 5
andS=0. Because real control valves have a limited range-
ability, there are extreme admissible values for the manipu-
lated variable. In this case: 0�qc�2 for 0�j�m. Under the
previous conditions the optimal control sequence was cal-
culated under the assumption of complete measurability of
the states.Figs. 3and4 show the plots for setpoint tracking
and disturbance rejection. The considered perturbations are
x3f = −0.9 for t >1, x1f = 1.01 for t >15 andq = 0.99
for 6�t�10. In Fig. 4, two different cases are considered:
measured perturbation and unknown perturbation. From this
plot it is clear that to obtain good control performance is
very important the knowledge about the perturbation. Then,
the structure of the states observer is slightly modified to
estimate the perturbations.
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Fig. 3. Process output for reference tracking based on measured states.

Fig. 4. Process output for disturbance rejection based on measured states.

4.3. State observer and perturbation estimation

To cope with the assumption of unmeasured states, an
appropriate state observer must be connected with the con-
troller. Therefore, the observers performance is now ana-
lyzed. In order to evaluate the observers behavior in themore
realistic situation in which neitherx3f nor q are measured,
the observer structures were slightly modified. Bothx3f and
q can be considered the main disturbances of the process.
Note that in the presence of unmeasured disturbances, all
the observers dealt with in Section 2 can be “extended” to
perform the disturbances estimation together with the states
estimation. In such a way, the observers append modeled
disturbances to the original system’s model. In such a way,
an augmented states vector is obtained. Then, the following
observer structure is obtained:

˙̂xext=fext(x̂ext)+ g(x̂ext)u+ Corr, (23)

ŷ=h(x̂ext), (24)

with

x̂ext =
[
x̂

x̂3f
q̂

]
(25)

and

fext =
[
f (x̂ext)

0
0

]
(26)

In this case, the presence of the two zeros infext involves
that there is no information available on the disturbances dy-
namics. These zeros would also appear if the disturbances
dynamics were assumed negligible. However, the distur-
bances could be described by any other type of model, such
as ramps, sinusoids, etc. or they could be the output of a
stochastic process as in the description proposed byLee and
Ricker (1994). In all the alternative cases, an appropriate
deterministic or stochastic model should be considered to
describe the knowledge about the disturbance dynamics.
Note that Corr is the correction term designed according

to each observer. The two observers structures presented in
Section 2 were used. For that purpose, the EKF parameters
were set to the following values:

RK=
[
0.001 0
0 0.001

]
, QK =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0.01 0
0 0 0 0 0.01


 ,

PK(0|0)=



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


 .

For the Luenberger-like observer, the gainKLNO was set to

KLNO =




7.4002 −0.0497
18.0013 −0.2402
14.4019 −0.2901
−0.0031 4.5998
−0.0075 5.2795




in order to fix the eigenvalues of(A + KLNO C) to
{−2.4,−3.0,−2.2,−2.4,−2.0} (see Eq. (34) in the ap-
pendix). Note that the gainKLNO must satisfy the stability
condition stated by (41). A “practical” way for tuning the
LNO consists in selecting the gain by fixing the eigenvalues
of (A+KLNO C) (i.e., the linear part of the error dynamics)
to the desired values, and then check if (41) holds. Pro-
vided the inequality is satisfied, a heuristic tuning has been
accomplished and, moreover, it is endorsed by a rigorous
stability test.
Simulation results were carried out to compare the perfor-

mance of various observers.Fig. 5shows the states estimates
and the disturbances estimates obtained with a Kalman fil-
ter, a standard EKF, a modified EKF (as described in Sec-
tion 3.1) and the LNO. The initial conditions were set to:
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Fig. 5. Observers performance: actual values (-); KF estimates (∗), standard EKF estimates (-.), modified EKF estimates (.) and LNO estimates (o).

x1(0)= x̂1(0)= 0.7748,x2(0)= 1.5000,x̂2(0)= 0.8x2(0),
x3(0)= x̂3(0)=0.4952,x3f (0)= x̂3f (0)=−1,q(0)= q̂(0)=
1.1. The constant input wasqc = 0.2016. From the results,
the LNO provides good estimates, as well as the modified
EKF. The convergence properties of the LNO can be appre-
ciated. On the other hand, both the Kalman filter and the
linearized standard EKF show an inefficient behavior.
In the following subsection, some simulation results are

developed to test the NMPC and observers performance.

4.4. Evaluation of the NMPC/observer performance

Figs. 6and7 show the simulation results for a tracking
case when the NMPController is used in conjunction with
each of the two observers presented in the previous subsec-
tion. The output variablex2 and the manipulated variableqc
are depicted. These plots show that the response using the
EKF is slightly faster than the one obtained for the NLO.
Additionally, when perturbations take place, the EKF shows
a superior disturbance rejection effect (seeFigs. 8and9).
This is due mainly to the fact that the EKF estimates better
the perturbation than the NLO.
An additional test was performed moving the operative

point along the unstable zone. The results are presented in
Figs. 10and 11. In this case, it is important to note that
the delay in the descendent section of the trajectory is due
to the saturation of the manipulated variable at the upper
bound.

Fig. 6. Process output for reference tracking.

Finally, a simulation including sensor noise is performed
to check the robustness of both observers. For this purpose,
the outputsx2 and x3 were assumed corrupted with uni-
formly distributed white noise signals. Note that the whole
knowledge aboutRK andQK was used in the EKF tuning,
andPK(0|0) was chosen to provide the best estimation re-
sults (after testing other possible initial values). The results
are presented inFig. 12. From these plots it is clear that
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Fig. 7. Manipulated variable for reference tracking.

Fig. 8. Process output for disturbance rejection.

the EKF is strongly influenced by the noise. Consequently,
if the estimation is based on noisy measurements, the EKF
requires a larger control effort than the LNO.

5. Conclusions

In the present work the problem of nonlinear model pre-
dictive control for unstable processes has been tackled. In
particular, the analysis has been focused on the estimation
of the states and time varying parameters in a CSTR. In or-
der to control the process, we proposed a control algorithm
that uses all the information available. To perform the esti-
mation, we introduced a high gain full order observer that
robustly estimates the whole state vector and the varying pa-
rameters based on the available measurements. Additionally,
several comparisons with an EKF approach were developed.

Fig. 9. Manipulated variable for disturbance rejection.

Fig. 10. Process output for a large change in the reference.

Fig. 11. Manipulated variable for a large change in the reference.
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Fig. 12. Controlled and manipulated variables in the presence of noisy measurements.

While the design criterion for the LNO is based on stability
properties, the EKF design parameters are just tuning values
to be guessed. This is because when the filter is applied to
a nonlinear deterministic problem, the parameters lose the
original meaning they had in the linear Kalman filter (KF).
Finally, computer simulations were developed to illus-

trate the performance of both the nonlinear observer and
the control strategy. A successful behavior of the whole ob-
server/controller structure was attained.

Notation

q reactor feed flow rate
V reactor volume
x1f dimensionless reactor feed concentration
x2f dimensionless reactor feed temperature
x3f dimensionless cooling-jacket feed temperature

Greek letters

� dimensionless heat of reaction
� dimensionless activation energy
� dimensionless heat-transfer coefficient
�1 reactor to cooling-jacket volume ratio
�2 reactor to cooling-jacket density heat capacity ratio

 dimensionless Arrhenius reaction rate nonlinearity
	 dimensionless time
� nominal Damköhler number based on the reaction

feed
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Appendix

The design parameterKLNO must be selected in order
to guarantee the estimation algorithm convergence. The
Luenberger-like nonlinear observer herein proposed is con-
structed using a change of coordinates (Ciccarella et al.,
1993; García et al., 2000). The change of coordinates se-
lected in this work is the one given by Eq. (13), which
transforms the original system by defining the following
transform variablez:

z= �(x) (27)

and

x = �−1(z), (28)

which constitutes a change of coordinates inRn. Therefore,
the original system given by Eqs. (1)–(2) can be rewritten
in the new coordinates as follows:

ż=Az+ BLnf h(�−1(z))+ Lg�(�−1(z))u, (29)

y=Cz, (30)
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with

A=



0 1 0 · · · 0
0 0 1 · · · 0
...

...

0 0 · · · 0 0


 , B =



0
...

0
1


 ,

C = [ 1 0 · · · 0] (31)

and

Lg�(.)u=




Lgh(x)

LgLf h(x)
...

LgL
n−1
f h(x)


 u. (32)

Then, the following observer in thez-domain is proposed:

˙̂z=(A−KLNOC)ẑ+KLNOy + BLnf h(�−1(ẑ))

+Lg�(�−1(ẑ))u. (33)

The time derivative of the estimation error (z − ẑ) can be
written as follows:

ėz=ż− ˙̂z
= (A+KLNOC)ez + B[Lnf h(�−1(z))− Lnf h(�−1(ẑ))]

+[Lg�(�−1(z))− Lg�(�−1(ẑ))]u. (34)

To select the constant vector gainKLNO , the following Lya-
punov candidate function is chosen:

V = eTz PNez (35)

with PN a positive definite matrix. Then,

V̇=ėTz PNez + eTz PN ėz (36)

= eTz [(A+KLNOC)TPN + PN(A+KLNOC)]ez
+2(� − �̂)TPNez + 2(� − �̂)TPNezu (37)

where�(.) and�(.) stand forLnf h(�
−1(.)) andLg�(�−1(.)),

respectively. Now, provided that bothPN and a positive
definite matrixQN satisfy the following equation:

(A+KLNOC)TPN + PN(A+KLNOC)=−QN (38)

and letqm andpM be the minimum and the maximum eigen-
values ofQN andPN , respectively. Under the assumptions
that:

‖u‖�U,
‖� − �̂‖�L�‖z− ẑ‖,
‖� − �̂‖�L�‖z− ẑ‖, (39)

whereL� andL� are the Lipschitz constant of the respective
functions and provided the previous conditions behave, the
following inequality can be obtained:

V̇�(−qm + 2pM(L� + L�U))‖ez‖2. (40)

If the gainKLNO is selected such thatpM andqm satisfy

−qm + 2pM(L� + L�U)<0, (41)

then,V̇ turns out to be negative and the norm of the estima-
tion error goes to zero ast → ∞. Hence, the convergence

of the algorithm is guaranteed. If the transform�(x) is
nonsingular and�−1 is uniformly Lipschitz, then revisiting
Eqs. (27)–(28) the condition given by Eq. (16) is obtained.
It must be remarked that Eq. (40) sets a sufficient condi-

tion to guarantee stability. However, in some cases it may
result rather conservative. That is why in many applications
good estimation performance can be achieved even when
the gainKLNO does not satisfy Eq. (40).
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