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a b s t r a c t

In 2010 serotype O foot-and-mouth disease virus of the Mya98 lineage/SEA topotype spread into most
East Asian countries. During 2010–2011 it was responsible for major outbreaks in the Republic of
Korea where a monovalent O/Manisa vaccine (belonging to the ME-SA topotype) was applied to help con-
trol the outbreaks. Subsequently, all susceptible animals were vaccinated every 6 months with a vaccine
containing the O/Manisa antigen. Despite vaccination, the disease re-occurred in 2014 and afterwards
almost annually. This study focuses on the in vivo efficacy in pigs of a high quality monovalent commer-
cial O1/Campos vaccine against heterologous challenge with a representative 2015 isolate from the
Jincheon Province of the Republic of Korea. Initially, viral characterizations and r1 determinations were
performed on six viruses recovered in that region during 2014–2015, centering on their relationship with
the well characterized and widely available O1/Campos vaccine strain. Genetic and antigenic analysis
indicated a close similarity among 2014–2015 Korean isolates and with the previous 2010 virus, with dis-
tinct differences with the O1/Campos strain. Virus neutralisation tests using O1/Campos cattle and pig
post vaccination sera and recent Korean outbreak viruses predicted acceptable cross-protection after a
single vaccination, as indicated by r1 values, and in pigs, by expectancy of protection. In agreement with
the in vitro estimates, in vivo challenge with a selected field isolate indicated that O1/Campos primo vac-
cinated pigs were protected, resulting in a PD50 value of nearly 10. The results indicated that good quality
oil vaccines containing the O1/Campos strain can successfully be used against isolates belonging to the O
Mya98/SEA topotype.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Foot-and-Mouth Disease (FMD) is a highly transmissible and
economically devastating vesicular disease of cloven-hoofed ani-
mals [1,2]. Its presence severely constrains international trade of
livestock and animal products and poses a constant threat to
FMD-free countries. The causative agent, FMD virus (FMDV),
belongs to the genus Aphthovirus within the Picornaviridae family
[2].
There are seven immunologically distinct serotypes, and new
variants arise continuously [3–4] that are grouped in intratypic
genetic lineages within topotypes. Infection or vaccination with
one serotype does not cross-protect against the other serotypes
and may fail to protect fully against some strains within serotypes
[5,6].

Inactivated vaccines are widely used to control, eradicate and
prevent FMD [7,8]. Historically, serotype O vaccine strains can be
included within two main groups. One represented by the South
American strain O1/Campos, selected and harmonized for use in
the region, as well as by the related viruses: O/Lausanne,
OBFS/1860 (UK1967) and O/Kaufbeuren, which were widely used
in Europe. The second group, represented by the O/Manisa strain,
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was used mainly in Middle East and Asia, as well as in North and
South Africa [9]. However, the vaccine has not provided effective
protection against recent viruses from the Middle East [10], requir-
ing the testing of alternative vaccine strains. In this regard, prelim-
inary studies were addressed with some candidate vaccine strains,
establishing antigenic correlations through r1 values [11].

In 2010 a FMDV serotype O, Southeast Asia (SEA) topotype/
Myanmar 98 (Mya98) lineage, endemic in Southeast Asia,
expanded into most eastern Asian countries [12,13]. In 2010 major
outbreaks occurred in the Republic of Korea where the culling of
hundreds of thousands of pigs took place [14,15]. A monovalent
O/Manisa vaccine was applied to assist in controlling the episode.
Subsequently, to help prevent recurrence of the disease, it was
mandatory to vaccinate all susceptible animals twice a year with
trivalent vaccines containing O/Manisa, A Malaysia 97, and Asia 1
Shamir viruses [16,17].

Despite nationwide immunization, the Mya98 lineage of sero-
type O reappeared in 2014 and afterwards almost every year
[17]. These recurrences revived the controversy over the efficacy
of the O/Manisa vaccine [11,15,16], backed by the low or moderate
serological relationship between O/Manisa and Korean 2010 stains
described in some reports (r1 value of approximately 0.3) [15,16]. It
also reinforced the need to search for an alternative vaccine strain,
preferably a well-established and well-characterized strain with a
broad antigenic spectrum.

The antigen derived from O1/Campos strain blended in oil adju-
vanted vaccines gave effective and broad immunological coverage
against South American strains [18,19]. In addition, the strain was
successfully used to assist in controlling a widespread epidemic in
pigs caused by serotype O in Taiwan in 1997 [20,21].

In a previous in vitro study we suggested that good quality vac-
cines containing the O1/Campos strain can be used against repre-
sentative viruses of three currently circulating topotypes in Asia
(SEA, ME-SA and CATHAY), including a 2010 Korean isolate belong-
ing to the SEA topotype, Mya98 lineage [22]. The results supported
the application of O1/Campos vaccines in emergency vaccination
programs in pigs in the Republic of Korea, since 2016.

This study extends to the 2014-2015 O/Mya98 Korean viruses
the previous in vitro assessments and confirms the accuracy of
such predictions by an in vivo vaccination and challenge study in
pigs with a representative 2015 Korean isolate.
2. Materials and methods

2.1. Cell lines and FMDV strains

Baby hamster kidney (BHK)-21 cells were used for all virus
related work. O1/Campos South American vaccine virus was pro-
vided by SENASA. Korean isolates were received from the Animal
and Plant Quarantine Agency in the Republic of Korea (APQA).
Viruses O/SKR/02 D1-2, O/SKR/02 D6-2, O/SKR/02 D11-1, were iso-
lated in the year 2014 and virus O/SKR/84 YDM in 2015 from pig
feet tissue and viruses O/SKR/71 GHW, O/SKR/35 LYC in the year
2015 from cattle tongue. For serological assays, viruses were
amplified in cell monolayers, clarified and stored at -70 �C. Dul-
beccós modified minimal essential medium without serum was
used for cell infection. All field viruses were passaged seven times
to reach titres around 107 TCID50.
2.2. Genetic characterization: Phylogenetic analysis

RNA extraction, amplification and sequencing conditions to
determine the sequence of the complete VP1-coding region of
the isolates were as described [23]. Phylogenetic analysis was per-
formed using the program MEGA, version 7.0 [24], applying the
General Time Reversible evolutionary model to construct unrooted
trees, with evolutionary distances calculated using the Kimura
two-parameter method and a bootstrap resampling analysis per-
formed with 1000 replicates.

2.3. Antigenic characterization

Monoclonal antibody profiling, was determined through a trap-
ping ELISA using a panel of 21 monoclonal antibodies (MAbs),
characterized as described [25]. MAbs were raised against FMDV
strains O1/Campos (1H10, 1B9-3, 17, 2B3, 3H10), O1/Caseros (8G,
3, 74, 69, 2-6F) and O/Taiwan (3A1, 3D1, 4B2, 1A11, 3A2, 2F8,
1B3, 2D4, 1B9, 2C9, 3G10). To obtain a relationship between
viruses, coefficient of correlation (cc) of their MAb reactivity values
was calculated by applying a linear regression to fit the best
straight line. cc values = 1 correspond to identical profiles; cc val-
ues close to 0 indicate totally dissimilar antigenic profiles [25].

2.4. In vitro vaccine matching studies

2.4.1. r1 determination
Virus neutralization (VN) titers against the homologous

O1/Campos vaccine strain and the heterologous field viruses were
obtained by two-dimensional assays performed as described in
the World Organization for Animal Health (OIE) Manual [26] using
pools of five medium to high titer serum samples collected from
cattle or pigs vaccinated with a 2 ml dose of O1/Campos monova-
lent vaccine. The r1 values were calculated as the reciprocal serum
titer against heterologous virus/reciprocal serum titer against
homologous vaccine virus.

2.4.2. Expectancy of protection (EPP)
EPP estimates the likelihood of protection by correlating VN

antibody titers in vaccinated animals with clinical protection
against challenge with 10,000 infective doses, based on predeter-
mined tables established in cattle for the O1/Campos vaccine strain
[27]. Titers were expressed as log10 of the reciprocal sera dilution.
Four different commercial monovalent vaccine batches were
assessed using groups of 10 pigs for each batch tested.

2.5. Vaccine formulation and approval

The commercial vaccines (Aftogen Oleo�) were produced by
Biogénesis Bagó (Argentina) according to good manufacturing
practices as single-in-oil emulsion vaccines (PD50 > 6) using
O1/Campos purified antigen [28]. They were approved by SENASA
(Argentine Animal Health Authorities) for safety, purity and
potency in swine following local [29,30], OIE [26], European Phar-
macopeia (Ph.Eur.) [31], and specific Korean standards before
release to the market. The batches were also approved by APQA
(Animal and Plant Quarentine Agency) and applied during the
2016 vaccination program in Korea.

2.6. In vivo challenge test

2.6.1. Challenge virus stock production
The work was performed according to the Argentine Animal

Ethics Code in the animal facility of SENASA, Argentina. BHK
adapted O/SKR/84 YDM virus was passaged twice by intradermal
inoculation of 106.8 TCID50/ml in the heel bulb of each mayor digit
of the left forefoot in 2-month-old seronegative Landrace x Large
White pigs (approximately 30 kg) obtained from a commercial
farm. Epithelia recovered from the second passage were mortared
in DMEM (proportion 1:5), clarified by centrifugation, aliquoted
and stored at �80 �C. Aliquots were further titrated.



Fig. 1. Phylogenetic tree showing the genetic relationships of FMDV type O 2014–2015 isolates in Korea. Maximum Likelihood tree was constructed computing the
evolutionary distances by the Kimura-two (K-2) parameter model, based on the comparison of the complete region coding for VP1 protein, using the Mega program, version
7.0. Sequences obtained in this work are indicated, together with their accession numbers (▲). Viruses used for comparisons were obtained from GenBank. Relevant lineages
and topotypes are indicated with brackets. For reasons of clarity non related topotypes or clades including geographical and chronologically related isolates are shown as
compressed branches (filled triangles). A distance of 5% is depicted by the scale.
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2.6.2. Pig immunization and challenge
Two-month healthy Landrace x Large White pigs were used.

Prior to the study, absence of anti-FMDV antibodies was confirmed
by lpELISA, VN [26] and I-ELISA3ABC/EITB [32].

Vaccination and challenge were carried out following the
scheme recommended for cattle in the Ph.Eur. [31]. Three groups
of six pigs each were distributed separately. Twenty-eight days
prior to challenge, pigs were vaccinated intramuscularly in the
neck region above the left shoulder with: 2 ml (full dose), 0.5 ml
(1/4 dose) or 0.125 ml (1/16 dose). Two unvaccinated pigs were
included as controls. Seventy-two hours before challenge they
were transferred to OIE level 4 animal facilities. Unvaccinated con-
trols and the three vaccinated groups were kept in two separate
rooms with independent air handling facility. The vaccinated
groups had no direct contact among them and were provided with
separate feed and water troughs. Sedated pigs were treated with
local anesthesia and inoculated intradermally in 2 sites in the plan-
tar heel bulb of each major digit of each right foot with 10,000 ID in
a total volume of 0.2 ml.

Animals were observed for clinical disease daily for 8 days, and
those showing lesions at sites other than the inoculation sites were
considered as non-protected. The PD50 values were calculated by
the Spearman-Kärber method [33].
3. Results

3.1. Genetic characterization: Phylogenetic analysis

Results from phylogenetic analysis of the complete VP1 gene
sequence (Fig. 1) showed that the 2014–2015 Korean isolates
belonged to the Mya98 lineage within the SEA topotype. All iso-
lates, independently from the host species from which they were
recovered (pigs or cattle) were genetically almost identical, show-
ing homology over 99% among them. When compared to previ-
Fig. 2. MAbs profiling of Korean isolates. Korean amples were analyzed by trapping ELISA
2B3, 3H10), O1/Caseros (8G, 3, 74, 69, 2-6F) and O/Taiwan (3A1, 3D1, 4B2, 1A11, 3A2, 2F8
values obtained with each of the MAbs after subtracting their corresponding blank w
Comparative profiles between: a representative 2014–2015 Korean virus, a 2010 Korean

Table 1
Coefficient of correlation of the MAbs reactivity values between the indicated viruses.

O1/CAMPOS O SKR/02 D1-2 O SKR/02 D6-2 O SKR/71

O1/CAMPOS – 0.52 0.53 0.51
O SKR/02 D1-2 – 0.99 0.97
O SKR/02 D6-2 – 0.98
O SKR/71 GHW –
O SKR/35 LYC
O SKR/84 YDM
O SKR/02 D1-11
O SOUTH KOREA 2010
ously reported viruses, they showed the closest relationship with
one isolate collected in 2014 and three isolates collected in 2016
in the Republic of Korea, with which they recorded 99% and 98%
homology, respectively. The 2014–2015 Korean isolates clustered
within a group containing isolates responsible for outbreaks/emer-
gencies recorded in 2010 in Hong Kong, Japan, China, Russia and
Republic of Korea, with which they present approximately
95–96% homology. Compared with the strain O1/Campos the field
isolates showed nucleotide differences of approximately 25%, of
which 21% were reflected in amino acid changes, representing dis-
tances of 17% on average.

3.2. Antigenic characterization

Antigenic relatedness between viruses was established by a
rapid and sensitive approach based on the comparative analysis
of ELISA reactivity profiles of the viruses with 21 MAbs (Fig. 2)
and the cc values derived therefrom (Table 1). The results indicated
almost identical patterns among the different 2014–2015 isolates,
with cc values close to 1, and a close relationship between them
and the 2010 variant recording cc values of approximately 0.8.
Average cc values for O1/Campos vaccine virus when compared
to the 2014–2015 Korean isolates were approximately 0.6.

Analysis of reactivity with individual MAbs established clear
differences with O1/Campos. Whereas O1/Campos showed reactiv-
ity with MAbs 1H10, 1B9, 8G, and 2-6F, the Korean 2014–2015 iso-
lates reacted poorly, as did the 2010 isolate. The reactivity with
MAb 3 that had been lost in the 2010 virus was recovered in the
2014–2015 isolates. Reactivity with MAbs 17 and 74, known to
have the capacity to in vitro neutralize the strain of origin O1/Cam-
pos, was preserved in all the Korean viruses.

The resulting profiles derived from the reactivities with the 11
MAbs produced against the virus O/Taiwan/97 were rather homo-
geneous between the O1/Campos and the Korean viruses. Particu-
larly, the weak reactivity of the O1/Campos virus observed for
using a panel of 21 MAbs raised against FMDV strains O1/Campos (1H10, 1B9-3, 17,
, 1B3, 2D4, 1B9, 2C9, 3G10). A blank with no virus was included in each test. The OD
ere plotted. A. Comparative profiles among the six 2014–2015 Korean isolates. B.
isolate and the vaccine strain O1/Campos.

GHW O SKR/35 LYC O SKR/84 YDM O SKR/02 D1-11 O SOUTH KOREA
2010

0.61 0.62 0.56 0.50
0.95 0.95 0.97 0.80
0.95 0.96 0.98 0.84
0.96 0.96 0.97 0.79
– 0.95 0.96 0.81

– 0.98 0.79
– 0.79

–
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MAbs 3A1, 3D1, 1A11, 2F8 and 2C9, was also recorded for the 2010
and 2014–2015 Korean isolates, except for MAb 2F8 which showed
considerable reactivity.

3.3. In vitro vaccine matching studies

3.3.1. r1 determination
To infer to what extent the vaccine strain O1/Campos was able

to cross-protect the Korean isolates, r1 values were calculated. Con-
sidering that these viruses were infectious in pigs, r1 determina-
tions included a pool of sera from vaccinated pigs. Average
neutralization titers with the homologous virus O1/Campos was 2
and 2.4 for the pool of pig and cattle sera, respectively, while for
the Korean viruses they ranged between 1.9 and 2.2 for pig and
1.9 to 2.3 for cattle (Fig. 3). Average r1 values were all above 0.75
and 0.4 for pigs and cattle, respectively, which is higher than the
0.3 cut off, indicating that the O1/Campos strain is likely to effec-
tively protect against challenge with Korean isolates.

3.3.2. Expectancy of protection
The protective capacity of the vaccine strain was further

assessed by EPP, selecting the last virus collected in 2015 from
pigs, O/SKR/84 YDM. Four different commercial monovalent vac-
cine batches were assessed using groups of 10 pigs for each batch
tested and results of average VN titers for each batch are given in
Table 2. Prior to vaccination all animals were seronegative. Average
VN titers against the homologous virus at 21 and 28 DPV reached
values �1.84 and �1.89, respectively, corresponding to EPP values
of at least 85% and 87%. When sera were tested with the heterolo-
gous O/SKR/84 YDM virus, average VN titers for the 4 batches were
2.0, 2.05, 1.88 and 1.92, at 21 DPV, and 1.92, 2.24, 2.0 and 2.25 at 28
DPV, corresponding to EPP values of 90.6%, 91.9%, 86.6% and 88.1%
at 21 DPV and of 88.1%, 95.5%, 90.6% and 95.6% at 28 DPV. At the
Fig. 3. VN titers and their corresponding r1 values of O1/Campos vaccine against Korean s
least 2 independent assays for each individual sample with pools of sera derived from pig
27 DPV, respectively. B. Average r1 values were calculated from the individual r1 values o
r1 values �0.3 indicate that the field isolate is sufficiently similar to the vaccine strain (

Table 2
VN titers and their corresponding EPP estimations for O/SKR/84 YDM strain using FMDV O

Batch 0 DPV 21 DPV

O1/Campos O/SKR/84 YDM O1/Campos O/

VN VN VNa (SD) b EPP%c VN
1 < 0.90 < 0.90 2.13 (0.14) 93.6 2.0
2 < 0.90 < 0.90 1.96 (0.19) 89.4 2.0
3 < 0.90 < 0.90 1.84 (0.24) 85.0 1.8
4 < 0.90 < 0.90 2.13 (0.26) 93.6 1.9

a Average value obtained from groups of 10 vaccinated pigs.
b SD: Standard deviation.
c EPP: Calculated from the mean VN titer of the 10 individual serum samples. An EPP �

vaccine strain.
individual level, over 85% of the animals gave VN titers �1.65 (EP
P � 75%) (data not shown). The results indicated that the vaccine
used containing the O1/Campos strain is likely to confer effective
protection against this heterologous strain.
3.4. In vivo challenge test

Further studies were performed to confirm the in vitro results
through the in vivo gold standard challenge test. Unvaccinated con-
trol animals showed generalized disease with lesions in the four
feet. Only one animal in the full dose group was not protected,
whereas in each of the groups receiving 1/16 and 1/4 vaccine dose,
two animals developed generalized disease (Table 3). Conse-
quently, the vaccine conferred protection, reaching a PD50 value
of 9.96 against heterologous challenge.

Serological response registered no detection of neutralizing
antibodies in sera at 0 DPV. At 28 DPV all animals in the three
groups had VN antibody titers for both, homologous and heterolo-
gous strains, leading to EPP values greater than the one indicative
of protection (VN titer � 1.65; EPP � 75% (Table 3).
4. Discussion

Identifying the most effective vaccine strains to control FMD
outbreaks that could spread to new regions is essential for contin-
gency plans. Likewise, the suitability of vaccine strains maintained
in strategic antigen reserves should be monitored continuously.

The present study is the first report on the effectiveness of
South American FMDV vaccine strain O1/Campos to confer protec-
tion against in vivo challenge of pigs with an O Mya98/SEA topo-
type isolate.
trains. A. Homologous and heterologous average VN titers were obtained through at
s and cattle vaccinated with an O1/Campos monovalent vaccine, collected at 21 and
btained in each of the assays. The interpretation of the results was as described [26].
the vaccine is likely to confer protection). Bars indicate standard deviation.

1/Campos vaccination in pigs.

28 DPV

SKR/84 YDM O1/Campos O/SKR/84 YDM

(SD) EPP% VN (SD) EPP% VN (SD) EPP%
0 (0.15) 90.6 2.01 (0.31) 91.0 1.92 (0.28) 88.1
5 (0.16) 91.9 2.10 (0.17) 93.1 2.24 (0.09) 95.5
8 (0.29) 86.6 1.89 (0.24) 87.0 2.00 (0.25) 90.6
2 (0.38) 88.1 2.40 (0.07) 97.3 2.25 (0.28) 95.6

75% (VN titer �1.65) indicates that the vaccine will protect against the homologous



Table 3
Serological responses and protection to heterologous challenge of pigs vaccinated with O1/Campos vaccine.

Animal 2 ml dose 0.5 ml dose 0.125 ml dose

O1/Campos O/SKR/84 YDM O1/Campos O/SKR/84
YDM

O1/Campos O/SKR/84
YDM

VN titer EPP
%

VN titer EPP
%

Protection Animal VN
titer

EPP
%

VN
titer

EPP
%

Protection Animal VN
titer

EPP
%

VN
titer

EPP
%

Protection

26 2.03 91.7 2.29 96.3 P 33 2.13 93.9 2.19 94.0 P 40 2.07 92.6 2.14 93.9 P
27 2.04 91.7 1.85 85.8 P 34 2.12 93.5 1.72 79.3 P 41 1.70 78.2 1.75 81.3 P
28 2.22 95.2 2.23 95.5 P 35 2.08 92.6 1.95 89.4 P 42 1.91 88.1 1.94 88.8 P
29 1.88 86.6 2.20 94.9 NP 36 2.04 91.7 2.18 94.6 P 43 2.14 93.9 2.34 96.7 P
31 1.92 88.1 2.03 91.7 P 38 2.34 96.7 2.43 97.6 NP 44 1.85 85.8 1.84 85.0 NP
32 2.32 96.5 2.31 96.5 P 39 1.74 80.3 1.90 87.4 NP 45 2.17 94.6 2.15 94.2 NP

Average 2.32 91.6 2.15 93.5 2.07 91.4 2.06 90.5 1.97 88.9 2.03 90.0
SD 0.17 3.85 0.18 4.12 0.20 5.71 0.25 6.69 0.18 6.26 0.22 5.99
P/NP 5/6 4/6 4/6

SD: Standard deviation.
P: protected.
NP: non protected.
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This lineage, endemic in Southeast Asia, has been responsible
for recurrent episodes in the Republic of Korea despite systematic
vaccination with O/Manisa vaccine. Low r1 values have been
reported between O/Manisa and 2010 Korean viruses [15,16].
Moreover this vaccine strain failed to protect pigs against chal-
lenge with the 2010 Korean isolate at 21 DPV [10], which
demanded the search for new vaccine strain candidates [11].

This scenario encouraged the evaluation of the protective
capacity of the well-established O1/Campos vaccine strain that
has been widely and successfully used not only in South America
but also in Asian regions, such as Taiwan (20,21). In addition it is
available as a reserve in a number of international FMDV vaccine
banks.

Our previous in vitro studies indicated the potential of high
quality O1/Campos vaccine to provide protection against represen-
tative isolates of the 3 serotype O topotypes active in Asia, achiev-
ing protective immunity after a single vaccination which is
especially critical for emergency vaccination. The work included
a 2010 Korean isolate (22). In the present study we extended the
characterization to Korean viruses isolated during 2014–2015,
and confirmed the in vitro results for Mya98 isolates with an
in vivo challenge test in pigs.

Genetic and antigenic characterizations indicated high identity
among all 2014–2015 isolates, regardless of their species of origin,
with close homology to the 2010 viruses and other strains circulat-
ing in East Asia, suggesting that a monovalent high quality vaccine
that confers protection against these isolates could by itself control
a large proportion of the episodes that takes place in the region.

The observation that the Korean viruses maintained reactivity
with two MAbs having the capacity to in vitro neutralize the vac-
cine strain O1/Campos could account for the protective response
of the O1/Campos against Korean isolates described in this study.
Previous reports showed that animals infected with isolates lack-
ing reactivity with these two MAbs required revaccination to attain
satisfactory protection [34–36].

In vitro inferences to predict the likelihood that O1/Campos vac-
cinated animals would be protected against challenge were deter-
mined by r1 values. Considering the epidemiological relevance of
pigs, and even though vaccine-matching tests traditionally use
bovine sera, we also tested pig sera. The r1 values indicated consid-
erable degree of relatedness between the O1/Campos and the Kor-
ean viruses, suggesting that this vaccine strain is likely to
effectively protect cattle and pigs against these isolates. All viruses
recorded higher r1 values for the pig pool than for the cattle pool.
This could be explained, considering that immunological responses
can be quite different in cattle and pigs, although the mechanisms
involved are still unclear [37]. Although r1 values were all above
the established 0.3 cut-off used to infer the protective capacity of
the vaccine strain, the values for the individual Korean viruses
were variable. Considering the inherent variability of r1 value
determinations [28,38], most likely this variation is not indicative
of fluctuating antigenic phenotypes.

EPP estimation was assessed with 4 different vaccine batches
against the last pig isolate obtained during the 2015 episode. The
results revealed a cross-protective response by the O1/Campos vac-
cine at 21 and 28 DPV, with most EPPs above the indicative value
for an expected protection [26,27]. Although protection against
FMDV is associated with the induction of high levels of circulating
neutralizing antibodies, the titers that correspond to protection are
difficult to establish universally for various conditions (heterolo-
gous viruses, different species, revaccination, different days after
vaccination, vaccine potency, etc.). In overall correlations between
VN titers and protection were established for cattle, assessing
homologous viruses. Nevertheless, international guidelines con-
sider that, when not available for certain target species, cattle data
can be endorsed for its use in other species [26,37]. In addition,
previous studies with FMDV serotype O indicated that cattle with
serum titers �1.65 (EPP � 75%) challenged with heterologous virus
were protected [35,36]. Overall VN titers registered in this study
were above this threshold.

Due to the limitations of in vitro predictions for heterologous
protection, particularly for pigs, an in vivo study was performed,
which is the most direct and reliable method to measure cross-
protection [26]. The result of this in vivo test indicated effective
heterologous protection of O1/Campos primo vaccinated pigs
(PD50 value of nearly 10), which is in agreement with the
in vitro data.

At the individual level it was observed that, despite having high
VN titers some animals were not protected (17% in the full dose
group; 28% for all the groups). It should be mentioned that if this
would occur at the field level, this proportion would not impede
controlling the spread of the disease. Such miss-matches have been
described [27,29,39].

The results demonstrate that good quality O1/Campos vaccines
protect Mya98/SEA topotype viruses circulating in East Asia. The
obtained PD50 value of over 9 is highly satisfactory considering
that a PD50 value >3 is recommended for prophylactic purposes
and vaccines formulated to have a homologous potency >6PD50/-
dose compensate for a poor match between the vaccine and the
field virus [40]. In addition, this study is valuable as an input to
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the limited number of in vitro and in vivo correlation data available
to establish heterologous protection in pigs.
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