
Optimal supervisory control of steam generators
operating in parallel

Vicente Costanza
�
and Pablo S. Rivadeneira

Process Control Area, INTEC (UNL-CONICET), Santa Fe, Argentina

September 3, 2015

Abstract

A supervisory control working as a �dynamic feedback�is substantiated
for optimally allocating demands to a group of n boilers in parallel. The
set-points to each conventional controlled boiler are continuously changed
while: (i) minimizing a combined cost, which is cumulative in time and
takes into account the dynamics of all individual boilers, and (ii) gener-
ating a strategy that can cope with general disturbances, like changes in
fuel composition and noisy measurements, i.e. with di¤erences between
the predicted and the measured values of the variables. The structure of
the problem results in a 2n a¢ ne-linear model subject to a quadratic cost,
and the resulting optimal control is also a¢ ne-linear with time-dependent
coe¢ cients, which do not depend on the total vapor demand. The meth-
ods are tested with a two case studies for 2 and 3 boilers. It is shown
that this dynamical supervisory control leads to savings of at least 10%
relative to nontrivial piecewise-constant strategies.

Keywords: supervisory control, optimal control, multilayer boilers, closed-
loop identi�cation, boiler control

1 Introduction

Most of the heating systems, although not all, employ boilers to produce hot
water or steam. All of the major industrial energy users devote signi�cant
proportions of their fossil fuel consumption to steam production: food processing
(57%), pulp and paper (81%), chemicals (42%), petroleum re�ning (23%), and
primary metals (10%) [1]. Since industrial systems are very diverse, but often
have major steam systems in common, boilers make a useful target for energy
e¢ ciency optimization . Also, heating systems in urban buildings consume a
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substantial proportion of their energy, and are responsible for about 25% of their
total carbon emissions, as it is assessed by di¤erent surveys in Europe [2, 3].
Despite the enormous e¤ort made over the last decades to improve the energy
e¢ ciency of these heating systems, a huge potential for further energy saving
still persists.
A boiler unit that produces steam is a critical component of the power plant

system. One of the main concerns in recent years about the operation of a
boiler unit has been the improving its controls as shown by the survey and
consecutive experiments carried out in [2]. However, in the current literature
and in the industrial environment, many control strategies have been applied
to control the boiler as a process unit, ranging from standard methods like
proportional integral derivative (PID) control [4] to intelligent and sophisticated
methodologies as optimal control, sliding mode control, model predictive control
and others, see [4, 6, 5] and their references.
Other main concerns of plant operation have been the basic start-up strategy

of steam boilers [7], and the minimization of CO2 emissions [8], where advanced
techniques of optimization and adaptive monitoring schemes have been used to
improve these objectives. However, the operation of groups of several boilers
working in parallel has received little attention in recent technical literature.
In [9], an attempt to optimize energy losses to the environment (or equiva-

lently to maximize the e¢ ciency of the set of boilers), de�ned from theoretical
relations among the many physical variables involved through a supervisory
scheme control, is carried out in detail. That supervisory control assigns to
each boiler its corresponding vapor production set-point by solving a static op-
timization problem by linear or nonlinear programming, which is di¢ cult to
adapt simultaneously to varying demands of steam generation in a real time
operation.
Optimal allocation problems or supervisory control have a long tradition in

engineering practice. In chemical processes, dynamic optimization frequently
deals with distributing global energy demands of the plant into individual de-
mands required by each member of a group of service equipment (boilers, heat-
exchangers, pumps, and the like), while minimizing some predetermined gen-
eralized cost. Usually these individual demands translate into set-points com-
municated to controllers of the PID type, which commonly are well tuned and
perform e¢ ciently. In this paper two aspects of this routine will be revised:
(i) the methodology for deciding the individual set-points after a new total load
is required from a group of boilers, and (ii) the convenience of changing these
orders continuously in time, by optimizing some combined cost (typically the
compromise vapor versus fuel) accumulated during a �xed �nite horizon.
According to [10]: �... Real Time Optimizers have been implemented in

order to optimize the cost of operating one or more loads. These Real Time
Optimizers have detected a steady-state load requirement and then have pro-
vided control signals that optimize the cost of operating the loads based on this
steady state load requirement. In order to operate in this fashion, the Real Time
Optimizers have had to wait for transient process disturbances to settle out so
that a steady state condition exists before such Optimizers can invoke their op-
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timization procedures. However, for processes with slow dynamics and/or high
levels of disturbances, the dependence of Real Time Optimizers on steady-state
information substantially deteriorates the performance of the control system, as
no optimization is performed during the transients created by disturbances such
as changes in set-point and/or changes in load.�
Other standard treatments follow static optimization lines, common to re-

search operation engineering (see for instance [11], [12]). One of the patents
related to the topic of this paper ([13], Fig. 1) asserts: �Boiler optimization is
included in on-line control of parallel boilers by multiplying the total heat per
unit time which must be supplied to all parallel boilers by the percentage of
the total heat which should be supplied to each boiler in order to substantially
maximize energy e¢ ciency. The result of such multiplication is the heat per
unit time which should be supplied to each boiler.� Despite the �on-line�qual-
i�cation used in this description, it is clear that the �heat per unit time�works
as another set-point, and that this target is kept �xed while the total demand
is constant. In other words, the resulting demand will be piecewise-constant,
each time waiting for another static optimization routine to determine the new
appropriate heat rate.
To the authors� knowledge, a thoroughly dynamic point-of-view has only

been applied to particular situations, like redundant control and related prob-
lems [14]. Here an original �dynamic feedback� strategy will be sought, in
the sense that the set-points to each boiler will be allowed to be continuously
changed while: (i) minimizing a combined cost, which is cumulative in time and
takes into account the dynamics of all the individual boilers, and (ii) generat-
ing an optimal control that can cope with general disturbances, like changes in
fuel composition, noisy measurements, etc., i.e. with di¤erences between the
predicted and the measured values of the variables. With these objectives in
mind, a dynamics for the responses of each boiler to a new set-point indication
will be assessed, directly from experimental data. Then the whole group of
n boilers will be assembled into a general model with an (n� 1)-dimensional
control vector associated with heat demands, the remaining one determined by
the residue with respect to the global demand, which is known during each
optimization time horizon. This new �big� system, together with a typical
quadratic cost functional, conform an optimal control problem that has a nice
mathematical solution, namely an a¢ ne-linear feedback law with time-variant
coe¢ cients. Both the proportional coe¢ cient and the feed-through term in the
control law can be calculated only once for a unitary global demand, and stored
in memory, the updating for another demand being straightforward. The na-
ture of the modeling also admits a stochastically optimal handling of noisy and
systemic perturbations, and eventually a suboptimal online correction [15] of
the feedback law due to hard restrictions on control values [9]. In summary,
previous papers mostly want to improve the servo control of just a single boiler
in di¤erent environments, or to allocate steady targets to several boilers. In the
�rst case, they attempt to increase the speed in reaching the set-points provided
by the supervisory control. In the second one, they assume that the values of
the set-points will be kept constant during a certain period of time (as far as
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Figure 1: Scheme showing the control instrumentation for two boilers in parallel,
feeding a unique header. Details are given in [13].

the total vapor demand does not change). The main contribution of our work,
by allowing the set-points to be time-varying for all members of the group, even
when the total vapor demand remains constant, is then to �nd their optimal
evolution with respect to a quadratic cost criterion.
The rest of the article will be organized as follows: in Section 2 the theoretical

setup of the problem is posed and the methods to solve it are developed, i.e. the
modeling for the dynamics and the design of the cost objective are made explicit,
the deterministic optimal solution analytically found, the procedure for updating
the feedback under changes in the global demand is justi�ed, and stochastic
aspects are substantiated. Section 3 is devoted to numerical calculations and
validations, and all issues illustrated for the case studies associated with groups
of 2 and 3 boilers. The last Section exposes the conclusions.

2 Theoretical setup

2.1 State space models: modeling and identi�cation.

In what follows it will be assumed that a group of boilers or similar service
equipment is in operation as a part of an industrial plant, its members working
in parallel, evolving within the admissible range of their main variables, and
that each member is e¢ ciently controlled according to conventional engineering
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practice. What is treated here is how to continuously change the set-point to
each member of the equipment in order to optimize the global economic cost.
In Figure 3, registered data for the variables of interest associated to one

boiler in real operation are shown. It is observed that the vapor production
attempts to meet the demand. The demand functions as a target communicated
by some supervisory command, and it is kept constant (typically as a �xed
portion of the vapor required from the whole set of boilers) during a period of
time until a new demand is decided. Since the ability to follow the individual
demand is apparently accurate and fast, other questions arise, for instance: (i)
are the piecewise-constant assignments to each member of the group optimally
decided in some sense?, (ii) would it be possible to dynamically change the
individual demands to improve the performance of the whole group?.
It is clear that trying to answer any of the previous questions should not

involve modifying the control instrumentation already attached to each boiler,
which usually involves �nely tuned and long-tested PID controllers. Rather,
the system of study should initially be a well controlled boiler, whose new input
will be a time-varying vapor demand. The vapor actually produced should be
a part of the state, since this will be the variable required to evolve in response
to the input. In addition, vapor production implies fuel consumption, so the
simplest description of the dynamics should involve an interaction between these
two variables, chosen to determine the state of the system in a �rst attempt.
After applying several identi�cation models (see Figure 3) to a group of real

boilers meeting the conditions above, it was observed that the behavior of each
controlled steam generator was well enough described by linear systems. In the
general case, n boilers in parallel are optimized, whose identi�ed linear models
result in

_xi = Aixi +Biui ; yi = xi ; i = 1; : : : n ; (1)

where xi := (xi1; xi2)
0 is the state vector for boiler i , xi1 : vapor produced ,

xi2 : fuel consumed, ui : vapor demanded, all expressed in energy units, and
yi : the output, equivalent to the state. For each boiler the matrices Ai; Bi are
2� 2 and 2� 1; respectively.
When a total demand � is required to be supplied by the n boilers, then

necessarily
un = �� u1 � � � � � un�1 : (2)

Therefore, despite the facts that n set-points are to be ordered to the n boilers,
there exist only n� 1 degrees of freedom for treating the whole set. This leads
to a possible setup for the optimal allocation problem to n units working in
parallel. After rede�ning

x :=

�
x01
...x02

... � � �
...x0n

�0
; u := (u1; � � � ; un�1)0 ; (3)

the dynamics for the set of boilers, under the restriction implied by Equation
(1), becomes a 2n-dimensional linear-a¢ ne system with an (n� 1)-dimensional
control variable, namely

_x = Âx+ B̂u+ ' : (4)
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with coe¢ cient matrices

Â :=

0BBB@
A1 � � � 0 0
...

. . .
...

...
0 � � � An�1 0
0 � � � 0 An

1CCCA; B̂ :=
0BBB@

B1 � � � 0
...

. . .
...

0 � � � Bn�1
�Bn � � � �Bn

1CCCA; ' :=�
0BBB@

0
...
0
Bn

1CCCA;
(5)

Assuming that each model in Equation (1) is in canonical form (controllable
and observable), it follows from the form of matrix Â that the global system
will be uniformly bounded-input bounded-output (UBIBO) if and only if the
same is true for each individual subsystem (boiler). Therefore, under these as-
sumptions, since the UBIBO property is equivalent to internal stability for each
boiler, the global system will be externally stable when each identi�ed matrix
Ai is stable (its eigenvalues have negative real parts). It can be concluded then
that the stability properties of the 2n-dimensional system will not di¤er from
those already present in the models of each one of the controlled boilers.

2.2 Supervisory control: an optimal deterministic feed-
back.

The optimal control problem motivated in the previous section will be posed for
a quadratic objective cost functional of the form

J (u) =
TZ
0

[(x(t)��x)0Q(x(t)��x) + u0(t)Ru(t)] dt+(x(T )��x)0 S (x(T )��x) ; (6)

restricted to the a¢ ne system of Equations (4-5). The target

�x :=

�
�x01
... �x02

... � � �
... �x0n

�0
(7)

is a design parameter vector, which will be assumed here to have the form

�xi = (�xi1; 0)
0; i = 1; : : : ; n : (8)

As usual, Q and S will be nonnegative 2n� 2n symmetric matrices, and R
will be (n� 1)�(n� 1) and positive de�nite. The coe¢ cients of Q;R; S will be
decided according to characteristics of each application. It seems most probable
that Q and S be constructed from 2 � 2 symmetric submatrices displayed in
diagonal, one such a submatrix related to each boiler. In the same fashion,
R = diag(r1; : : : ; rn�1); with all ri > 0; would be a practical choice for weighting
the control energy e¤ort associated to the problem. Notice that, in order to
take into account that there exist n boilers and only n� 1 available coe¢ cients
ri; a sensible compromise would be to adopt

ri = ~ri +
~rn
n� 1 ; i = 1; : : : ; n� 1 ; (9)
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where ~ri is the weight of the control corresponding to the demand assigned to
the individual boiler i; for i = 1; : : : n : Formula 9 satis�es

n�1X
i=1

riu
2
i =

nX
i=1

~riu
2
i (10)

when ui � �=n (a typical choice for �xi1), i = 1; : : : n, and it is a good approxi-
mation under the following restrictions: (i) ui 2 [0; �] ; and (ii) u1+: : :+un = �;
as it is the case here. As expected, this choice of ri veri�es: limn!1 ri = ~ri;
for i = 1; : : : n:
The a¢ ne linear-quadratic retains some features of the classical LQR prob-

lem. For instance, its Hamiltonian H [17]

H(x; �; u) := L+ �0f = (x� �x)0Q(x� �x) + u0Ru+ �0
�
Âx+ B̂u+ '

�
(11)

is minimized by the same expression as in the LQR case:

u0(x; �) = �1
2
R�1B̂0� ; (12)

but the u-minimal Hamiltonian H0 has an extra term �0'; precisely,

H0(x; �) := H(x; �; u0(x; �)) = (x��x)0Q(x��x)� 1
4
�0Ŵ�+�0

�
Âx+ '

�
; (13)

where the usual notation Ŵ := B̂R�1B̂0 has been introduced. The a¢ ne term
suggests that a complete quadratic form might be proposed for a value function
V [16], for instance

V (t; x) := x0P (t)x+ 2�0(t)x+ �(t) ; (14)

formally for some time-varying (in principle symmetric) 2n� 2n matrix P; a 2n
column vector �; and a scalar factor �:
The Hamilton-Jacobi-Bellman (HJB) equation

@V

@t
(t; x) = �H0

 
x;

�
@V

@x

�0
(t; x)

!
(15)

and its �nal condition

V (T; x) = (x(T )��x)0 S (x(T )��x) (16)

must be satis�ed by the proposed value function and its partial derivatives

@V

@t
(t; x) = x0 _P (t)x+ 2x0 _�(t) + _�(t) ; (17)�

@V

@x

�0
(x(t)) = 2 [P (t)x+ �(t)] ; (18)
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Since these equalities involve second order polynomials in x , their coe¢ cients
must also be equal, which result in the following system of ODE�s:

_P = PŴP � Â0P � PÂ�Q ; P (T ) = S ; (19)
_� = �(Â� ŴP )0� � P'+Q�x ; �(T ) = �S�x ; (20)

_� = �0Ŵ � � �x0Q�x� 2'0� ; �(T ) = �x0S�x : (21)

Their solutions allow to express the optimal control u� in the form

u�(t) = u0

 
x�(t);

�
@V

@x

�0
(t; x�(t))

!
= �R�1B̂0 [P (t)x�(t) + �(t)] ; (22)

where x� denotes the optimal state, and also to calculate the optimal cost from

V (0; x0) = x
0
0P (0)x0 + 2x

0
0�(0) + �(0) : (23)

Equation (19) coincides with the Riccati Di¤erential Equation for the LQR

problem with coe¢ cients
�
Â; B̂; Q;R; S

�
; and turns to be uncoupled from the

remaining two ODEs. This �nding is consistent with the behavior of the cor-
responding solutions of equations (20, 21), since for such an LQR problem: (i)
' = �x = 0; implying �(�) � 0 and u�(t) = �R�1B̂0P (t)x(t); and in turn (ii)
�(�) � 0 and V (0; x0) = x00P (0)x0: It should be noted that, even when the
problem at hand does not possess the LQR structure, still the equation (22) can
be interpreted as a linear-a¢ ne feedback law uf , precisely

uf (t; x) := �R�1B̂0 [P (t)x+ �(t)] ; (24)

and from Bellman�s Principle it could be asserted that, if at time t the actual
state x di¤ers from the expected optimal state x�(t); still the optimal control
at that time, denoted u�x(t); can be computed as uf (t; x): This property makes
the previous results robust against sporadic state errors.

2.3 Handling changes in the total demand �: Fixed versus
receding horizon strategies.

Equations (19, 20) have �nal (instead of initial) conditions and therefore can
not be numerically integrated online with the process. They need to be solved
o­ ine and stored in the memory of the controller. This is an inconvenience
common to the LQR, servo, and tracking problems, for which the feed-through
terms and similar objects must be updated for the whole time-horizon in case the
reference signal is modi�ed. Fortunately, in the present case the calculation of
the time-varying coe¢ cient �(�) of the feedback law is required to be computed
only once, namely for a unitary total demand (� = 1); and the same thing
applies to the cost coe¢ cient �(�): These assertions are conveyed in precise
terms by the next two equations:
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u�(t) = �R�1B̂0
h
P (t)x(t) + �~�(t)

i
; (25)

J� = V (0; x0) = x
0
0P (0)x0 + 2�x

0
0
~�(0) + �2~�(0) ; (26)

where ~�; ~� denote the coe¢ cients calculated for � = 1; or equivalently for ~' :=

'=� =

�
00
... 00
... � � �

...B0n

�0
; ~x := �x=� = (�x1; 0; �x2; 0; : : : ; �xn; 0)

0,
nX
i=1

�xi = 1.

Equations (25, 26) can be justi�ed as follows:
(i) the solution to equation (20) with �nal condition �(T ) = �S�x = ��S~x

is

�(t) = 	(t; T )

8<:�S�x+
tZ

T

	(t; �) [�P (�)'+Q�x] d�

9=; = �~�(t) ;

where	(t; T ) is the fundamental matrix associated with the linear (time-varying)
system

_z = �
�
Â� ŴP (t)

�0
z ; (27)

(ii) and similarly, for equation (21),

�(t) = �x0S�x+

tZ
T

h
�0(�)Ŵ �(�)� �x0Q�x� 2'0�(�)

i
d� = �2~�(t) :

Now it should be decided how to handle changes in the total demand when
they occur in some interior point t of a period [t0; t0 + T ] : Let us assume that,
in such a case, the optimization of the system is desired to be continued, at
least for another interval of duration T: Some �receding-horizon�decision has to
be made. Would it be advisable: (i) to wait until the end of the �rst period
before updating the control (25) with the new value of � ?, or rather: (ii) to
update the control as soon as possible?. Other combinations are possible, for
instance: (iii) to initiate another optimization period each time � changes. It is
known that none of these strategies will be strictly optimal. Nevertheless, their
performances were assessed, since in real operation the intervals of constant
demand are not always of the same duration.

2.4 Optimal �ltering and stochastic control.

Noisy perturbations in the system parameters of each boiler, and in the mea-
surement and communication of signals, are known to occur during real process
operation. The common set up for these in�uences over the deterministic mod-
els assumed in previous sections for boilers i = 1; : : : ; n is the following

_xi(t) = Aixi(t) +Bi~ui(t) + r1i ; (28)

yi = Cixi + r2i ; (29)
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where the notation _xi should be understood as the di¤erential of a Brownian
process associated with the state of boiler i; resulting from the existence of zero-
mean white noise r1i �uctuations on the environment conditions; ~ui denoting the

ith-component of the input variable for i = 1; : : : ; n� 1; ~un := ��
n�1X
i=1

~ui ; and

where r2i are the zero-mean white noises in the measurements of the outputs
yi; which in this case are conceptually the same thing as the states, i.e. it
is assumed that each subsystem i is observable (which is clearly true in most
modern plants, with Ci = I2; the identity matrix of dimension 2).
In this context, the optimal �ltering problem for each boiler is known to be

solvable [18, 19] through the following pair of equations (for i = 1; : : : ; n):

�
x̂i(t) = Aix̂i(t) +Bi~ui(t) + Li(yi(t)� Cix̂i(t)) ; x̂i(0) = E [x0] ; (30)

_�i = A
0
i�i +�iAi + Q̂i ��iC 0iR̂�1i Ci�i ; �i(0) = Cov(x0i) ; (31)

which can be integrated online with the process, and where x̂i is the best esti-
mation of the state xi ; r1i and r2i are stochastic di¤erentials of Brownian mo-
tions with covariance matrices Q̂i and R̂i respectively, with R̂i invertible; Li :=
�iC

0
iR̂

�1
i denotes the �gain�of the �lter, which works like an observer; and �i

is the dynamical covariance, solution to the Riccati-type ODE (31).
As a consequence of a straightforward extension of the Separation Principle

[20] to this linear-a¢ ne problem, the stochastic optimal control for the whole
system, which minimizes the cost

Jsto(~u) = E

24 TZ
0

f(x~u(t)��x)0Q(x~u(t)��x) + ~u0(t)R~u(t)g dt+ (x~u(T )��x)0 S (x~u(T )��x)

35 ;
(32)

with respect to ~u , results in

û�(t) = �R�1B̂0
h
P (t)x̂(t) + �~�(t)

i
; (33)

where the estimation of the whole state vector is used in the feedback law, i.e.

x̂ :=

�
x̂01
... x̂02

... � � �
... x̂0n

�0
: (34)

A scheme describing the relations amongst the signals involved in these re-
sults is given in Figure 2.

3 Case studies

3.1 Two boilers in parallel.

Real numerical data for the state and control variables were extracted from
records of instruments attached to a set of boilers serving an industrial process
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Figure 2: Flowsheet illustrating the signals involved in the �ltering stage, and
construction of the stochastic optimal control for all boilers.
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Figure 3: Main frame: real registered data corresponding to a controlled boiler
along with the results of the identi�cation model for the whole horizon. In
zoom: di¤erent identi�cation results for x1, showing that the linear model is
good enough to represent the process.

plant. The relevant variables were recorded every 10 seconds. For one of the
boilers, a limited period of the available records are depicted in Figure 3. Each
boiler is already controlled by a PID. A linear model and two di¤erent bilinear
models were proposed to represent the dynamics of the controlled boilers. It
was found that the linear model was good enough in the full range covered by
the variables, so the simplest model was chosen in consideration to the existing
theoretical support concerning linear control systems (Figure 3.)
Since the identi�ed parameters cover a wide range of variation of state and

control values, the model obtained should be regarded as a �dynamical�version
of each conventionally-controlled boiler. Actually, identi�ed models are in prin-
ciple more reliable than curves provided by the factory, since the dynamics is
approximated from I/O data coming from really operating equipment, and they
can be updated systematically if desired. The model also takes into account
the whole controlling instrumentation attached to the boiler (see Figure 1), and
the actual way it is working at the recording time (which not always remains as
at the moment of installation).
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After linear identi�cation of two boilers the resulting coe¢ cients were

A1 =

�
�0:1016 0:0426
�0:1936 �0:0290

�
; A2 =

�
�0:2016 0:0426
�0:1936 �0:1290

�
; (35)

B1 =

�
0:0434
0:2333

�
; B2 =

�
0:1341
0:3543

�
; C1 = C2 =

�
1 0
0 1

�
:

The realizations are canonical, the eigenvalues of A1; A2 are �0:0653� 0:0832i
and �0:1653� 0:0832i; respectively, showing that the second boiler has a faster
response than the �rst one. On the other hand, for each boiler, the stationary
output y1 corresponding to a constant input u(�) � � is y1 = �A�1B�: For
the two boilers at hand,

y11 =

�
1:0003
1:3669

�
� ; y12 =

�
0:9457
1:3273

�
� : (36)

This shows that the faster (second) boiler will be subject to an o¤-set (�rst
component of y1) of around 5:5%; much bigger than the o¤set of the �rst boiler.
Therefore, the coe¢ cients of each realization convey enough information about
the performance expected from each PID-controlled boiler.
Deterministic optimal control: An interesting question concerning the

optimal control design is how to choose the parameters Q, R and S involved
in the cost function. The choosing of these matrices must lead to �acceptable�
levels of x(t); u(t); and x(T ): A classical approach [21] initializes Qii, Rii and
Sii tentatively, and then modify these values by trial and error, to reach a
compromise among response time, damping and control e¤ort. In more recent
literature, there are several papers covering this subject, for instance [22, 23].
Here, just for illustration, simple diagonal weights were adopted, so that they
indicate how much each state and input deviation contribute to the overall cost.
After translating the amounts of vapor and fuel to economic units, and verifying
that the compromise suggested in [21] was properly met, the following values
were found appropriate

Q =

0BB@
q1 0 0 0
0 q2 0 0
0 0 q1 0
0 0 0 q2

1CCA ; S =
0BB@
s1 0 0 0
0 s2 0 0
0 0 s1 0
0 0 0 s2

1CCA ; �x = �
0BB@
~x
0
~x
0

1CCA ;(37)
R = In�1, q1 = 50 ; q2 = 0:5 ; s1 = s2 = 10 ; ~x = 0:5; T = 20 ; � = 150 :

These were used in a simulation run: �rstly P , �, �; were calculated, and
then introduced in the dynamics to obtain the optimal control u� shown in
Figure 4. Early in the process the resulting control puts a high demand on
the second (faster) boiler, but towards the end the �rst boiler is privileged due
to its better accuracy (lower o¤-set). In between, the controls to both boilers
oscillate around �=2 in a nontrivial pattern. The resulting states evolutions
are illustrated in Figure 5. The optimal cost J� was compared against the
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k = 0:3 k = 0:35 k = 0:4 k = 0:5 k = 0:55 k = 0:6 k = 0:65
Dk 47% 23% 15% 9% 25% 40% 70%

Table 1: Optimal cost compared against the outcome of applying a constant set-
up of di¤erent magnitude, where k de�nes the magnitude of the control applied
to the �rst boiler, and D shows the porcentage of cost savings giving by Eq.
(38).

outcome of applying di¤erent constant set-points of magnitude u1 � k�; u2 �
(1 � k)�, and by calculating the corresponding costs Jk arising from equation
(6). Relative cost savings

Dk := 100
Jk � J�
J�

; (38)

are reported in Table 1.
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Figure 4: Optimal control for two boilers in parallel. Horizontal lines describe
di¤erent constant controls as in Table 1.

Receding horizon strategies: As it was announced in the theoretical
setup section, there are situations in the operation of a group of the boilers when
the total demand (or set-point for the whole group) is changed (see Figure 3).
This change may occur even in the middle of the optimization period established
before. To illustrate these situations consider the following stage: for two boilers
that receive at t = 0 a total vapor demand � = 150; to be met in a time span
T = 20; but at time t = 10 the total demand is changed to � = 250 by the
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Figure 5: States resulting from the optimal control applied to two boilers in
parallel.

supervisor system. It is assumed that P (t); ~�(t) are stored for t 2 [0; 20] ; that
they will not be recalculated for a di¤erent horizon, and that the operation will
be kept during two equal intervals, each of duration T = 20.
The criterion for comparing the three suboptimal strategies was

Jop =
40Z
0

(x(t)��x)0Q(x(t)��x)dt+ (x(40)��x)0 S (x(40)��x) ; (39)

where �x = �=2: Here the cost associated with controlling the system was ne-
glected, emphasizing the purely technical e¢ ciency. The di¤erent options under
evaluation for two boilers in parallel were:

� Strategy 1. At the beginning, � = 150 and the optimal control was
calculated from equation (25), with coe¢ cients P (t); ~�(t) corresponding
to T = 20. At t1 = 10 a total vapor demand � = 250 was ordered by
the plant, but the calculation of the control was kept una¤ected until the
�rst period ended at t = 20: Then, a second period was started with the
same P (t); ~�(t); T = 20 (t here is the real time minus 20), but now with
� = 250:

� Strategy 2. Same as in case 1 for t 2 [0; 10] : At t = 10 a new � = 250 is
ordered. Now, a new period with T = 20 and � = 250 is initiated, and
the control is applied with the P (t); ~�(t) stored in memory, but t here is
the real time minus 10. For t 2 [30; 40] the �rst half of a new period with
T = 20 and � = 250 is executed.
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Figure 6: Total vapor produced in the three receding horizon strategies

� Strategy 3. Same as in case 2 for t 2 [0; 10] ; until � = 250 is ordered. In
this case only the value of � is changed in equation (25) for the control,
but the real time coincides with t for t 2 [10; 20] : Then, a second period
was started with the same P (t); ~�(t); T = 20 (t here is the real time minus
20), but now with � = 250:

In the calculation of the cost criterion of equation (39), the vapor targets
were the constants �x1 = 150=2 for t 2 [0; 10] ; and �x1 = 250=2 for t 2
[10; 40] ; in all strategies. The total value of Jop obtained for each strategy
along the trajectory, denoted J (i)

op , were J (1)
op = 5:94 � 106; J (2)

op =

3:36 � 106; J (3)
op = 3:40 � 106: The values of the �nal penalization were

6:68�105; 6:12�105; and 6:18�105: The evolution of the control variable
u1 and the cost criterion are shown in Figure 7. Cost considerations
indicate that the change in the total demand (target) should be introduced
as soon as possible in the calculation of the control, which discards strategy
1. The quantitative di¤erences between strategies 2 and 3 are small,
therefore strategy 3 should be preferred for its simpler implementation.
The three strategies are illustrated in Figures 6 and 7.

Stochastic control: Simulations for the two-boilers case are illustrated in
Figures 8, and 9. The measurement noise was simulated with zero-mean and
the covariance of the data in Figure 3, namely

R̂1 = R̂2 =

�
1:2349 0:0585
0:0585 1:5770

�
: (40)

The systemic noise was neglected in this case, i.e. Q̂1 = Q̂2 = 0. The
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Figure 7: Main frame: Control variable in the three receding horizon strategies.
Small frame: Cumulative evolution of the cost for the three receding horizon
strategies.

deterministic coe¢ cients used in the simulations were q1 = 50 ; q2 = 0:5 ; R =
1:2; s1 = s2 = 5 ; ~x = 0:5; T = 20 ; � = 150:
A numerical partial con�rmation of the stochastic optimality of the feedback

law in Equation (33) was obtained by evaluating the costs corresponding to
appropriate combinations of the trajectories in Figure 9; in precise terms,

J1 :=

TZ
0

[(x̂(t)��x)0Q(x̂(t)��x) + û�0(t)Rû�(t)] dt+(x̂(T )��x)0 S (x̂(T )��x) (41)

J2 :=

TZ
0

[(�x(t)��x)0Q(�x(t)��x) + �u0(t)R�u(t)] dt+ (�x(T )��x)0 S (�x(T )��x) (42)

where the optimal stochastic feedback as in equation (24) is assessed in the cost
J1; and in the expression of J2 ,

�u(t) := �R�1B̂0
h
P (t)x(t) + �~�(t)

i
; (43)

where x(�) was a numerical noisy zero-mean perturbation of the optimal x̂(�);
and �x(�) denotes the numerical (deterministic) solution of the state equation
(28) for inputs �ui(�); r1i � 0; i = 1; : : : ; n: The resulting values were:

Jsto(û�) �= J1 = 834313 < 842986 = J2 �= Jsto(�u) : (44)
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Figure 8: Main Frame: Optimal total vapor production and total fuel consump-
tion for: (i) the deterministic problem and (ii) the stochastic problem with same
coe¢ cients. Small frame: Output variables when measurement perturbations
of the order of the real data in Figure 3 are present.

Figure 9: Main frame: optimal controls (�rst of two boilers) for the deterministic
and stochastic problems with same coe¢ cients. Small frame: control feedback
calculated from optimal deterministic coe¢ cients P (:); �(:) and noisy outputs
with a covariance as in Equation (40).
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û�(t) = �R�1B̂0
h
P (t)x̂(t) + �~�(t)

i
; (45)

where the estimation of the whole state vector is used in the feedback law, i.e.

x̂ :=

�
x̂01
... x̂02

... � � �
... x̂0n

�0
: (46)

3.2 Three boilers in parallel.

It seems necessary to check the performance of the proposal for a larger group
of boilers. Let us stay in the deterministic context for simplicity. By adding
another set of data extracted from the same real plant alluded before, the matri-
ces corresponding to identi�ed linear models of three boilers in parallel, studied
next, are:

A1 =

�
�0:1016 0:0426
�0:1936 �0:0290

�
; B1 =

�
0:0434
0:2333

�
;

A2 =

�
�0:2016 0:0426
�0:1936 �0:1290

�
; B2 =

�
0:1341
0:3543

�
; (47)

A3 =

�
�0:0716 0:0426
�0:1936 �0:0010

�
; B3 =

�
:01115
0:1817

�
:

In the simulations concerning these three boilers the total vapor demand
was the same as before, � = 150; but the time horizon was now chosen near the
setting time of the slowest boiler: T = 40.

Quadratic cost. Just for illustrative purposes, the initial conditions for the
three boilers were assumed identical for the three members, x0 = (40; 55; 40; 55;
40; 55)0; and the remaining parameters for the cost were kept in concordance to
the case of two boilers.

The resulting optimal control for this case is depicted in Figure 10. Since
the third boiler has the slowest response, it is observed that its participation
increases near the end of the horizon as expected, but the control for all three
boilers are qualitatively di¤erent from those in Figure 4.
The optimal cost was compared against the outcomes of applying constant

set-points of di¤erent magnitude as follows:

uk1k2 := (u1; u2; u3) ; u1 � k1� ; u2 � k2� ; u3 � k3� = (1� k1 � k2)� ;
(48)

where the weight ki is the fraction of the total demand � assigned to the boiler
i; and evaluating their corresponding costs Jk1k2 through equation (6). The
relative cost savings Dk1k2 are computed analogously to the two-boilers case:

Dk1k2 := 100
Jk1k2 � J�

J�
; (49)
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Figure 10: Optimal control for three boilers in parallel.

The numerical values are reported in Table 2 for di¤erent admissible combi-
nations of (u1; u2; u3). The behavior of the savings according to variations in
the participation of the members does not a seem to have a simple explanation,
but again it is found that there exist at least a 10% of cost savings in using
time-varying controls, as was the case in the two-boilers case study.

Comparison concerning energy losses. Although this paper was up to
now devoted to quadratic costs, to the advantage that an explicit optimal solu-
tion was analytically worked out, previous results may be also useful for other
optimization criteria to be assessed. Here we will test a new cost criterion JB

that includes the trajectory energy loss de�ned by

Eloss :=
3X
i=1

Efuel;i �
3X
i=1

EV apor;i =
3X
i=1

TZ
0

[x2i(t)� x1i(t)] dt ; (50)

and also a quadratic �nal penalization as before. This cost JB ; for constant
controls uk1k2 takes then the form

JBk1k2 := Eloss;k1k2 + (xk1k2(T )��x)
0
S (xk1k2(T )��x) : (51)

It must be noticed that, without a �nal penalization, the optimal solution for
constant controls (in a �nite horizon context) would trivially be the strategy
that uses less fuel. A good enough approximation to the optimal combination
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k1 k2 k3 Dk1k2
0:2 0:3 0:5 36%
0:2 0:4 0:4 23%
0:2 0:5 0:3 47%
0:3 0:2 0:5 43%
0:4 0:2 0:4 34%
0:5 0:2 0:3 53%
0:2 0:3 0:2 38%
0:3 0:5 0:2 42%
0:4 0:4 0:2 20%
0:3 0:4 0:3 10%

Table 2: Optimal cost compared against the outcome of applying a constant
set-up of di¤erent magnitude, where ki is the fraction of the total demand � for
the boiler i, and D shows the porcentage of cost savings giving by Eq. (49).

k1k2 can be obtained by direct calculation of the trajectories for the three boilers
of this example, for a representative number of admissible pairs (k1; k2) : The
cost JB changes little with the parameter S; so it was tuned to make the optimal
solution uoptk1k2

for constant controls coincide with that one appearing in Table
2, namely for k1 = 0:3; k2 = 0:4; k3 = 0:3 (see Figure 11). Now the question
is: how would our time-varying control u� of equation (22) perform under the
new cost criterion of equation (51), both calculated for the same value of S ?
In numbers, this would amount to compare the optimal value

�
JBk1k2

�opt
for the

new cost, i.e. �
JBk1k2

�opt
:= min

k1;k2

�
JBk1k2 ; all admissible (k1; k2)

	
; (52)

against the formula in equation (51) applied to the optimal time-varying control
u�; i.e.

JB (u�) :=
3X
i=1

TZ
0

[xu�;2i(t)� xu�;1i(t)] dt+ (xu�(T )��x)0 S (xu�(T )��x) : (53)

The answer was in favor of the time-varying optimal control, precisely

DB := 100

�
JBk1k2

�opt � JB (u�)
JB (u�)

= 100
JB0:3;0:4 � JB (u�)

JB (u�)
= 19% : (54)

Simulation test for identical boilers. In the hypothetical case that all n
members of the team have the same characteristics (re�ected in the same state
model and same evaluation parameters), the optimal allocation of demands
could be predicted by a simple calculation, namely

u�i (t) �
�

n
; i = 1; : : : ; n� 1 : (55)
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Figure 11: Evaluation of energy losses JBk1k2 with �nal penalizations (S = 55I)
as in equation (51), generated by di¤erent admissible constant controls uk1k2 as
de�ned in equation (48).

This is illustrated in Figure 12, for the numerical experiments with two an three
identical boilers.

4 Conclusions

An optimal control strategy for dynamically changing the set-points for pro-
duced vapor to a group of n boilers in parallel was proven and illustrated. The
resulting feedback law minimizes the sum of two competing cost objectives: the
departure of the production from the target, and the consumption of fuel during
the optimization period. This provides online optimal allocation of demands to
each of a number of boilers in multilayer controlled operation. The control has
n� 1 degrees of freedom, since all individual targets must sum up to the total
demand signal coming from the supervisory control of the plant. This lack of
freedom introduces a linear-a¢ ne structure for the dynamics of the problem,
when posed for the whole group of boilers. The combination of quadratic in-
dividual costs for the boilers results in a quadratic total cost for the group.
Then, the treatment for the linear-a¢ ne enlarged dynamics and quadratic cost
di¤ers from the usual LQR setup, resembling the equations associated with a
tracking problem. The solution for the deterministic case is found in terms of
the Riccati equation plus a feed through time-varying vector that can be stored
once and for all, the changes in total demand are simply handled by introducing
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Figure 12: Numerical optimal controls calculated for two identical boilers (re-
sulting in u�i �= �=2); and for three identical boilers (resulting in u�i �= �=3):

the new value as a factor in the feedback law. This feedback form of the control
implies robustness with respect to state perturbations. Control parameters are
calculated o­ ine and do not need to be recalculated after changes on the total
demand.
The choice of linear models for each boiler also allows to re�ne the determin-

istic result and obtain an optimal control from the stochastic viewpoint, coping
with general disturbances like changes in fuel composition and noisy measure-
ments. This is possible by a rigorous application of the Separation Principle
and the addition of a Kalman �lter.
In some situations, savings in cost have shown to be signi�cant with respect

to those generated by piecewise-constant strategies, above all when the optimal
control indicates a departure from the equipartition of the total demand. In
all cases there was a relative saving exceeding 10%. Other optimization cri-
teria deserve further investigation, although energy losses corresponding to our
optimal control resulted smaller than those corresponding to piecewise-constant
controls in a simulation for three boilers. In conclusion, the results presented
here seem attractive for practical implementation in chemical plants.
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