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Abstract

The anthelmintic treatment of nematode infections remains the pillar of worm control in

both human and veterinary medicine. Since control is threatened by the appearance of

drug resistant nematodes, there is a need to develop novel compounds, among which

phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has

been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action

and resistance. By using C. elegans, we here revealed the anthelmintic actions of three

plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids pro-

duce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol.

In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn,

lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed

an in vivo screening of selected strains carrying mutations in receptors involved in worm

locomotion for determining resistance to the paralyzing effect of terpenoids. The assays

revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sen-

sitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the

paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect

these receptors, we performed electrophysiological studies using a primary culture of C.

elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpe-

noids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endoge-

nous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed

that terpenoids decrease the frequency of opening events, probably by acting as negative

allosteric modulators. The fact that terpenoids act at different receptors may have impor-

tant advantages regarding efficacy and development of resistance. Thus, our findings

give support to the use of terpenoids as either an alternative or a complementary anthel-

mintic strategy to overcome the ever-increasing resistance of parasites to classical anthel-

mintic drugs.
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Author summary

Parasitic nematodes (roundworms) are of major significance as human pathogens and

have important economic impact worldwide due to considerable losses in livestock and

food crops. Drug treatment of nematode infections (anthelmintic drugs) are the pillar of

worm control in human and veterinary medicine. Due to the appearance of drug resistant

nematodes, there is a need of developing novel drugs, among which phytochemicals, that

have environmental sustainability advantages, may constitute potential anthelmintic com-

pounds. As parasitic nematodes are not ideal laboratory animals, the free-living nematode

Caenorhabditis elegans, which shares many physiological characteristics with parasites

and is sensitive to anthelmintic drugs, has emerged as a model organism for anthelmintic

drug discovery. We found that three terpenoid compounds present in essential oil of

plants–thymol, carvacrol and eugenol–produce rapid paralysis of C. elegans and inhibit

egg hatching, thus mediating both rapid and long-term anthelmintic effects. By testing

mutant worms that lack receptor proteins essential for locomotion we identified two

different muscle receptors, nicotinic and GABA receptors, as terpenoid targets of the par-

alyzing effects. Electrophysiological studies from C. elegans cultured muscle cells demon-

strated that terpenoids inhibit the function of these receptors. Thus, by modulating two

receptors with key roles in worm motility, these terpenoids emerge as novel anthelmintic

compounds.

Introduction

Parasitic nematodes cause extensive morbidity and mortality in humans and animals and have

major economic impact worldwide due to considerable losses in livestock and food crops [1].

Humans themselves are host to different roundworm species, some of which are causative

agents in core neglected tropical diseases, such as trichuriasis, ascariasis, hookworm disease,

lymphatic filariasis, onchocerciasis, and dracunculiasis [2,3] These human diseases affect bil-

lions of people [4]. Also, gastrointestinal nematodes, such as Haemonchus contortus and Asca-
ris suum, are one of the main causes of losses in animal productivity worldwide.

Anthelmintic drugs against these parasites act through different mechanisms, and ion chan-

nels are one of the main drug targets [5]. In particular, Cys-loop receptors, which are penta-

meric-ligand gated ion channels, are targets of widely used anthelmintics, such as levamisole,

piperazine and ivermectin. Resistance of nematodes to the limited number of anthelmintic

drugs available has become a global concern for veterinary and human health. There is there-

fore an urgent need for concerted efforts to develop novel anthelmintic agents.

The free-living nematode Caenorhabditis elegans is a valuable tool for the study of anthel-

mintic targets because it shares physiological and pharmacological characteristics with para-

sitic nematodes, it is sensitive to most anthelmintic drugs and it is a useful model organism for

drug testing [6,7].

The muscle levamisole-sensitive acetylcholine receptor (L-AChR) and the γ-aminobutyric

acid (GABA) type A (UNC-49) receptor are Cys-loop receptors involved in muscle contraction

and locomotion of parasitic nematodes and C. elegans. They are also of clinical relevance as

targets of anthelmintic drugs. In this regard, levamisole, which is a full agonist of nematode

L-AChRs, produces spastic muscle paralysis and death, and piperazine, which is a GABA

receptor agonist, causes flaccid and reversible paralysis of nematode body wall muscle.

Medicinal plants provide an alternative source of potential anthelmintic compounds [8–

10]. Monocyclic phenolic compounds, such as thymol, carvacrol and eugenol, are a group of
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phytochemicals present in essential oils from aromatic plants including thyme (Thymus vulga-
ris), oregano (Origanum vulgare) and clove (Syzygium aromaticum). These terpenoid phenols

have been traditionally recognized for their antinociceptive, local anesthetic, anti-inflamma-

tory and antibacterial actions [11]. There are several reports showing the in vitro and in vivo
effects of terpenoids on parasitic nematodes and their potential as anthelmintic compounds.

In the early 1900s, thymol was used for the treatment of ascarids and hookworms in humans

[12–14]. In vitro, it was shown that thymol and carvacrol have nematocidal activity against A.

suum [15] and that thymol inhibits the motility [16] and egg hatching [8] of H. contortus. Stud-

ies in pigs infected with A. suum showed that plant-based essential oil blends containing thy-

mol and provided in food reduced infection burdens of helminths, thus showing promise as a

daily supplement to reduce infections [14]. Nevertheless, the underlying molecular mecha-

nisms of these anthelmintic actions have not been fully elucidated.

We here used C. elegans as a model for parasitic nematodes to explore the actions of three

terpenoids with anthelmintic activity–thymol, carvacrol and eugenol–and to elucidate the

mechanisms and targets by which they induce rapid paralysis. We found that they also inhibit

egg hatching, thus mediating both rapid and long-term effects. Our behavioral assays in

mutant C. elegans strains revealed that L-AChRs and UNC-49 (GABA) receptors are main tar-

gets involved in the terpenoid effects. Electrophysiological studies from C. elegans L1 muscle

cells were performed to further identify the underlying mechanism. The results suggest that

terpenoids inhibit responses to the neurotransmitters by acting as negative allosteric modula-

tors. Thus, by interacting with two types of Cys-loop receptors with antagonic actions at the

worm neuromuscular junction, these terpenoids emerge as promising anthelmintic

compounds.

Methods

Caenorhabditis elegans strains

Nematode strains used were: N2: Bristol wild-type; PD4251: ccIs4251;dpy-20(e1282); CB904:

unc-38(e264); CB407: unc-49(e407); DA1316: avr-14(ad1305);avr-15(vu227);glc-1(pk54);
RB918: acr-16(ok789); DA1814: ser-1(ok345); MT9668: mod-1(ok103); AQ866: ser-4(ok512).
All nematode strains were obtained from the Caenorhabditis Genetics Center, which is funded

by the NIH National Center for Research Resources (NCRR). Nematode strains were main-

tained at 18–25 ˚C using freshly prepared Nematode Growth Medium (NGM) petri dishes

that had been spread with Escherichia coli (OP50) as a source of food [17,18].

Isolation and culture of C. elegans muscle cells

Cells were isolated and cultured as described before [17,18]. Briefly, gravid adult nematodes

were exposed to an alkaline hypochlorite solution and eggs were treated with 1 unit/ml chiti-

nase. The dissociated embryo cells were filtered and placed on glass coverslips coated with

poly-L-Ornithine. Cultures were maintained at 22–24 ˚C in a humidified incubator in L-15

medium containing 10% fetal bovine serum. Complete differentiation to the various cell types

that comprise the newly hatched Larva 1 (L1) was observed within 24 h as described by Chris-

tensen et al. [19]. Electrophysiological experiments were performed 1–5 days after cell

isolation.

Patch-clamp recordings

Recordings were carried out at 20 ˚C in the whole-cell configuration for macroscopic currents

and in the cell-attached patch configuration for single-channel currents [17,18]. For single-
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channel recordings, the bath and pipette solutions contained 142 mM KCl, 5.4 mM NaCl, 1.8

mM CaCl2, 1.7 mM MgCl2, and 10 mM HEPES (pH 7.4). Single-channel currents were

recorded using an Axopatch 200 B patch-clamp amplifier (Molecular Devices), digitized at

5 μs intervals, and detected by the half-amplitude threshold criterion using the TAC 4.0.10

program (Bruxton Corporation). Open- and closed-time histograms were plotted using a loga-

rithmic abscissa and a square root ordinate and fitted to the sum of exponential functions by

maximum likelihood using TACFit (Bruxton Corporation). To recognize bursts and quantify

their durations, a critical closed time (tcrit) was defined as the point of intersection between the

briefest and the succeeding component, and openings separated by closings briefer than this

time constitute a burst [20]. Typically, tcrit ranged from 0.15 ms to 0.20 ms. Burst duration his-

tograms were well described by the sum of two exponentials, with the briefest duration compo-

nent corresponding to isolated events and the longest duration component, to bursts. The

burst duration was taken from the duration of the slowest component of the burst duration

histogram.

Macroscopic currents were recorded in the whole-cell configuration as described before

[21]. The pipette solution contained 134 mM KCl, 10 mM EGTA, 1 mM MgCl2, and 10 mM

HEPES (pH 7.3). The extracellular solution (ECS) contained 140 mM NaCl, 3 mM CaCl2, 5

mM KCl, 5 mM MgCl2, 11 mM glucose and 5 mM HEPES (pH 7.4). The cell membrane capac-

itance (Cm) was determined using the software Windows Whole Cell Program (WinWCP;

Strathclyde Institute of Pharmacy and Biomedical Sciences, UK) after obtaining the whole-cell

configuration. All tested L1 muscle cells exhibited Cm values varying from 2 to 6 pF.

Drugs were obtained from Sigma-Aldrich Co. The stock solutions for ivermectin and terpe-

noids were prepared in dimethyl sulphoxide (DMSO) and the final DMSO concentration used

in all assays was lower than 0.1%.

Motility assays

Assays were performed with young adult hermaphrodites (2–4 days after hatching) or L1

worms from synchronized plates. Paralysis was determined on fresh agar plates without bacte-

ria and containing the tested drug or the vehicle at room temperature as described before

[17,21]. Body paralysis was followed by visual inspection at the indicated time (every 15, 30 or

60 min) and was defined as the lack of complete body movement in response to prodding. For

prodding, we used the gentle touch stimulus delivered to the body with an eyebrow hair,

avoiding touching the animals too near the tip of the head or tail [22,23]. We evaluated differ-

ent types of nematode paralysis: flaccid that is mediated by inhibitory stimulation, in which

worms appear lengthened, and spastic, which is mediated by L-AChR stimulation and worms

appear shorter [17]. Ivermectin produces stationary paralysis, in which worms are paralyzed

but retain the capability of responding to prodding by contracting body wall muscle [24]. All

assays were carried out by two independent operators and were blinded to the sample

identities.

C. elegans egg hatching assay

We determined the ability of drugs to inhibit egg hatching according to the following equation:

Fraction of unhatched eggs: number of unhatched eggs / (number of hatched larvae + number

of unhatched eggs). About 300–500 eggs were placed in an Eppendorf tube containing M9

buffer, M9 and the vehicle DMSO or the tested compound. After an incubation period of 12 h

at 22 ˚C, the content was recovered, washed with M9 buffer and placed into fresh agar plates

for counting. The number of unhatched eggs and L1 was counted under a Stereoscopic Zoom

Microscope.

Anthelmintic actions of terpenoids
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Body length measurement

Synchronized young adult worms were picked to fresh agar plates containing 0.2 mM levami-

sole, 2 mM thymol, 2 mM carvacrol or 2 mM eugenol and the vehicle DMSO was added into

the control plates. Worms (n = 30 per condition) were incubated 2 h at 20 ˚C. Body length

measurement was determined using the free Java ImageJ processing program [25]. At least

three independent experiments were carried out.

Statistics

Experimental data are shown as mean ± SD. Statistical comparisons were done using the Stu-

dent’s t test, one-way ANOVA followed by Bonferroni’s or Dunn’s Method for multiple com-

parison post test. A level of p<0.05 was considered significant.

For determining the type of effects of thymol and levamisole combination (synergistic,

additive or antagonistic) we used the computer software, CompuSyn [26,27]. Combination

index (CI) was calculated from the algorithms for CI using CompuSyn software. CI = 1,< 1

and> 1 indicates additive effect, synergism and antagonism, respectively.

Results

Terpenoids paralyze C. elegans and inhibit egg hatching

We first explored how terpenoids rapidly affect the whole organism by evaluating the response

of young adult C. elegans to thymol exposure as a function of time and concentration (Fig 1A).

To this end, synchronized young adult wild-type worms were placed on agar plates containing

thymol at different concentrations, and the fraction of paralyzed worms was determined at dif-

ferent times. A clear time-dependent paralysis was observed (Fig 1A). 100% of worms were

paralyzed by thymol concentrations above 1.6 mM after 1 h exposure (Fig 1B) and about 90%

were paralyzed by concentrations above 1 mM after 2 h exposure (Fig 1). The EC50 values

determined for the paralyzing activity were 0.95 ± 0.03 mM for 1 h exposure (Fig 1B) and

0.70 ± 0.02 mM for 2 h exposure (n� 5 independent experiments for each condition).

To compare the potency of monoterpenoids we also tested carvacrol, a thymol phenol

isomer, and eugenol, a phenylpropanoid molecule (Fig 1B). The three terpenoids showed a

concentration-dependent inhibition of motility; the order of the paralyzing potency was carva-

crol (EC50 = 0.80 ± 0.13 mM for 1 h and 0.60 ± 0.023 mM for 2 h)> thymol >eugenol

(EC50 = 1.45 ± 0.02 mM for 1 h and 1.10 ± 0.02 mM for 2 h).

Although paralyzing effects of terpenoids have been reported before in parasites and C. ele-
gans [15,28], the features of terpenoid-induced paralysis have not been described. Thus, we

measured body length of C. elegans exposed 2 h to 2 mM thymol, 2 mM carvacrol, 2 mM euge-

nol, 0.2 mM levamisole or DMSO (0.8%) on agar plates. Levamisole was used as a control

since it produces spastic paralysis. As expected, levamisole reduced body length. The relative

body length (RBL) in the presence of levamisole compared to that in control agar plates was

0.93 ± 0.05 (p<0.05). In contrast, visual inspection and measurement of worm length revealed

that terpenoids do not change significantly body length. The RBL values were 1 ± 0.08 for thy-

mol, 1 ± 0.09 for carvacrol, 1 ± 0.1 for eugenol, and 1 ± 0.06 for the vehicle DMSO (p>0.15).

Thus, terpenoids produced neither flaccid nor spastic paralysis of C. elegans worms.

With the aim of comparing terpenoid sensitivities among developmental stages, we exposed

the first larval stage (L1) and young adult worms to the tested terpenoids. 1 h and 2 h exposure

of L1 worms to 1.2 mM, 1.4 mM and 1.6 mM thymol, carvacrol or eugenol significantly

affected worm locomotion (Fig 1C). There were no paralyzed worms in the control plates with

DMSO at both stages, and all worms were moving at the beginning of the assay. L1 worms
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were more sensitive to terpenoids during the first hour than adult worms (n = 5 experiments

for each condition).

To determine if terpenoids affect egg-hatching, a property related to anthelmintic capabil-

ity, we performed the egg-hatching assay with modifications for C. elegans [29]. C. elegans eggs

were exposed to M9, M9/DMSO or M9 containing 1.2 mM thymol, carvacrol or eugenol for

12 h and the fraction of unhatched eggs was determined. We showed that all terpenoids inhibit

egg-hatching (Fig 1D). The egg-hatching inhibition effect was stronger for carvacrol than for

thymol and eugenol, in agreement with the potency for nematode muscle paralysis (Fig 1D).

The effect appeared to be irreversible since eggs treated for 12 h with terpenoids at the
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Fig 1. Terpenoids inhibit C. elegans locomotion as a function of time and concentration. (A) Synchronized adult

wild-type worms were placed on agar plates containing increasing thymol concentrations and observed at the

indicated time to determine the fraction of paralyzed worms. (B) Dose-response curves for the paralysis exerted by

thymol, carvacrol, and eugenol after 1 h exposure. (C) Bar chart showing the fraction of paralyzed worms in the

presence of different terpenoids for adult and L1 worms. Synchronized L1 and adult wild-type worms were exposed 1

h and 2 h to the indicated concentration of each terpenoid on agar plates. The results are shown as mean ± SD of at

least 5 independent experiments for each condition. At least 30 worms were used for each assay. The symbol �

indicates statistically significant differences between L1 and adult worms of each group (1 h or 2 h exposure); p-values

for 1 h from left to right were: p = 0.0001; p = 0.0021; p = 0.0361; p = 0.0045; p = 0.0473; p = 0.0052; p = 0.0001 and for

2 h was: p = 0.0383. (D) Bar chart showing the ability of terpenoids to inhibit egg hatching. Fraction of unhatched eggs

exposed to M9 buffer or M9/DMSO (0.58%) alone or containing 1.2 mM thymol, carvacrol or eugenol. Results are

shown as mean ± SD of 3 different assays for each condition. The symbol � indicates differences with control group, #

indicates differences with thymol treatment, & indicates differences with carvacrol treatment, ns: not statistically

significant. Two symbols indicate p<0.01 (p = 0.00352) and three symbols indicate p<0.001 (�p-values from left to

right were: p = 1.465E-12 and p = 4.254E-12; #p-values from left to right were: p = 0.0000000157 and

p = 0.0000000107; and &p = 0.000000000209).

https://doi.org/10.1371/journal.pntd.0007895.g001
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corresponding ~EC50 concentrations did not show hatching after being washed with M9

buffer, seeded into fresh agar plates (lacking the compounds), and incubated for additional

12 h.

Deciphering the molecular targets mediating terpenoid paralysis: Mutants

lacking L-AChR or UNC-49 receptors are partially resistant

To determine if Cys-loop receptors are involved in the rapid paralyzing effects of terpenoids,

we explored the actions of thymol, carvacrol and eugenol on mutant strains. The rationale

for this assay is that the absence of the drug target will cause resistance to the drug. Fig 2

shows the fraction of paralyzed worms exposed to 1 mM thymol, 0.8 mM carvacrol and 1.45

mM eugenol, which correspond to the EC50 concentrations determined for wild-type

worms.

We first tested mutant strains lacking the main Cys-loop receptors involved in muscle con-

traction, L-AChR (homologous to the mammalian muscle nAChRs [30]) and UNC-49 recep-

tor (homologous to the mammalian GABA(A) receptor [31]). In the unc-38(e264) mutant

strain, which lacks functional L-AChRs due to the absence of the essential UNC-38 subunit,

the fraction of paralyzed worms exposed to terpenoids at EC50 concentrations was notably

reduced with respect to wild-type worms; less than 20% of mutant worms were paralyzed at 1

h or 2 h exposure (Fig 2A). The increase of terpenoid concentrations (1.2 mM thymol, 1.2 mM

carvacrol or 1.6 mM eugenol) increased the fraction of paralyzed worms but the effects were

also statistically significantly different with respect to wild-type worms (S1 Fig). The unc-38
(e264) mutant was 2.5 ± 1.1 and 1.5 ± 0.7 times less sensitive than the wild-type after 1 h and 2

h exposure to 1.2 mM thymol, respectively (S1 Fig). As in wild-type worms, exposure for 2 h to

2 mM terpenoids led to ~100% paralysis, indicating that the mutant is partially resistant to the

compounds. The percentage of paralyzed worms at 2 mM were: For thymol: 0.996 ± 0.0089

(wild-type) and 0.970 ± 0.042 (unc-38(e264)) (p = 0.2), for carvacrol: 1.00 ± 0.004 (wild-type)

and 0.960 ± 0.043 (unc-38(e264)) (p = 0.17), for eugenol: 0.968 ± 0.0041 (wild-type) and

0.966 ± 0.045 (unc-38(e264)) (p = 0.9).

In the unc-49(e407) mutant strain, which lacks UNC-49 receptors, the fraction of paralyzed

worms exposed to terpenoids at EC50 concentrations was reduced with respect to wild-type

worms; less than 20% of mutant worms were paralyzed at 1 h or 2 h exposure (Fig 2B). As

observed for the unc-38 mutant strain, the paralysis of the unc-49(e407) mutant strain was con-

centration dependent since the fraction of paralyzed worms increased by increasing terpenoid

concentrations (1.2 mM thymol, 1.2 mM carvacrol or 1.6 mM eugenol) (S1 Fig). The mutants

were 1.97 ± 0.7 and 1.35 ± 0.15 times less sensitive to 1.2 mM thymol than wild-type worms in

the first and second hour, respectively (S1 Fig). Also, ~100% of unc-49(e407) worms were

paralysis when exposed for 2 h at 2 mM terpenoid. The fraction of paralyzed mutant worms at

2 mM were: 0.97 ± 0.05 (p = 0.3), 0.972 ± 0.027 (p = 0.09), and 0.95 ± 0.057 (p = 0.5) for thy-

mol, carvacrol and eugenol, respectively.

The results indicate that L-AChR and UNC-49 receptors are involved in terpenoid-induced

paralysis.

We also tested the mutant strain acr-16(ok789) that lacks the homopentameric nicotine-

sensitive AChR (N-AChR or ACR-16, homologous to α7 nAChR mammalian receptor [32]),

which is also present in the nematode muscle. The exposure of mutant worms to terpenoids at

concentrations corresponding to the EC50 values determined for wild-type worms showed

that the fraction of paralyzed worms was slightly, but significantly, lower than that of wild-type

worms (Fig 2C). With respect to wild-type worms, there were no statistically significant differ-

ences in the fraction of paralyzed worms at 1.2 mM thymol (S1 Fig) and 2 mM thymol

Anthelmintic actions of terpenoids
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Fig 2. Deciphering molecular targets mediating terpenoid effects by using mutant strains. Wild-type and mutant

adult worms were placed on agar plates containing thymol, carvacrol or eugenol at EC50 concentrations calculated for

the wild-type strain and the fraction of paralyzed worms was measured for each condition. Each point represents the

average of� 5 experiments, n = 30 worms, error bars = SD. C. elegans mutant strains are: (A) unc-38(e264); corresponds

to mutants of UNC-38 subunit, which lack functional L-AChRs; (B) unc-49(e407), corresponds to null mutants of UNC-

49B subunit which lack functional UNC-49 receptor; (C) acr-16(ok789) that lacks the homopentameric nicotine-sensitive

AChR (N-AChR or ACR-16); (D) The triple mutant strain of glutamate-gated chloride channel receptor (GluClRs)

subunits, avr-14(ad1305);avr-15(vu227);glc-1(pk54), which has been shown to exhibit high resistance to ivermectin; (E)

ser-4(ok512) that lacks a metabotropic serotonin receptor (SER-4); ser-1(ok345) that lacks a metabotropic serotonin

receptor (SER-1), and mod-1(ok103) that lacks the serotonin-activated chloride channel (MOD-1). Results are shown as

mean ± SD. The symbol � indicates statistically significant differences between wild-type and mutant worms of the same

group (1 h or 2 h exposure). ��p<0.01 (p-values from left to right were: p = 0.0047, p = 0.0057 and p = 0.008) and
���p<0.001 (p�0.0001).

https://doi.org/10.1371/journal.pntd.0007895.g002
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(0.98 ± 0.04, p = 0.4). Thus, this receptor may also play a role in the paralysis caused by terpe-

noids, although the effect is not as marked as that mediated by GABA and L-AChR receptors.

Likewise, we tested the contribution of other receptors associated with anthelmintic action

or worm locomotion to the terpenoid paralysis. The triple mutant strain of glutamate-gated

chloride channel receptors (GluClRs) subunits, avr-14(ad1305);avr-15(vu227);glc-1(pk54),
which has been shown to exhibit high resistance to ivermectin [33], showed no statistically sig-

nificant differences with respect to the wild-type strain in the sensitivity to terpenoids at con-

centrations corresponding to the EC50 values determined for wild-type worms (Fig 2D) or at

1.2 mM thymol (Fig 1S).

We also tested mutant strains of serotonin receptors in C. elegans as the serotonin system

controls several behaviors in nematodes: ser-4(ok512), which lacks the metabotropic serotonin

receptor SER-4, ser-1(ok345), which lacks the metabotropic serotonin receptor SER-1, and

mod-1(ok103) that lacks the serotonin-activated chloride channel (MOD-1). The mammalian

orthologs for these receptors are 5-HT1, 5-HT2 and glycine receptors, respectively [34–36].

No significant differences on the fraction of paralyzed worms were found between wild-type

and mutant strains for thymol concentrations 1 mM (p>0.20, Fig 2E) and 1.2 mM (p>0.30, S1

Fig), indicating that these receptors are not involved in the paralysis induced by thymol.

Combined chemotherapy with thymol and classical anthelmintic drugs

In anthelmintic therapy, the combination of drugs is a strategy used to reduce acquisition of

resistance. We used thymol as the prototype drug on agar plates in combination with currently

used anthelmintics. We performed paralysis assays on agar plates in the presence of thymol

alone and in combination with levamisole that activates the L-AChR, piperazine that activates

UNC-49 receptors and elicits flaccid paralysis, or ivermectin that activates GluClR and also

acts on GABA receptors [21].

After 1 h exposure, ~15% of worms were paralyzed in the presence of 0.03 mM levami-

sole. The combination of 0.03 mM levamisole with 1.2 mM thymol resulted in ~80% of para-

lyzed animals (Fig 3A). We performed a more detailed analysis for the thymol/levamisole
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Fig 3. Thymol and its combination with classical anthelmintics. Bar chart showing the fraction of paralyzed worms after 1 h-exposure on agar plates

to 1 and 1.2 mM thymol, 0.03 and 0.06 mM levamisole (LEV) and the combinations 1 mM thymol and 0.03 mM levamisole, 1.2 mM thymol and 0.03

mM levamisole and 1.2 mM thymol and 0.06 mM levamisole (A), 1.2 mM thymol or 30 mM piperazine (PZE) and its combination (B), 1.2 mM thymol

or 0.3 mM ivermectin (IVM) and its combination (C). The results are shown as mean ± SD of at least 5 independent experiments for each condition. At

least 30 worms were used for each assay. (D) Bar chart showing the fraction of unhatched eggs exposed to M9, M9/DMSO (0.58%), 1.2 thymol, 0.2 mM

levamisole (LEV), 25 mM piperazine (PZE), 0.02 mM ivermectin (IVM) and the combinations. Results are shown as mean ± SD of 3 different assays for

each condition. The symbol � indicates differences with control group (M9), #indicates differences with thymol treatment, &indicates differences with

the anthelmintic agent and ns: not statistically significant. One symbol indicates p<0.05 (p = 0.048); two symbols indicate p<0.01 (p-values from left to

right were: p = 0.0063; p = 0.00113; p = 0.00359; p = 0.0036; p = 0.0037; p = 0.0023 and p = 0.0015) and three symbols indicate p<0.001 (p�0.0001).

https://doi.org/10.1371/journal.pntd.0007895.g003
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combination to determine if the effect is additive or synergistic. In the same set of experi-

ments, we measured the fraction of paralyzed worms at different concentrations of thymol

(0.3 mM-1.4 mM) and levamisole (0.005 mM-0.06 mM) (Fig 3A and S2 Fig). We also mea-

sured in the same set of experiments the paralysis with three different drug combinations

(0.03 mM levamisole/ 1 mM thymol; 0.03 mM levamisole/ 1.2 mM thymol and 0.06 mM

levamisole/ 1.2 mM thymol). The results showed higher paralyzing effect for each respective

combination than that exerted by each individual drug at the same concentration. The calcu-

lated CI values for each combination, determined by CompuSyn software, were 0.9, 0.86 and

0.53, respectively, indicating that the action can be considered slightly synergic (S2 Fig)

[26,37].

For piperazine, high concentrations of the drug on agar plates are required to produce

paralysis of worms [21]. Exposure of worms to 30 mM piperazine for 1 h produced ~10% of

paralysis. The combination of 30 mM piperazine with 1.2 mM thymol resulted in ~38% para-

lyzed worms in 1 h (Fig 3B), indicating that the effect was lower than that exerted by thymol

alone.

The macrocyclic lactones have a potent, broad antiparasitic spectrum at low dose levels.

After 1 h exposure on agar plates containing 0.3 mM ivermectin, ~7% of worms were para-

lyzed and most of the worms were stationary but they still responded to prodding as reported

previously ([21] and Fig 3C). The combination of 0.3 mM ivermectin with 1.2 mM thymol

resulted in ~41% paralysis (Fig 3C), which is lower than that exerted by thymol alone.

To determine if combinations of terpenoids and classical anthelmintics also affect egg-

hatching, we performed the egg-hatching assay for C. elegans eggs exposed to M9, M9/DMSO

or M9 containing thymol, thymol-levamisole, thymol-piperazine or thymol-ivermectin for 12

h (Fig 3D). We showed that all combinations inhibit egg hatching. However, compared to the

effect exerted by thymol alone, the effect of the combination was slightly higher for thymol/

levamisole and lower for thymol/piperazine and thymol/ivermectin.

Terpenoids inhibit macroscopic responses of muscle L-AChR and UNC-49

receptors

To unequivocally confirm that the main muscle Cys-loop receptors involved in muscle con-

traction -L-AChR and UNC-49 receptors- are modulated by terpenoids, we recorded macro-

scopic responses from L1 muscle cells elicited by ACh or GABA (0.5–10 mM) in the whole-

cell configuration at -70 mV. We have previously determined that currents elicited by ACh or

GABA in L1 cells correspond to L-AChR and UNC-49 receptors, respectively [17,21]. No cur-

rents were elicited by application of 0.1 mM thymol, carvacrol or eugenol in the absence of

agonists, indicating that, at the tested concentrations, terpenoids were not capable of activating

L-AChR or UNC-49 receptors (n = 12 cells).

After 1 min pre-exposure of L1 cells to 0.1 mM of each terpenoid, the peak currents elicited

by ACh or GABA were reduced to 66 ± 10% and 78 ± 9% in the presence of thymol, 56 ± 24%

and 54 ± 32% in the presence of carvacrol and 75 ± 19% and 73 ± 16% in the presence of euge-

nol, respectively (n = 5 cells per condition, Fig 4). The control peak currents were almost fully

recovered after 1-min wash with ECS solution. For L-AChR and UNC-49 receptor responses,

the recovered currents were 92 ± 13% and 90 ± 16% for thymol, 85 ± 15% and 86 ± 14% for

carvacrol; and 86 ± 20% and 98 ± 16% for eugenol, respectively. These results indicate that

receptor inhibition is reversible.

Higher terpenoid concentrations (> 0.1 mM) produced membrane instability and could

not be studied. Also, the control with DMSO did not produce statistically significant reduction

of peak currents (95 ± 6% peak current respect to the control).
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1 mM GABA B

1 mM AChA

200 ms50 pA

Thymol

Carvacrol

Eugenol
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Carvacrol
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200 ms50 pA

Fig 4. Macroscopic current recordings from L1 muscle cells show that thymol is an inhibitor of L-AChR and

UNC-49 receptor. Typical whole-cell traces from L1 cultured muscle cells (PD4251 strain) elicited by a 1 s-pulse of

ACh (A) or GABA (B) in the presence or absence of terpenoids. Pipette potential: -70 mV. Each set of currents (control

and treated) corresponds to a single cell and each trace represents the average of 2–4 applications of agonist in both

control and treated conditions. Whole-cell currents activated by 1 mM ACh or 1 mM GABA were recorded before

(black traces) and after pre-exposure to 0.1 mM thymol, 0.1 mM carvacrol or 0.1 mM eugenol, for 1 min (grey traces).

The black line shows the time of exposure to the agonist. For clarity, the peaks are indicated by black (control) and red

(preincubated with terpenoids) arrows.

https://doi.org/10.1371/journal.pntd.0007895.g004

Anthelmintic actions of terpenoids

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007895 November 25, 2019 11 / 20

https://doi.org/10.1371/journal.pntd.0007895.g004
https://doi.org/10.1371/journal.pntd.0007895


Thus, we conclude that thymol, carvacrol and eugenol act as inhibitors of L-AChR and

UNC-49 receptors from C. elegans L1 muscle cells.

Terpenoids decrease single-channel activity of L-AChRs elicited by ACh

and levamisole

To gain further insights into terpenoid action, we recorded single-channel currents from cell-

attached patches in L1 muscle cells. Single channels of L-AChRs activated by 1–100 μM ACh

or levamisole are readily detected from L1 muscle cells [17,21]. We have previously deter-

mined that the detected channel activity is originated from L-AChRs and not from N-AChRs

[17,18]. Channel activity recorded at 100 μM ACh or levamisole showed openings of ~3.5 pA

(n = 10) at 100 mV pipette potential that appeared mainly isolated or in short bursts formed by

two or three successive opening events (Fig 5).

In the presence of terpenoids together with 100 μM ACh in the pipette solution, reduced

single-channel activity was observed in all recordings with respect to the controls with ACh

alone (Fig 5A). Similar results were observed for 100 μM levamisole and 50 μM thymol in the

pipette solution (Fig 5A). As a control, we verified that 0.1% DMSO did not produce any

change in single-channel activity (n = 5). We also verified that terpenoids (1, 50 and 100 μM)

did not elicit single-channel activity in the absence of ACh (Fig 5B).

We analyzed single-channel currents activated by 100 μM ACh to determine how terpe-

noids affected channel properties. Activation occurred as isolated events or in bursts of a few

openings in quick succession [17]. Open time histograms were fitted by one exponential com-

ponent, and the mean open times were similar between the control and in the presence of ter-

penoids in the pipette solution (~0.2 ms, Table 1 and Fig 5C). We found that the mean burst

duration (~0.3 ms), obtained from the open time histograms constructed with a critical time

of 0.2 ms, did not change significantly in the presence of terpenoids (Table 1). Closed-time dis-

tributions of L-AChRs in the absence of terpenoids were well described by the sum of two

main components. No statistically significant differences for the duration of the briefest closed

components were found in the presence of terpenoids (Table 1). With respect to the second

main closed component, there was a trend to longer mean closed durations in the presence of

terpenoids, but due to the intrinsic variability of the system, they were only significantly differ-

ent in the presence of 100 μM carvacrol compared to the control condition (p = 0.01, Table 1).

Interestingly, a new minor long-duration component in the second range was present in all

recordings in the presence of terpenoids (Fig 5C), indicating the existence of prolonged dwell

times in the closed state with respect to control recordings. The duration of this component

among different patches was variable since each condition required a different cell patch.

However, the mean duration of this closed time increased from 7.1 ± 3.9 s to 23.9 ± 12 s at 1

and 100 μM thymol, respectively (p = 0.03), and from 3.9 ± 1.7 s to 7.9 ± 2.5 s for 1 μM and

100 μM carvacrol, respectively (p = 0.046), indicating a concentration-dependent effect.

Thymol did not affect single-channel conductance. The relationship between the amplitude

of single channels and pipette potential revealed that L-AChRs activated by ACh in presence

of thymol exhibit an inward conductance of 32 ± 0.9 pS, similar to that observed in the pres-

ence of ACh alone (33 ± 0.9 pS, p = 0.12). Thus, the decrease in the amplitude of macroscopic

currents cannot be attributed to a decrease in single-channel amplitude.

The main change in the single-channel pattern due to the presence of terpenoids was evi-

denced as a reduced frequency of channel opening, which was clearly detected from visual

inspection of the recordings (Fig 5A). In the presence of 100 μM ACh or levamisole, the num-

ber of events remained constant during the course of the recording (Fig 5A and [17]). How-

ever, with the addition of terpenoids (1, 50 or 100 μM), channel activity pattern appeared as
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Fig 5. Terpenoids decrease single-channel activity of L-AChRs elicited by ACh. (A) Single channels activated by

100 μM ACh or 100 μM levamisole were recorded in the absence and presence of 50 μM terpenoids in the pipette

solution. For each condition, the two different traces, separated by dashes, correspond to the recording during the first

(left) and third minute (right). Channel openings are shown as upward deflections. Pipette potential: 100 mV. Filter: 9

kHz. (B) Representative traces of single-channel activity in the presence of DMSO (vehicle) or terpenoids in the pipette

solution (in the absence of ACh). (C) Representative traces and open and closed time histograms of channels recorded

as described in panel A. For each condition, the trace on the top corresponds to the first min of recording and the one

on the bottom, to the third minute of recording. (D) Bar chart showing the comparison of the mean number of

opening events ± SD in 1 minute of recording as in panel A. The symbol � indicates statistically significant differences

respect to the corresponding control group (ACh or Levamisole).�p<0.05 (p = 0.016) and ���p<0.001 (p-values from

left to right: p = 0.000708; p = 0.000646 p = 0.0000535).

https://doi.org/10.1371/journal.pntd.0007895.g005
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alternating silent and active periods. Similar changes were detected for 100 μM levamisole in

the presence of 50 μM thymol (Fig 5A). To quantify the decrease in the frequency of channel

opening, we measured the number of opening events in 3–5 min of recording and compared

the number of openings per minute in the presence of terpenoids to control recordings in the

absence of terpenoids (Fig 5D). As shown in the figure, terpenoids exerted a marked, statisti-

cally significant decrease of the number of opening events that was not dependent on the type

of agonist.

Single-channel activity at low ACh concentrations (10 μM) also occurs as isolated openings

or as short bursts of openings in quick succession. Open time histograms of L-AChRs activated

by 10 μM ACh in presence of 50 μM thymol were fitted by one exponential component whose

mean duration was similar to that of the control condition (Table 1). The mean burst duration

was also similar in both conditions (Table 1). Interestingly, at 10 μM ACh the decrease in the

frequency of openings due to the presence of 50 μM thymol was not statistically significantly

different to that measured at 100 μM ACh (42 ± 24% at 10 μM ACh, n = 7, and 19 ± 9% at

100 μM, n = 5, p>0.3). This finding suggests that thymol is not acting as a competitive

antagonist.

Table 1. Single-channel properties of L-AChRs activated by 10 μM ACh, 100 μM ACh or 100 μM levamisole in the absence and presence of terpenoids.

Agonist Treatment O1 (ms)

(area)

C1 (ms)

(area)

C2 (ms)

(area)

Burst (ms) n

100 μM ACh DMSO control 0.213 ± 0.022

(1 ± 0)

0.063 ± 0.008

(0.281 ± 0.025)

19.2 ± 3.114

(0.705 ± 0.021)

0.30 ± 0.03 6

1 μM Thymol 0.210 ± 0.018

(1 ± 0)

0.077 ± 0.004

(0.551 ± 0.044)

18.667 ± 6.429

(0.385 ± 0.014)

0.46 ± 0.07 5

1 μM Carvacrol 0.198 ± 0.028

(1 ± 0)

0.08 ± 0.008

(0.483 ± 0.089)

23 ± 1.732

(0.482 ± 0.057)

0.39±0.11 5

1 μM Eugenol 0.239 ± 0.051

(1 ± 0)

0.069 ± 0.014

(0.464 ± 0.153)

16.030 ± 7.839

(0.487 ± 0.082)

0.55 ± 0.19 5

50 μM Thymol 0.181 ± 0.021

(1 ± 0)

0.066 ± 0.012

(0.236 ± 0.036)

18.6 ± 3.318

(0.614 ± 0.107)

0.24 ± 0.03 5

50 μM Carvacrol 0.199 ± 0.014

(1 ± 0)

0.087 ± 0.004

(0.391±0.084)

23 ± 5.196

(0.544 ± 0.129)

0.36 ± 0.05 5

50 μM Eugenol 0.153 ± 0.005

(1 ± 0)

0.067 ± 0.01

(0.349 ± 0.043)

17.950 ± 4.132

(0.623 ± 0.046)

0.24 ± 0.02 5

100 μM Thymol 0.266 ± 0.056

(1 ± 0)

0.06 ± 0.011

(0.348 ± 0.105)

32.143 ± 21.019

(0.593 ± 0.112)

0.43 ± 0.13 7

100μM Carvacrol 0.207 ± 0.05

(1 ± 0)

0.066 ± 0.008

(0.350 ± 0.148)

31.533 ± 10.651

(0.488 ± 0.105)

0.34 ± 0.15 5

100 μM Levamisole DMSO control 0.250 ± 0.075

(1 ± 0)

0.047 ± 0.026

(0.096 ± 0.049)

55.2 ± 19.96

(0.471 ± 0.109)

0.27 ± 0.1 5

50 μM Thymol 0.328 ± 0.153

(1 ± 0)

0.073 ± 0.017

(0.150 ± 0.142)

106 ± 83

(0.643 ± 0.236)

0.45 ± 0.31 5

10 μM ACh DMSO control 0.307 ± 0.056

(1 ± 0)

0.051 ± 0.021

(0.215 ± 0.16)

43.75 ± 23.977

(0.731 ± 0.162)

0.52 ± 0.35 6

50 μM Thymol 0.304 ± 0.07

(1 ± 0)

0.072 ± 0.014

(0.154 ± 0.085)

48.167 ± 18.335

(0.772 ± 0.098)

0.39 ± 0.13 7

Single channels were recorded from L1 muscle cells at a holding potential of 100 mV. ACh channels corresponding to L-AChRs were recorded in the presence of ACh

or levamisole with and without terpenoids in the pipette solution. The mean durations of the open component (O1) and closed components (C1 and C2) and mean burst

durations were obtained from the corresponding histograms. Data are shown as mean ± SD and the number of recordings for each condition is indicated (n).

https://doi.org/10.1371/journal.pntd.0007895.t001
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Overall, in the presence of three different terpenoids -thymol, carvacrol and eugenol- sin-

gle-channel activity of L-AChRs is significantly reduced, indicating an inhibitory effect. The

results are compatible with action of these drugs as allosteric inhibitors.

Discussion

Anthelmintic treatment of nematode infections remains the pillar of worm control in both

human and veterinary medicine. However, control is threatened by the appearance of drug

resistant nematodes, which leads to the need of developing novel compounds.

C. elegans has been pivotal in anthelmintic drug discovery, in defining mechanisms of

action of antiparasitic drugs, and in the understanding of mechanisms of drug resistance [38].

By using C. elegans, we here defined the anthelmintic actions of three plant terpenoids at the

behavioral level, identified muscle L-AChR and GABA receptors as important targets involved

in the paralyzing effects, and described the underlying molecular mechanisms. N-AChRs may

also participate in terpenoid actions since the mutant worms lacking ACR-16 are more resis-

tant than wild-type worms but this occurs only at low terpenoid concentrations. Interestingly,

Ancylostoma caninum ACR-16 has been recently proposed as a valid target site for the devel-

opment of anthelmintics against hookworm infections [39].

Considering previous in vivo and in vitro studies on parasitic nematodes reporting the effi-

cacy of these terpenoids as antiparasitic drugs [14], our results are of high relevance for their

application in anthelminthic therapies.

We found that terpenoids induce C. elegans paralysis as a function of time and concentra-

tion. The rank order of potencies established from the EC50 values for the paralyzing effects

are carvacrol> thymol> eugenol, in accordance with previous reports in Haemonchus contor-
tus and C. elegans [9, 28]. We showed that terpenoids produce “isometric” paralysis, in which

worm body length does not change significantly during exposure on agar plates, as evaluated

by visual inspection and measurement of worm length. On the contrary, the paralysis pro-

duced by agonists of L-AChRs, such as levamisole, or agonists of UNC-49 receptors, such as

piperazine, is spastic or flaccid, respectively [5,40]. The type of phenotypic changes induced by

terpenoids may be due to their dual effects on muscle receptors that mediate antagonistic

actions since L-AChRs are involved in muscle contraction and UNC-49 receptors, in muscle

relaxation. It is important to note that, although we can ensure that L-AChRs and UNC-49

receptors are markedly involved in the terpenoid paralyzing effects and that N-AChRs may

also participate, additional targets -not here explored- could not be discarded. In fact, C. ele-
gans contains 29 nAChR subunits, which would be worthy of further study to explore terpe-

noid selectivity in the nicotinic family. Moreover, terpenoids act at receptors of different

families, such as transient receptor potential channels [41] that are also present in C. elegans
[42].

Studies on Ascaris suum showed that carvacrol inhibits ACh-induced muscle contraction

and membrane depolarization [3]. This is in full agreement with our results that demonstrate

allosteric inhibition of L-AChR responses to ACh and, therefore, validate C. elegans as a nema-

tode model for deciphering terpenoid action.

We determined that the sensitivity to terpenoids varies among developmental stages and L1

worms are more sensitive than adult worms. These findings are relevant due to importance of

larvae in nematode transmission infections. One possible explanation for the different sensitiv-

ity could be due to differences in cuticle permeability between L1 and adult worms [43,44].

The ability to reliably detect anthelmintic resistance is a crucial aspect of resistance manage-

ment [45]. In this regard, the egg hatch assay has been used as a measurement of drug resis-

tance [29]. In addition to the rapid paralyzing effects mediated by L-AChR and UNC-49
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receptors at the neuromuscular junctions, we found that thymol, carvacrol and eugenol

increase the fraction of unhatched eggs. This effect would, in turn, lead to a broader anthel-

mintic spectrum activity. The mode of action by which terpenoids produce egg-hatching

inhibition has not been determined yet. Nevertheless, our findings indicate that by two tempo-

rarily different mechanisms -rapid paralysis and reduced egg-hatching- terpenoids may have a

profound anthelmintic activity. Importantly, similar findings have been reported in the para-

sitic nematode Haemonchus contortus exposed to plant essential oils, which showed ovicidal,

larvicide and adulticide effects [8,9, 46].

The combinatorial chemotherapy strategy has been successful in achieving improved effi-

cacy, decreased toxicity, and reduced development of drug resistance for several pathologies,

including parasitosis [47]. The use of bioactive natural products as complementary tools to

existing synthetic anthelmintic drugs has shown promising results [47]. We showed that com-

binations of thymol-classic anthelmintics should be carefully evaluated since nematode sus-

ceptibility could be changed with respect to that of individual drug effects. At the tested

concentrations, thymol-levamisole combinations were more effective to paralyze worms than

thymol alone but the combinations thymol-piperazine and thymol-ivermectin were less effec-

tive. We determined by the Chou-Talalay’s CI theorem included in Compusyn software that

the combination effect is synergic (CI<1) for thymol-levamisole, at least at the tested concen-

trations. This is a widely used quantitative method that allows determination of synergism,

antagonism or additive in vitro, in animals and in clinical trials [27,37].

We performed electrophysiological recordings on C. elegans L1 muscle cells for defining

drug action. We measured in the whole-cell configuration responses of L-AChRs and UNC-49

receptors to the terpenoids as well as to their endogenous agonists before and after terpenoid

application. Unfortunately, and as reported previously, these cultured muscle cells are not

technically suitable for successive drug applications, and we were therefore not able to obtain a

complete pharmacological characterization [17,21]. In addition, terpenoids produce instability

of membrane patches and high concentrations could not be tested. Nevertheless, we revealed

that terpenoids do not activate the receptors and that peak currents elicited by ACh and

GABA are reduced by thymol, carvacrol and eugenol, indicating that terpenoids act as inhibi-

tors of both L-AChRs and UNC-49 receptors from C. elegans.
To further decipher the underlying mechanism of the macroscopic inhibitory effect, we

recorded single-channel currents activated by ACh and levamisole that we have previously

shown that correspond to the L-AChR [17]. The analysis revealed changes in the activity pat-

tern without changes in amplitude and mean open and burst durations. The main change is

evidenced as a marked reduction in the frequency of single L-AChR channel opening, which

explains the mechanistic basis of the inhibitory effect. This effect could be due to terpenoid

actions as competitive antagonists or negative allosteric inhibitors of L-AChRs. However,

since the decrease in the frequency of opening events is similar at a 10-fold change in ACh

concentration (10 and 100 μM), the results suggest that terpenoids are allosteric, non-competi-

tive, inhibitors. Molecular mechanisms underlying non-competitive inhibition may be

increased desensitization of resting receptors, slow open-channel blockade or impaired open-

ing; these mechanisms cannot be distinguished from our single-channel recordings.

Terpenoids have been shown to have different modulatory actions (positive and negative)

at different Cys-loop receptors. For example, thymol is a positive allosteric modulator of the

human GABA(A) receptor and of a homo-oligomeric GABA-activated RDL receptor from

Drosophila melanogaster [48,49]. In the Drosophila RDL receptor, substitution of a threonine

at 6´position of M2 to methionine, which is found in the mite Varroa Destructor RDL recep-

tor, converts thymol into a negative modulator [50]. Monoterpenoids, including thymol, car-

vacrol and eugenol, act as negative allosteric modulators of α7 nAChR [51]. Thymol and
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carvacrol display allosteric agonist activity on the human 5-HT3A receptor but not on the

closely related mouse 5-HT3A receptor [52]. Thymol inhibits macroscopic currents of the glu-

tamate-gated chloride channels (GluClRs) from S. mansoni (SmGluCl-2) and Haemonchus
contortus (AVR-14B GluCl) [53,54]. The fact that in our assays the triple mutant strain resis-

tant to ivermectin was sensitive to thymol may indicate that for the anthelmintic action either

the enhancement of GluClR activity is more important than its inhibition or the effects

through L-AChR and GABA receptors are dominant. Docking studies using an NMR struc-

ture of the human α7 nAChR transmembrane domain (PDB code 2MAW) [55] indicated that

cyclic monoterpenes may interact with an allosteric site located in the transmembrane domain

[51]. The authors suggested that the binding of monoterpenes to the closed conformation will

prevent the M2 helix from adopting the orientation that is characteristic of the open channel.

This interpretation agrees with our results showing reduced frequency of opening events. The

action of thymol through a transmembrane domain is also in line with results from mutant

RDL receptors and from ELIC-5HT3A chimera [50].

The fact that terpenoids act at different nematode receptors has important advantages since

diverse lines of evidence indicate that polypharmacological agents, which are those that act

simultaneously at various protein targets, might show better profiles than selective ligands,

regarding both efficacy and side effects [56]. In addition, by acting at different receptors, terpe-

noids may reduce the development of resistance since one type of receptor may overcome the

decreased drug sensitivity associated to mutations in the other receptor.

Overall, our work indicates that the treatment with terpenoids may be explored as an alter-

native or complementary anthelmintic strategy, which may help to overcome the ever-increas-

ing resistance of parasites to classical anthelmintic drugs, as well as a supplement to reduce

infection burdens of soil transmitted helminths.
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