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In this study, we explored the in-vitro and in-vivo mechanism
of antitumor action of a novel synthetic nonantibiotic
triazolylpeptidyl penicillin derivative, named TAP7f, on
B16-F0 murine melanoma cells. In-vitro assays showed that
TAP7f caused an inhibition of S phase progression and a
concomitant decrease of the percentage of cells in G0/G1

phase. We also found that TAP7f treatment induced an
apoptotic response characterized by an increase of the sub-
G1 fraction of B16-F0 hypodiploid cells, the occurrence of
cells with picnotic nuclei, and the detection of
phosphatidylserine exposure on the outer side of the
plasma membrane. Apoptotic cell death was further
characterized by the activation of caspase-8, caspase-9,
and caspase-3; the increase in the proapoptotic/
antiapoptotic ratio of Bcl-2 family proteins; the higher
expression levels of Fas receptor and TRAIL ligand; and the
cleavage of poly(ADP-ribose) polymerase, a caspase-3
substrate. The in-vivo effect of TAP7f was studied in a
syngeneic C57BL/6J mouse melanoma model. Results
showed that TAP7f inhibited melanoma cell proliferation
in vivo, as determined by a decreased expression of
proliferating cell nuclear antigen, inducing a significant
reduction of tumor growth. Apoptosis in vivo was assessed

by detecting active caspase-3 in tumor slices from treated
mice and the expression levels of Fas, TRAIL, and Bcl-2
proteins in tumor lysates. The administration of 80mg/kg of
TAP7f to non-tumor-bearing mice showed no
histopathological effects on different organ tissues. Our
results suggest that TAP7f might be considered as a
potential therapeutic agent for cancer treatment. Anti-
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Introduction
One of the most important challenges in the treatment of

cancer continues being the finding of effective treat-

ments able to reduce death rates and improve quality of

life of patients. Among the available treatment options,

surgery, radiotherapy, chemotherapy, and immunother-

apy still work as valid therapeutic alternatives, although

not exempt of some unwanted adverse effects such as

toxicity and resistance. In this context, the current proble-

matic requires continuous efforts to find novel, effective,

and safer anticancer agents.

Several prescribed antibiotics, such as penicillins, cephalos-

porins, thienamycins, and monobactams, contain the β-lactam
ring as an essential structural feature [1]. Besides the well-

known antibacterial properties, the growing interest in the

chemistry of β-lactams has opened a novel scenario based on

the development of synthetic derivatives with new pharma-

cological effects, including antitumor activity [2–4]. In this

regard, a variety of β-lactam derivatives, such as 7-alkylidene

substituted cephems [5], 6-alkylidenepenicillanate sulfones

and related 3-alkylidene-2-azetidinones polyaromatic [6] and

1,4-diaryl 2-azetidinones [7,8], N-methylthiolated β-lactams

[9,10], 2β-methyl substituted penicillins [11], and ferrocenyl

bioconjugates of ampicillin [12], among others, have been

reported as potential anticancer agents. In the search of new

structural variants with improved anticancer activity, we have

recently evaluated the antitumor potency of a library of

bicyclic β-lactam derivatives synthesized by molecular hybri-

dization techniques [13]. As a result, a series of new hybrid

compounds [triazolyl aminoacyl(peptidyl)penicillins (TAPs)]

were obtained by conjugation of penicillin to a peptide via a

triazole group. Thus, besides the biological properties of the

β-lactam portion, the influence of the 1,2,3-triazole subunit,

also found in some cytotoxic drugs, should be considered

[14,15]. In addition, the incorporation of the peptide segment

could facilitate transport across the cell membranes and/

or achieve effective protein–protein interactions [16,17].

Although TAP7f contains a β-lactam ring, it does not

behave as an antibiotic, as it lacks some of the structural

characteristics that are essential for the antibacterial
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activity of the penicillins, mainly the acylamino group at

position 6 of the penam nucleus [18].

When the antiproliferative activity of a series of hybrid

compounds was evaluated against HeLa and B16-F0

tumor cell lines, we found that TAP7f, a derivative bearing

leucine and phenylalanine bound to the triazole group,

showed the most potent and selective cytotoxic action

[13]. Based on this finding, in this work, we decided to

explore the molecular mechanisms underlying the anti-

tumor action of TAP7f. To this end, after studying a wider

panel of human and murine tumor cell lines, we examined

the in-vitro ability of this derivative to induce apoptosis in

the murine B16-F0 melanoma cell line and then investi-

gated the in-vivo action in a syngeneic C57BL/6J mouse

melanoma model.

Materials and methods
Reagents and antibodies

TAP7f was synthesized as described in a previous work [13].

A 100mmol/l stock solution of the compound was prepared

in dimethyl sulfoxide and stored at −70°C. The stock

solution diluted 1/10 in ethanol was used for in-vitro assays at

different concentrations in the indicated culture medium. All

the experiments were performed with a final concentration

of 20 μl vehicle/ml of medium. Caspase substrates

Ac-DEVD-AMC (caspase-3), Ac-IETD-AMC (caspase-8),

and Ac-LEHD-AMC (caspase-9) were obtained from EMD

Millipore (Burlington, Massachusetts, USA). Polyclonal anti-

Bax (sc-7480), anti-Bcl-2 (sc-783), anti-Bcl-XL (sc-1041), anti-

Bid (sc-11423), anti-TRAIL (sc-7877), anti-poly(ADP-ribose)

polymerase (PARP) (sc-7150), and anti-proliferating cell

nuclear antigen (PCNA) (sc-7907) antibodies and mono-

clonal anti-Fas (sc-8009) were obtained from Santa Cruz

Biotechnology Inc (Dallas, Texas, USA). Monoclonal anti-

cytochrome C antibody was obtained from BD Biosciences

(#556432; San Jose, California, USA). Polyclonal antiactive

caspase-3 antibody was obtained from Cell Signaling

Technology (#9661; Danvers, Massachusetts, USA).

Cell lines and culture conditions

Except otherwise indicated, cell lines were obtained from

the American Type Culture Collection (ATCC, Manassas,

USA). Human HeLa (cervix adenocarcinoma, ATCC CCL-

2) and HT-1080 cell lines (fibrosarcoma, ATCC CCL-121)

were grown in minimum essential medium supplemented

with 10% fetal bovine serum (FBS), 2mmol/l L-glutamine,

50U/ml penicillin, and 50 μg/ml streptomycin. KB cells

(human oropharyngeal carcinoma, ATCC CCL-17) and

SK-MEL-28 cells (human malignant melanoma, ATCC

HTB-72) were maintained in the same conditions,

but adding 1mmol/l sodium pyruvate/4mmol/l sodium

bicarbonate and 1mmol/l nonessential amino acids. MCF-

7 cell line (human breast cancer, ATCC HTB-22) was

cultured in Dubecco’s modified Eagle’s Medium (Gibco

BRL, Gaithersburg, Maryland, USA) containing 4.5 g/l

glucose, 1.5 g/l sodium bicarbonate, 10% FBS, 4mmol/l

L-glutamine, 1mmol/l sodium puyruvate, 0.1 mmol/l

nonessential amino acids, 50U/ml penicillin, and 50 μg/ml

streptomycin. B16-F0 (murine melanoma, ATCC

CRL-6322), CT26 (murine colorectal carcinoma, ATCC

CRL-2638), WM35 (human melanoma, gently supplied

by Dr Andras Falus, Department of Genetics, Cell

and Immunobiology, Semnelweiss University, School of

Medicine, Hungary), HL-60 (human acute promyelocytic

leukemia, ATCC CCL-240) and Jurkat cell lines (human

acute T cell leukemia, DSMZ ACC-282) were grown in

RPMI-1640 (Gibco BRL) supplemented with 10% FBS,

2 mmol/l L-glutamine, 50U/ml penicillin, and 50 μg/ml

streptomycin. NMuMG (normal murine mammary gland,

ATCC CRL-1636) and LM3 cells (murine mammary

adenocarcinoma), kindly provided by the Institute of

Oncology ‘Angel H. Roffo’ (Buenos Aires, Argentina),

were cultured in Dubecco’s modified Eagle’s Medium-

F12 containing 10% FBS, 2mmol/l L-glutamine, 0.6%

HEPES, 50U/ml penicillin, and 50 μg/ml streptomycin.

Proliferation assay

Cells were incubated in 96-well microplates at a density of

1×104 cells/well (KB, B16-F0, HT-1080), 2×104 cells/well

(HeLa,MCF-7, CT26, LM3,NMuMG), or 5×104 cells/well

(HL-60, Jurkat) for 72 h at 37°C in the presence of different

concentrations of TAP7f or vehicle, in a total volume of

0.2ml of the corresponding culture medium. Cell number

was evaluated by colorimetric determination of the levels of

the ubiquitous lysosomal enzyme hexosaminidase [19].

Flow cytometry analyses

To study the effect of TAP7f on cell cycle phase dis-

tribution, 5× 105 B16-F0 cells were incubated for dif-

ferent times at 37°C in the presence or absence of 20

μmol/l of TAP7f in 60 mm Petri dishes. The same pro-

tocol was employed to determine the proportion of

hypodiploid cells. After treatment, cells were harvested,

washed with cold PBS, and then 1× 106 cells were fixed

overnight with 1 ml of 70% cold ethanol and kept at 4°C.
To determine the relative DNA content, fixed cells were

washed twice with PBS and resuspended in 500 μl of

0.1% sodium citrate buffer, pH 8.4, 0.1% Triton X-100,

and 50 μg/ml of propidium iodide (PI). After incubating

for 24 h at 4°C, stained cells were analyzed in a

FACScanflow cytometer (Becton Dickinson, Franklin

Lakes, New Jersey, USA).

Morphological changes visualization

B16-F0 cells (5× 105) were incubated for 24 h at 37°C in

the presence of 20 μmol/l of TAP7f or vehicle in six-well

microplates. After harvesting and washing, cells were

stained with 50 μg/ml ethidium bromide and 50 μg/ml

acridine orange and observed with a fluorescence Olympus

BX50 microscope (Olympus America Inc., Center Valley,

Pennsylvania, USA) with the corresponding filters (ethi-

dium bromide: 510–550 nm excitation and 590 nm emis-

sion wavelengths; acridine orange: 470–490 nm excitation
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and 515 nm emission wavelengths). Alternatively, chro-

matin condensation was visualized after nuclei staining

with the blue-fluorescent stain Höechst 33258 (352 nm

excitation and 461 nm emission wavelengths).

Annexin V apoptosis assay

B16-F0 cells (5× 105) were incubated for different times

at 37°C in the presence of 20 μmol/l of TAP7f or vehicle

in six-well microplates. After harvesting and washing the

cells with cold PBS, phosphatidylserine externalization

was assessed by Annexin V/PI double staining, according

to the manufacturer’s instruction (ApoAlert Annexin

V-FITC Apoptosis Kit, #630109; BD Biosciences

Clontech, San Jose, California, USA). The results were

analyzed using a FACScan with WinMDi software

(Purdue University Cytometry Laboratories, USA).

Annexin V +PI− cells were considered as early apoptotic,

whereas Annexin V+PI+ cells as late apoptotic/necrotic.

Caspase activity assays

After treatment of B16-F0 cells (6×105/ml) for different times

with a concentration of 20 μmol/l of TAP7f or vehicle, cells

were detached with trypsin/EDTA and washed with cold

PBS. Then, 1×106 cells were lysed for 30min at 4°C in 50 μl
of lysis buffer (10mmol/l HEPES, pH 7.4, 50mmol/l NaCl,

2mmol/l MgCl2, 5mmol/l EGTA, 1mmol/l PMSF, 2 μg/ml

leupeptin, and 2 μg/ml aprotinin) followed by three cycles of

freezing and thawing. Cell lysates were centrifuged at 17 000g
for 15min, and total protein concentration was determined

using Bradford reagent (Bio-Rad, Hercules, California, USA).

Aliquots containing 100 μg of protein were diluted in assay

buffer (20mmol/l HEPES, 132mmol/l NaCl, 6mmol/l KCl,

1mmol/l MgSO4, and 1.2mmol/l K2HPO4, at pH 7.4), 20%

glycerol, and 5mmol/l DTT and incubated for 2 h at 37°C
with 50 μmol/l of the corresponding fluorogenic substrates (Ac-

DEVD-AMC: caspase-3, Z-IETD-7-amino-4-trifluoromethyl

coumarin: caspase-8, Ac-LEHD-AMC: caspase-9). Cleavage

of the substrates was monitored in a SFM25 Kontron

Fluorometer (Kontron Instruments, Milan, Italy). The fluor-

escence emitted by 7-amino-4-methyl coumarin was mea-

sured at 355 nm excitation and 460 nm emission wavelengths,

whereas 7-amino-4-trifluoromethyl coumarin was monitored at

400 nm excitation and 505 nm emission wavelengths. Results

were expressed as the change in fluorescence units (per μg of
protein) relative to control.

Western blotting

B16-F0 cells (6× 105) were incubated for different times

in the presence of 20 μmol/l of TAP7f or vehicle in six-

well microplates, harvested, and washed with cold PBS.

Then, 1× 106cells were lysed for 30 min at 4°C in 10 μl of
lysis buffer (10% glycerol, 0.5% Triton X-100, 1 μg/ml

aprotinin, 1 μg/ml trypsin inhibitor, 1 μg/ml leupeptin,

10 mmol/l Na4P2O7, 10 mmol/l NaF, 1 mmol/l Na3VO4,

1 mmol/l EDTA, 1 mmol/l PMSF, 150 mmol/l NaCl, and

50 mmol/l Tris, at pH 7.4). Cell lysates were centrifuged,

and aliquots of supernatants containing 100 μg of protein

were resuspended in 0.063mol/l Tris/HCl, pH 6.8, 2% SDS,

10% glycerol, 0.05% bromophenol blue, and 5% 2-mercap-

toethanol; submitted to SDS-PAGE; and transferred onto

PVDFmembranes (GEHealthcare, Little Chalfont, UK) for

1 h at 100V in 25mmol/l Tris, 195mmol/l glycine, and 20%

methanol, at pH 8.2. Membranes were then treated as the

usual western blotting method. The secondary antibodies

were anti-mouse IgG (horseradish peroxidase-conjugated

goat IgG from Santa Cruz Biotechnology; sc-2005) or anti-

rabbit IgG (horseradish peroxidase-conjugated goat IgG from

Santa Cruz Biotechnology; sc-2004). Immunoreactive pro-

teins were visualized using the Pierce ECL Plus detection

system (Thermo Scientific, Waltham, Massachusetts, USA)

according to the manufacturer´s instructions. Band intensity

was quantified by using a densitometer (Gel Pro Analyzer,

Media Cybernetics Inc., Rockville, USA). Mouse anti-

tubulin antibody (ab7291; Abcam, San Luis, Missouri, USA)

or a rabbit anti-actin antibody (A2066; Sigma-Aldrich,

Cambridge, UK) was used to confirm equal protein loading.

Evaluation of mitochondrial membrane potential

To measure ΔΨm, B16-F0 cells were treated with 20 μmol/l

of TAP7f for 3 h at 37°C. After treatment, cells were

detached with trypsin/EDTA, washed twice with cold PBS

and incubated with 40 nmol/l of the potential-sensitive

cationic lipophilic dye 3, 3′-dihexyloxacarbocyanine iodide

[DiOC6(3)] for 20min at 37°C. Green fluorescence for

DiOC6(3) was measured by using a FACScanflow cytometer

(Becton Dickinson).

Immunodetection of cytosolic cytochrome C
B16-F0 cells were treated with 20 μmol/l of TAP7f for

different times, harvested, and centrifuged at 300g for

10 min at 4°C. Cell pellets were washed once with cold

PBS, resuspended in 30 μl of sucrose buffer (250 mmol/l

sucrose, 20 mmol/l HEPES, pH 7.5, 10 mmol/l KCl,

1.5 mmol/l MgCl2, 1 mmol/l EDTA, 1 mmol/l EGTA,

1 mmol/l dithiotreitol, 0.1 mmol/l PMSF, 1 μg/ml aproti-

nin, and 1 μg/ml leupeptin), and incubated on ice for

15 min. Cells were then homogenized with a Dounce (40

strokes), and unbroken cells and nuclei were pelleted by

centrifugation at 1000g for 10 min. The supernatant was

centrifuged at 20 000g for 20 min at 4°C to remove the

mitochondrial fraction. The supernatant obtained (cyto-

solic extract) was stored at − 70°C until use. Protein

concentration was determined using Bradford reagent,

and cytosolic extracts containing 25 μg of protein were

loaded onto a 16% SDS-PAGE and then transferred onto

PVDF membranes as previously indicated.

In-vivo effect of TAP7f: toxicity studies and tumor growth

All experiments were performed in accordance with

the National Institute of Health Guide for the Care and

the Use of Laboratory Animals and approved by the

Institutional Animal Care and Use Committee (CICUAL)

of the School of Pharmacy and Biochemistry, University of

Buenos Aires. Female C57BL/6J mice, obtained from the
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Animal Care Facility of the School of Veterinary,

University of Buenos Aires, were housed in environmen-

tally controlled chambers, with food and water available ad

libitum, and were used for experiment at 8–10 weeks old

(approximate weight: 20–25 g). To explore if the adminis-

tration of TAP7f to a group of non-tumor-bearing mice

could induce some toxicity, mice were injected intraper-

itoneally three times per week for 2 weeks with 80mg/kg

of TAP7f or with vehicle. At the end of the treatment,

different organs were removed and fixed in formol buffer

10% in PBS 0.1mol/l, pH 7.4, and then dehydrated and

included in paraffin. Cuts of 5 μmol/l were made via

microtome (Leica RM 2125; Leica, Wetzlar, Germany) and

mounted on 2% xylane-coated slides. Sections were then

stained with hematoxylin–eosin for histological analysis.

To study the effect of TAP7f on tumor growth, B16-F0

cells (1× 105) diluted in 200 μl of RPMI were injected

subcutaneously in the right flank of each mouse. Following

10–12 days of cell inoculation, mice were divided into four

groups: group I (control) received 0.2ml of vehicle [70% (v/v)

polyethylene glycol 400 in PBS]; groups II, III, and IV

received 1, 10, and 20mg/kg, respectively, of TAP7f in

vehicle intraperitoneally three times per week for 2 weeks.

Animals were daily monitored for overall health status, and

their body weights were registered weekly throughout the

course of the study. Tumor sizes were measured with a

caliper on alternate days, and tumor volumes were calculated

using the following formula: V= (D×d2)/2, where D is the

larger diameter and d is the smaller. At the end of the study,

mice were anesthetized intraperitoneally with 130mg keta-

mine and 13mg xylazine/kg of body weight, and tumors

were excised, weighed, and measured.

Apoptosis-related protein expression in tumors

To evaluate the expression of apoptosis-related proteins,

tumors were excised and lysed in a buffer solution containing

10% glycerol, 0.5% Triton X-100, 1 μg/ml aprotinin, 1 μg/ml

trypsin inhibitor, 1 μg/ml leupeptin, 10mmol/l Na4P2O7,

10mmol/l NaF, 1mmol/l Na3VO4, 1mmol/l EDTA, 1mmol/l

PMSF, 150mmol/l NaCl, and 50mmol/l Tris, at pH 7.4. Clear

tumor lysate supernatants were obtained by centrifugation

and aliquots with 100 μg of protein were resuspended in

0.063mol/l Tris/HCl, pH 6.8, 2% SDS, 10% glycerol, 0.05%

bromophenol blue, 5% 2-mercaptoethanol; loaded onto a 14%

SDS-PAGE; and then transferred onto nitrocellulose mem-

branes as indicated before. Bax, Bcl-2, Bcl-XL, and Fas were

detected by western blot, and band intensity was quantified

by using a densitometer (Gel Pro Analyzer).

Immunohistochemistry

Tumors from mice treated or not with 20 mg/kg of TAP7f

were fixed in 10% formaldehyde neutral buffer solution,

embedded in paraffin, and sectioned (5 μmol/l) before

immunohistochemical analysis. Antigen retrieval was

performed by treating tissue sections in 10 mmol/l

sodium citrate buffer, pH 6.0, for 50 min at 92°C. Slides
were then incubated with antibodies against PCNA or

active caspase-3 overnight at 4°C. After rinsing, sections
were incubated with a goat anti-rabbit IgG-FITC sec-

ondary antibody (sc-2359; Santa Cruz Biotechnology) and

observed by fluorescence microscopy.

Statistical analysis

All values are expressed as mean ± SE. P value less than

0.05 was considered statistically significant. Analyses

were performed using the GraphPad Prism 5.00 software

(GraphPad Software, Inc., California, USA). Statistical

analysis of in-vitro data was performed by using the

Student’s t-test or one-way analysis of variance followed

by Dunnett’s multiple comparison tests. The effect of

TAP7f in mice was analyzed by one-way analysis of

variance, and post-hoc comparisons between individual

treatments were made using Newman–Keuls multiple

comparison tests.

Results
Effect of TAP7f on the proliferation of different cell lines

In a previous work, we evaluated the antiproliferative activity

of a library of triazolyl aminoacyl(peptidyl) penicillins against a

human (HeLa) and a murine (B16-F0) tumor cell line.

Among the tested compounds, the derivative having leucine

and phenylalanine bound to the triazole group (TAP7f, see

Table 1) showed not only a high antitumor potency but also a

good selectivity [13]. Thus, the low cytotoxic effect of TAP7f

toward nonmalignant epithelial cells derived from normal

mammary gland of mice (NMuMG) indicated a selective

action against the tested tumor cells [13]. Herein, we first

decided to evaluate the effect of TAP7f in a more extensive

panel of human and murine cell lines. The antiproliferative

activities, expressed as IC50 values, are summarized in

Table 1. This table also includes IC50 previously obtained in

HeLa, B16-F0, and NMuMG cells. Results obtained showed

either a high (IC50<10 μmol/l) or a moderate (IC50∼10–20

μmol/l) cytotoxic activity of TAP7f in all the cell lines tested.

To characterize the molecular events underlying the anti-

tumor action of TAP7f, we decided to explore the in-vitro

mechanism of action on the responsive B16-F0 cell line and

its in-vivo antitumor effect in a syngeneic C57BL/6J mouse

melanoma model.

TAP7f induces cell cycle arrest and apoptosis in B16-F0

cells

To examine the inhibitory action of TAP7f on B16-F0

proliferation, the effect of TAP7f on cell cycle progres-

sion was first examined. B16-F0 cells were incubated in

the presence or absence of the synthetic derivative for

different times and then analyzed by flow cytometry. As

shown in Fig. 1a, the treatment with a 20 μmol/l con-

centration of TAP7f for up to 18 h caused a decrease of

the percentage of cells in G0/G1 and an increase in the

population of cells in S phase. Thus, after 18 h of incu-

bation with TAP7f, the percentage of cells in G0/G1

diminished from 57 ± 3% (control) to 39 ± 3% and the

proportion of cells in S phase increased from 32 ± 5%
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(control) to 48 ± 4%. Furthermore, when B16-F0 cells

were incubated for up to 48 h with TAP7f, a time-

dependent increment in the sub-G1 population of cells

was observed, suggesting that this compound induced an

apoptotic response (Fig. 1b). It should be noticed that the

high percentage of sub-G1 cells obtained after 24 and

48 h of incubation prevented the study of cell cycle phase

distribution at these time periods.

The induction of apoptosis was then confirmed by

determining the externalization of phosphatidylserine at

the cell surface with Annexin V. When B16-F0 cells were

treated with TAP7f for different times, the percentage of

early apoptotic cells (AV+PI−) increased from 4± 1%
(control) to 7± 1% and 3± 1% (control) to 10± 4%, after 6

and 24 h of exposure, respectively, whereas late apoptotic

cells (AV+PI+) varied from 7.7± 1% (control) to 20± 5%
and 7± 4% (control) to 45± 4%, after 6 and 24 h of treat-

ment, respectively (Fig. 2a). Furthermore, after exposing

B16-F0 cells to a 20 μmol/l concentration of TAP7f for

24 h, the typical chromatin condensation of apoptotic cells

was visualized after staining either with Höechst 33258 or

ethidium bromide/acridine orange (Fig. 2b).

Effect of TAP7f on apoptosis-regulating mediators

To explore the intracellular agents contributing to the

apoptotic action of TAP7f in B16-F0 cells, we first stu-

died the participation of the executioner caspase-3 and

the initiator caspase-8 and caspase-9. As shown in Fig. 3a,

caspase-3 proteolytic activity reached a peak (two-fold

increase) after 6 h of exposure to TAP7f, and declined

gradually at longer incubation times. A significant acti-

vation of both caspase-8 and caspase-9 (∼1.5-fold) was

also detected after 3 h of treatment, and the activity

remained elevated for at least 24 h.

As activation of caspase-9 plays a role in the mitochon-

drial pathway of apoptosis, we next decided to evaluate

the loss of the mitochondrial inner transmembrane

potential (ΔΨm) by flow cytometry. A significant decrease

of ΔΨm was observed 3 h after TAP7f exposure, being

the percentage of cells with reduced DiOC6(3) incor-

poration of 30 ± 3 versus 14 ± 3% corresponding to control

cells (nontreated cells) (Fig. 3b). In accordance with this

result, the significant increase in the cytosolic level of

cytochrome C obtained after 3 and 6 h of treatment with

TAP7f strongly suggested the release of cytochrome C
from mitochondria (Fig. 3c).

Next, we tested whether TAP7f treatment modified the

expression levels of some members of the Bcl-2 family

proteins. Results obtained in cells exposed to TAP7f for 3

and 6 h showed an increase in the expression levels of Bax

and a reduction of the amount of Bcl-XL, Bcl-2, and the

full-length Bid protein (Fig. 4). We also found a 2–3-fold

increase in TRAIL ligand and Fas receptor levels after 3 h

of treatment (Fig. 4). As the PARP, a protein that binds

and repairs DNA strand breaks, is also a substrate for

caspase-3 [20,21], PARP cleavage was evaluated by wes-

tern blot assays. As shown in Fig. 4, an almost complete

loss of full-length PARP levels was observed 3 and 6 h

after treatment of B16-F0 cells with TAP7f.

In-vivo effect of TAP7f on tumor growth

To evaluate whether TAP7f inhibits murine melanoma

growth in vivo, C57BL/6J mice were subcutaneously

inoculated with B16-F0 cells and treated 10–12 days after

with vehicle or different doses of the penicillin derivative

three times per week for 2 weeks. A dose-dependent effect

was evident, being the reduction of tumor volume ∼70 and

50% at doses of 20 and 10mg/kg, respectively, whereas no

growth inhibition was observed at 1mg/kg of TAP7f

(Fig. 5a). After treatment with 20mg/kg of TAP7f, tumor

weight diminished ∼40% with respect to control group

(Fig. 5b). Body weights of TAP7f-treated mice were similar

to control during the course of treatment (data not shown).

The presence of the cell proliferation marker PCNA was

then determined by immunohistochemistry. The expres-

sion of PCNA was clearly decreased in 20mg/kg-treated

tumors compared with control (Fig. 5c, top), indicating that

TAP7f markedly suppressed melanoma cell proliferation

in vivo. The histological studies using hematoxylin–eosin

staining from 20mg/kg TAP7f-treated tumor tissues detec-

ted the presence of necrotic areas showing unstructured

eosinophilic material, nucleus fragments, and cellular debris

compared with intact neoplastic proliferation observed as

dark purple-stained living cells in control tumor (Fig. 5c,

bottom).

Table 1 IC50 values of TAP7f on different human and murine
cell lines

Cell lines IC50 (μmol/l)a

Human
HL-60 3 ±1
HeLa 3.5 ±0.3
KB 6 ±2
HT-1080 7 ±1
MCF-7 3 ±1
Jurkat 12 ±1
SK-MEL-28 17 ±3
WM35 16 ±2

Murine
B16-F0 3 ±1
CT26 24 ±3
LM3 18 ±4
NMuMG 102 ±8

Results represent the mean ±SE of at least three different experiments.
aThe molar concentration required to cause 50% growth inhibition (IC50) was
determined from dose-response curves.
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The expression of caspase-3 was next detected in tumor

cells by immunohistochemistry. As shown in Fig. 6a,

higher levels of active caspase-3 were found in tumor

cells from 20mg/kg TAP7f-treated mice with respect to

tumors from nontreated mice (control). The expression of

different apoptosis-mediator proteins was also evaluated

in tumor lysates from mice treated with 20 mg/kg of

TAP7f or vehicle (control). Results obtained by western

blot showed a significant increment in the expression

levels of Bax (∼2-fold), TRAIL (∼1.5-fold), and Fas

(∼3.5-fold) proteins and a decrease in the amount of the

full-length Bid protein, Bcl-2, Bcl-XL, and PARP in

tumor lysates from treated mice (Fig. 6b).

To further explore whether the administration of TAP7f

could induce some toxicity, a group of non-tumor-bearing

mice was injected either with vehicle or with 80 mg/kg of

TAP7f (a dose four-fold higher than the in-vivo efficient one)
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intraperitoneally three times per week for 2 weeks.

Results showed in Fig. 7 revealed that 80 mg/kg of

TAP7f did not affect the histological characteristics of

different tissues examined after hematoxylin–eosin

staining.

Discussion
In an effort to find effective chemotherapeutic agents

endowed with selectivity and low toxicity, in this work

we first studied the in-vitro antiproliferative activity of

TAP7f, a novel synthetic triazolylpeptidyl penicillin

derivative, in a panel of different human and murine cell

lines, and then examined the mechanism of antitumor

action on B16-F0 murine melanoma cells (IC50= 3 ± 1
μmol/l) and the in-vivo effect in a murine melanoma

model. We found that TAP7f induced an increase in the

population of cells in S phase accompanied by a decrease

in G0/G1 phase up to 18 h after treatment. Consistent

with our data, Smith et al. [9] reported that an N-thiolated
β-lactam derivative induced an inhibition of S phase

progression in Jurkat T cells, and a similar behavior was

described by Chen et al. [22] in MDA-MB-231 breast

cancer cells. In spite of the analogous action shown by

these β-lactam derivatives, it should be taken into

account that the effect on cell cycle distribution is

dependent on both the chemical structure of the com-

pound tested and the cell line assayed [23–27]. In this

regard, ceftriaxone, a third-generation cephalosporin

antibiotic containing a β-lactam ring, was shown to induce

G2/M arrest in a lung tumor cell line [28]. Although these

studies with β-lactam antibiotics are included for com-

parative purposes, it must be considered that TAP7f,

although contains a penicillin group in its structure, did

not show antibacterial properties (data not shown).

A significant and time-dependent increment in the

amount of hypodiploid cells was also observed after

6–48 h of incubation, suggesting that the cell growth

inhibitory effect of TAP7f is not only the result of cell

cycle arrest but is also related to the induction of an

apoptotic response, as it has been previously reported

for other β-lactam compounds with anticancer properties

[2,10,29,30]. Furthermore, the 1,2,3-triazole subunit is

found in some hybrid anticancer drugs inducing an

apoptotic cell death [15,31,32].

The apoptosis-inducing property of TAP7f was then con-

firmed by the detection of apoptotic morphological features,

such as the visualization of cells with chromatin condensa-

tion and the quantification of phosphatidylserine exposure

on the outer side of the plasma membrane, a feature con-

sidered a typical early marker of apoptosis [33–35]. The

involvement of caspases in the induction of an apoptotic

cell death was further studied. It is well-known that the

interaction of death receptors with their corresponding

ligands promotes the formation of a death-inducing signal-

ing complex that activates the initiator caspase-8. In con-

trast, caspase-9 is activated after the formation of the

apoptosome [36–38]. The cleavage of the effector caspase-3

after activation of the initiator caspases is finally responsible

of the typical morphological and biochemical changes that

occur during apoptosis [33–38]. Results herein obtained

showed that TAP7f induced the activation of initiator

caspase-8 and caspase-9 after 3 h of treatment, whereas the

activity of the executioner caspase-3 reached a maximal

value after 6 h of exposure to TAP7f. Thus, caspase acti-

vation kinetics data suggest that both death receptor and

mitochondrial pathways would be involved in the apoptotic

response triggered by TAP7f. The contribution of the

mitochondrial pathway after TAP7f treatment was also

Fig. 4
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assessed by the decrease of the mitochondrial inner trans-

membrane potential and the release of cytochrome C from

the mitochondria, whereas the increase in the expression

levels of Fas receptor and TRAIL supported the con-

tribution of the death receptor pathway [33–35]. The

expression of Bcl-2 family proteins showed an increase in

the ratio of proapoptotic versus antiapoptotic proteins. In

addition, it was shown that PARP, a caspase-3 substrate,

was cleaved upon TAP7f exposure.

The results obtained in vitro encouraged us to explore

the in-vivo effect of TAP7f. When C57BL/6J mice

challenged with B16-F0 cells were treated with TAP7f,

we showed a concentration-dependent reduction of

tumor volume. Mice body weight did not decrease during

the treatment (data not shown). In addition, the reduc-

tion of the expression levels of PCNA in tumor slices

obtained from 20mg/kg-treated mice revealed the ability

of TAP7f to inhibit in-vivo cell proliferation. Different

Fig. 6
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studies have reported the in-vivo antitumor efficacy of

other β-lactams compounds, such as N-alkylthiolated and

N-thiolated β-lactams derivatives in breast cancer xeno-

grafts [2,22] or ceftriaxone in lung tumor xenografts [28].

However, this is the first time that the antitumor activity

of TAP is elucidated in vivo. The induction of an in-vivo

apoptotic response was also verified after detecting the

active form of caspase-3, an increment in the amount of

Fas receptor and TRAIL, and a higher ratio of proa-

poptotic versus antiapoptotic proteins in tumor lysates

from 20mg/kg-treated mice with respect to control mice.

Furthermore, TAP7f did not result to be toxic for other

tissues as no histological differences were observed in

different organs extracted from non-tumor-bearing mice

injected with vehicle or 80 mg/kg of TAP7f. Thus, after

2 weeks of treatment, no inflammatory infiltrates or

hemorrhagic areas were observed in different organs,

such as kidney, intestine, liver, spleen, brain, lung, and

heart. Previous studies showed the lack of deleterious

effect of some β-lactam antibiotics with anticancer prop-

erties in both normal cells in vitro and animal models

[10,30]. Taken together, our results revealed that TAP7f

inhibited cell proliferation and induced an apoptotic cell

death both in vitro and in vivo.

Fig. 7
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Conclusion

The previous screening of a library of triazolyl aminoacyl

(peptidyl) penicillins led us to the identification of

TAP7f as a selective and potential antitumor agent.

Herein, we demonstrated that TAP7f inhibited in vitro
the proliferation of mouse melanoma cells by arresting

cell cycle and inducing an apoptotic response. We also

demonstrated the in-vivo efficiency of the penicillin

derivative to reduce tumor growth and induce apoptosis

through the activation of both death receptor and

mitochondria-dependent pathways. In summary, this is

the first report describing the antitumor properties of a

novel penicillin derivative, which should be considered

as a leader and promising therapeutic agent for cancer

treatment.
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