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Abstract

In the context of the quantum histories approach to quantum mechanics, we

define a contrary relation between quantum histories, generalizing the standard

definition of contrary quantum properties. Using this contrary relation, we

study the possibility of inferring contrary quantum histories. We consider the

quantum histories approach with three different consistency conditions: weak,

medium and global consistency conditions. For the first two conditions, we show

that, it is possible to infer contrary histories from different families of histories,

in accordance with previous results. For global consistency condition, we prove

that it is not possible to infer contrary histories.

Keywords: Consistent Histories; Decoherent Histories; contrary quantum

histories; quantum foundations.

1. Introduction

According to the standard formulation of quantum mechanics, the states

of a quantum system follow two types of time evolutions. When there is no

measurement, evolutions are governed by the Schrödinger equation, leading to

a continuous and deterministic dynamic. When a measurement is performed

on the system, the state collapses onto one of the eigenstates of the measured

observable in a discontinuous and non-deterministic process [1, 2]. This for-

mulation has a remarkable predictive success, however, the distinction between
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ordinary physical processes and measurement processes was considered concep-

tually unsatisfactory by some authors [3, 4, 5, 6, 7, 8]. On the one hand, since

measuring devices are made of the same components as the remaining physical

systems, it is expected that measurement processes are not essentially different

from ordinary physical processes. On the other hand, since probability is de-

fined only for measurements, it cannot be applied to closed systems which do

not admit of being measured by an external apparatus.

These limitations become unavoidable in quantum cosmology. Since its

study object is a closed system by definition, the notion of an external ob-

server is completely inappropriate. In order to overcome these difficulties, it

was proposed an approach to quantum mechanics based on the notion of quan-

tum histories. In 1984, R. B. Griffiths presented the first version of his Theory

of Consistent Histories [9]; some years later, he introduced some modifications

[5, 10, 11]. R. Omnès also published a series of articles and two books in which

he contributed to the development of the theory [6, 12, 13, 14]. Simultaneously,

Murray Gell-Mann and James Hartle developed a similar formalism, called the

Decoherent Histories Interpretation [7, 15, 16]. Although these proposals do

not agree in every detail, their strong similarities justify to subsume all of them

under the label quantum histories approach.

All versions of the quantum histories approach provide a formulation of

quantum mechanics in which measurements are treated in the same way as

other physical processes. Therefore, there is no additional collapse postulate,

quantum dynamics is always described by the Schrödinger equation. Moreover,

the notion of an external observer it is no longer necessary. As a result, the

quantum histories approach is applicable to closed systems, and it provides a

useful framework for studying quantum cosmology.

Since it is not possible to define a Kolmogorovian probability on the set of

all quantum histories, it is necessary to restrict the probability definition to

subsets of histories which constitute well-defined probabilistic sample spaces,

called families of histories. These families must satisfy an additional condition,

called the consistency condition. The two most relevant conditions that have
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been proposed are: the weak consistency condition (WCC) and the medium

consistency condition (MCC) [7].

Since WCC and MCC depend on the initial state of the system, families

of histories also depend on the initial state. This is an odd situation compared

with what happens in standard quantum mechanics, where the sets of properties

that can be considered simultaneously are independent of the state. In order

to avoid the dependence with the initial state, R. Laura and L. Vanni proposed

an alternative condition [17], which is equivalent to the WCC imposed for all

states [18]. Moreover, it was proved that this condition can be applied for

describing quantum measurements [19, 20], the decay process [21] and the double

slit experiment with and without measurement instruments [22]. On the basis

of these results, it is not difficult to show that the condition can be fruitfully

applied to the most common experimental set-ups, which are, in one way or

another, variations of the above cases. Throughout this paper, this condition

will be called the global consistency condition (GCC).

An important weakness of the quantum histories approach is that there are

too many consistent families of histories. A. Kent pointed out that the exis-

tence of multiple consistent families allows retrodictions of contrary properties

from different consistent families [23]. In other words, he proved that, for a

given initial data of a quantum system, it is possible to infer, with certainty,

two inconsistent facts about the past, using two different consistent families of

histories. This implies that, in general, in the quantum histories approach there

is not a unique past for given present data [24].

Proponents of the quantum histories approach argue that this is not a real

problem for the theory, because contrary retrodictions are obtained using in-

compatible families, which, accordingly to the single framework rule, cannot be

considered simultaneously [25, 26]. If one accepts the single framework rule,

explicit logical contradictions are not possible. However, this rule was criti-

cized mainly for two reasons. On the one hand, for being an ad hoc solution

imposed in order to avoid inconsistencies, and on the other hand, for implying

that what is real depends on the choice of the consistent family of histories
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[24, 27]. Therefore, some authors [23, 24, 28, 29] consider that the existence of

contrary retrodictions is a serious failure of the quantum histories approach.

In [30], it was analyzed the problem of contrary retrodictions using the global

consistency condition and it was proved, without appealing to the single frame-

work rule, that it does not allow to retrodict contrary properties. In this paper,

we generalize that result to a more general case of inferences of histories. We

start defining a contrary relation between histories, and then we study the pos-

sibility of inferring contrary histories without appealing to the single framework

rule.

The organization of this work is the following. In section 2, we summarize

the main aspects of the quantum histories approach and we present the three

consistency conditions that we will consider throughout this work: WCC, MCC

and GCC. In section 3, we introduce the contrary relation between quantum

histories and we discuss the possibility of contrary inferences of histories. First,

we consider families of histories which satisfy the WCC and MCC, and we

show that they admit inferences of contrary histories using different families of

histories, in accordance with the result of A. Kent [23]. Second, we consider

families which satisfy the GCC, and we prove, without appealing to the single

framework rule, that it is not possible to infer contrary histories. This results

is a natural generalization of the previous one obtained in [30]. In section 4 we

present the conclusions, and finally, in the Appendix, we prove two lemmas that

are used in Section 3.

2. Quantum histories approach

In this section, we introduce the main features of the quantum histories

approach [5, 6, 7, 10, 14, 31]. First, we describe how quantum histories are

represented. Second, we explain how probabilities are defined and why an addi-

tional consistency condition is necessary. Also, we introduce three consistency

conditions which will be used in Section 3: weak, medium and global consistency

conditions.
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In standard quantum mechanics it is possible to represent properties of phys-

ical systems at a single time. Due to the orthocomplemented lattice structure

of the set of properties, logical operations between them can be defined [32, 33].

However, since all properties of the system are considered at the same time, it is

not possible to consider logical operations between properties at different times.

In order to be able to represent properties at different times, quantum his-

tories formalism introduces the notion of history, which generalizes the notion

of property. A product history is defined as a sequence of properties at differ-

ent times, and a general history is defined as the result of logical operations

between product histories. For example, if we consider n times, t1 < ... < tn,

and properties pi and qi at each time ti, then p̆ = (p1, ..., pn) is the history in

which, at each time ti, the property pi is the case, and q̆ = (q1, ..., qn) is the

history in which, at each time ti, the property qi is the case. From p̆ and q̆, we

can obtain general histories which result from logical operations between them,

such as the conjunction, the disjunction and the negation.

In standard quantum mechanics, properties can be represented by orthogonal

projectors. If H is the Hilbert space of the system, the set of all properties is

given by the set of all orthogonal projectors P (H) . The main idea of the

quantum histories approach is to represent histories with orthogonal projectors

defined on a bigger Hilbert space H̆ = H ⊗ n... ⊗ H, i.e., the Hilbert space

obtained by doing the tensor product of n copies of the Hilbert space of the

system. For example, an n-time product history p̆ = (p1, ..., pn) is represented

by the projector P̆ = P1 ⊗ ...⊗ Pn,

p̆ = (p1, p2, ..., pn) ←→ P̆ = P1 ⊗ ...⊗ Pn,

where each projector Pi represents the property pi. In general, not every history

is a product history. The disjunctions between product histories can be histories

which cannot be represented by tensor products of projectors.

Since H̆ is also a Hilbert space, the set P (H̆), given by all projector operators

on H̆, has the same structure that the lattice of properties of standard quantum

mechanics P (H), i.e., it is an orthocomplemented and non-distributive lattice
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[33]. Therefore, using the logical operations of the lattice P (H̆), it is possible to

define logical operations between quantum histories. Furthermore, the partial

order relation of the lattice P (H̆) is defined in the following way:

P̆ ≤ Q̆ ⇐⇒ P̆H ⊆ Q̆H.

That means, P̆ is less than Q̆ if the range of P̆ is included in the range of Q̆.

In order to define Kolmogorovian probabilities for quantum histories, it

is necessary to have a distributive lattice. Since the lattice P (H̆) is non-

distributive, we need to choose a distributive sublattice. For this purpose, at

each time ti (i = 1, ..., n), a projective decomposition of the identity of H must

be selected, i.e., for each i = 1, ..., n, a set of orthogonal projectors {P kii }ki∈σi

(σi a set of index) which are mutually orthogonal and sum the identity of H:

P kii P
k′i
i = δkik′iP

ki
i ,

∑
ki∈σi

P kii = I,

where I is the identity operator of H.

Then, we consider the product histories P̆k, with k = (k1, ..., kn) ∈ σ̆ =

σ1 × ...× σn, given by picking one projector P kii at each time ti:

P̆k = P k11 ⊗ ...⊗ P knn , k ∈ σ̆.

It is easy to check that histories P̆k form a projective decomposition of the

Hilbert space H̆:

P̆kP̆k′
= δkk′ P̆k,

∑
kP̆

k = Ĭ , k,k′ ∈ σ̆,

where Ĭ is the identity operator in H̆.

Finally, we consider the operators P̆Λ (Λ ⊆ σ̆), obtained by summing all

histories P̆k, with k ∈ Λ, i.e.,

P̆Λ =
∑

k∈ΛP̆
k.

These operators are also orthogonal projectors, and they represent the quantum

histories obtained by the disjunction of the histories P̆k.
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The set F of all histories P̆Λ is a Boolean sublattice of P (H̆) and is called a

family of histories,

F =
{
P̆Λ ∈ P (H̆)

∣∣∣ P̆Λ =
∑

k∈ΛP̆
k, Λ ⊆ σ̆

}
.

The set of histories P̆k is a generator of the family of histories F and, since

histories P̆k are the atoms of F , they are called atomic histories. In any family

of histories, the logical operations between two histories P̆ and Q̆ take the

following form:

• Disjunction: P̆ ∨ Q̆ = P̆ + Q̆− P̆ Q̆

• Conjunction: P̆ ∧ Q̆ = P̆ Q̆

• Negation: P̆⊥ = Ĭ − P̆

Since families of histories have a Boolean lattice structure, it is possible to

define a probability on them. The probability definition of quantum histories is

usually motivated from standard quantum mechanics [31, 34]. Given a product

history represented by P̆ = P1 ⊗ ... ⊗ Pn, the probability of measuring the

sequence of properties P1, ..., Pn, at times t1, ..., tn, respectively, is given by

the expression

Prρ0(P1 ⊗ ...⊗ Pn) = Tr(Pn,0...P1,0ρ0P1,0...Pn,0), (1)

where we have introduced the Heisenberg representation of the projector P kii ,

given by Pi,0 = U−1(ti, t0)PiU(ti, t0).

The main assumption of the quantum histories approach is the identification

of the expression (1), not with the probability of measuring the history P1⊗ ...⊗

Pn, but with the probability of the occurrence of the history when the system

is isolated and there is no measurements performed by external observers.

The probability defined above can be expressed in terms of an operator called

chain operator. For each atomic history P̆k = P k11 ⊗ ...⊗P knn of a family F , its

chain operator is defined as

C(P̆k) = P k11,0P
k2
2,0...P

kn
n,0, (2)
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with P kii,0 the Heisenberg representation of the projector P kii . Then, for a general

history P̆Λ =
∑

k∈Λ P̆
k, its chain operator is obtained by linear extension of

the atomic case:

C(P̆Λ) =
∑

k∈ΛC(P̆k). (3)

Finally, we define the probability of a general history P̆Λ in the following way:

Prρ0(P̆Λ) = Tr{C†(P̆Λ)ρ0C(P̆Λ)}. (4)

However, in general this definition does not satisfy the additivity axiom

of probability theory. Given a family of histories F , and two disjoint atomic

histories P̆k and P̆k′
(i.e. P̆kP̆k′

= 0), the probability of the disjunction of the

two histories is given by

Prρ0(P̆k + P̆k′
) = Tr{C†(P̆k + P̆k′

)ρ0C(P̆k + P̆k′
)} =

= Prρ0(P̆k) + Prρ0(P̆k′
) + 2Re

{
Tr
[
C†(P̆k)ρ0C(P̆k′

)
]}

.
(5)

We can see in equation (5) that the additivity condition does not hold in gen-

eral. In order to obtain a well-defined probability, it is necessary to impose an

additional condition to families of histories, such that the extra terms of ex-

pression (5) disappear. This extra condition is usually called the consistency

condition and a family of histories which satisfies it is called a consistent family

of histories.

Different consistency conditions have been proposed to eliminate the extra

terms of equation (5). All of them are sufficient conditions to have well–defined

probabilities, but not all of them are necessary conditions. The more restrictive

conditions allow less consistent families of histories, which could be considered a

weakness. However, they have some advantages when dealing with the classical

limit problem or the inferences of contrary properties.

Usually, all these conditions are expressed in terms of what is known as the

decoherence functional,

Dρ0

(
P̆k, P̆k′

)
= Tr

[
C†(P̆k)ρ0C(P̆k′

)
]
.
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The diagonal terms of the decoherence functional are the probabilities of the

atomic histories, i.e.,

Prρ0(P̆k) = Dρ0

(
P̆k, P̆k

)
.

In what follows we present three of the consistency conditions that have

been proposed in the literature. Let F be a family of histories and P̆k its

atomic histories.

• Weak consistency condition (WCC):

Re
{
Dρ0

(
P̆k, P̆k′

)}
= 0, ∀k 6= k′. (6)

This condition was proposed by Gell-Mann and Hartle [7, 16], based on a

similar condition presented by Griffiths [9] (for details, see note 4 of [16]).

It is the necessary and sufficient condition in order to have well define

probabilities. Therefore, it is the weakest of all possible conditions and it

allows more consistent families than the others. A family F which satisfies

the weak consistency condition will be called a weakly consistent family of

histories.

Although this condition is mathematically natural, some authors criti-

cized it for being physically unsatisfactory. For example, Diosi showed in

[35] that the weak consistency condition for two statistically independent

subsystems does not imply the fulfillment of the same condition for the

composite system. Also, he proved that weakly consistent families do not

persist being weakly consistent if we alter the dynamics of the system,

even when we expect them to persist. Other authors argued that it allows

to many consistent families and it is not adequate for describing quasi–

classical domains [16, 34, 36]. Stronger conditions were proposed in order

to overcome some of the objections.

• Medium consistency condition (MCC):

Dρ0

(
P̆k, P̆k′

)
= 0, ∀k 6= k′. (7)
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This condition was proposed by Gell-Mann and Hartle [7] and it is stronger

than the previous one. A family F which satisfies the medium consistency

condition will be called a medium consistent family of histories. Although

it is not a necessary condition, it is considered more useful to characterize

quasi–classical domains and to study the emergence of classical world from

quantum world [7, 16, 34]. Moreover, some authors [34] prefer this condi-

tion because they look favorably on conditions which reduce the number

of families. They consider that less consistent families could help in solv-

ing the difficulties related with the prediction and retrodiction of contrary

properties.

• Global consistency condition (GCC):

Re
{
Dρ0

(
P̆k, P̆k′

)}
= 0, ∀k 6= k′, ∀ ρ0. (8)

This condition results from imposing the weak consistency condition (6)

for all states of the system, and it is a necessary and sufficient condition for

having consistent families independent of the state. A family F which sat-

isfies the globally consistency condition will be called a globally consistent

family of histories.

It is clear that GCC is stronger than WCC, but also it was proved in [18]

that GCC is stronger than MCC. An equivalent condition to the GCC was

first proposed by Laura and Vanni [17, 22], which consists in the commu-

tation of all the orthogonal projectors in the Heisenberg representation:

[P kii,0, P
kj
j,0] = 0, ∀ i, j, ∀ ki ∈ σi, ∀ kj ∈ σj . (9)

In [18], it was proved that condition (9) is equivalent to the GCC, i.e., to

the weak consistency condition imposed for all states. Also, in [18], it was

argued that GCC is a natural requirement if we assume that families of

histories have to be analog to complete sets of compatible properties of

standard quantum mechanics, which are independent of the initial state.
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Furthermore, it was proved that GCC has the advantage of not admitting

contrary retrodictions [30].

In the next section we are going to generalize the results obtained in [30]. In

the context of the quantum histories formalism, and for the three consistency

conditions presented above, we will consider a more general case of contrary

inferences.

3. Inferences of contrary quantum histories

A. Kent proved that in the quantum histories approach with the WCC or

MCC the probabilistic retrodictions depend on the choice of the consistent fam-

ily of histories. This freedom allows for a given initial data to infer with certainty

two contrary properties of the past from different consistent families [23]. This

result has no parallel in standard quantum theory, in which it is not possible

to infer with certainty two contrary properties given an initial state. For these

reasons, many authors [23, 24, 29] consider the existence of contrary inferences

as a serious problem of the quantum histories approach.

In this section, we are going to analyze the existence of more general contrary

inferences in the quantum histories approach. Throughout this analysis we

will avoid appealing to the single framework rule. In this way, the conclusions

obtained are not affected by the criticisms raised against this rule.

First, we define a contrary relation for quantum histories, generalizing the

definition of contrary properties used in standard quantum mechanics [23].

Then, in Section 3.1, we show that weakly and medium consistent families allow

inferences of contrary histories using different families of histories. To do that,

it is enough to consider the example presented by J. B. Hartle [26] and to point

out that the retrodiction of contrary properties is a particular case of inferences

of contrary histories. Finally, in Section 3.2, we prove that it is not possible to

infer contrary histories if we consider globally consistent families. This result

generalizes a previous one presented in [30], in which it was proved that the

commutation condition (9) does not allow retrodictions of contrary properties.
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We begin defining the tools that will be necessary throughout this section:

the contrary relation for histories, the notion of inference of histories and the

definition of inference of contrary histories.

1. Contrary relation of histories:

In standard quantum mechanics, two properties represented by orthogonal

projectors P and Q are said to be contrary if they satisfy the relation

P ≤ Q⊥ = I −Q [23]. This condition means that the image of projector

P is included in the image of the orthogonal complement of projector Q.

Since the set of quantum histories is also an orthocomplemented lattice, it

has an order relation and an orthogonal complement. Therefore, the con-

trary relation between properties can be generalized to the set of histories

in the following way. Given two histories represented by projectors P̆ and

Q̆, we say that P̆ is contrary to Q̆ if they satisfy the following relation:

P̆ ≤ Q̆⊥ = Ĭ − Q̆.

This relation is symmetric: if P̆ ≤ Ĭ − Q̆, then Q̆ ≤ Ĭ − P̆ . Then, we can

simply say that P̆ and Q̆ are contrary histories.

A useful characterization of contrary histories is the following (see [33],

section 1.3): two histories represented by projectors P̆ and Q̆ are contrary

if, and only if, their orthogonal projectors are orthogonal to each other,

i.e.,

P̆ ≤ Q̆⊥ ⇐⇒ P̆ Q̆ = Q̆P̆ = 0.

2. Inference of histories:

We consider an initial state ρ0 and a consistent family of histories F , which

satisfies for ρ0 any of the consistency conditions presented in Section 2.

Given two histories of F , represented by P̆ and Q̆, with Prρ0(Q̆) 6= 0, we

define the conditional probability of Q̆ given P̆ in the following way

Prρ0(Q̆|P̆ ) =
Prρ0(Q̆P̆ )

Prρ0(Q̆)
. (10)
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Furthermore, we say that Q̆ is inferred from P̆ if the conditional proba-

bility of Q̆ given P̆ is equal to one, i.e.

Prρ0(Q̆|P̆ ) = 1.

It should be noted that it is not possible to define the conditional probabil-

ity between two histories which cannot be included in the same consistent

family of histories.

3. Inference of contrary histories:

The inference of contrary histories consists in the existence of two contrary

histories, from different and incompatible consistent families, that can be

inferred from a third history which belongs to both families of histories.

More precisely, given an initial state ρ0 and two consistent families of

histories F1 and F2, we say that it is possible to infer contrary histories if

there are three histories P̆ , Q̆ and R̆, such that P̆ , R̆ ∈ F1 and Q̆, R̆ ∈ F2,

satisfying the following conditions:

• P̆ and Q̆ are contrary histories, i.e., P̆ Q̆ = Q̆P̆ = 0.

• P̆ is inferred from R̆, and Q̆ is inferred from R̆, i.e., Prρ0(P̆ |R̆) = 1

and Prρ0(Q̆|R̆) = 1.

In what follows, we are going to study if it is possible to infer contrary

histories, using the three consistency conditions previously defined.

3.1. Weak and medium consistency conditions

In this section, we show that consistent families of histories, which satisfy

weak or medium consistency condition, admit inferences of contrary histories.

A particular case of contrary inference of histories was first presented by

A. Kent in [23]. He proved that it is possible to retrodict with certainty two

contrary properties from different consistent families which satisfy the WCC (6)

or the MCC (7). Another example of retrodiction of contrary properties was

developed by J. B. Hartle [26], based on the example of Kent. In what follows,

we resume Hartle’s example and we show that it is a particular case of inference

of contrary histories.
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Hartle considered a quantum system represented by a a three-dimensional

Hilbert space. For simplicity, the Hamiltonian is chosen to be zero, i.e., U(t, t′) =

I. The state of the system at time t0 is given by ρ0 = |Ψ〉〈Ψ|, with |Ψ〉 =

1√
3

(|A〉+ |B〉+ |C〉), where |A〉, |B〉 and |C〉 are three orthogonal and normal-

ized vectors of the Hilbert space.

At time t1, two projective decompositions of the identity are considered:

{PA, PA} and {PB , PB}, where PA = |A〉〈A|, PA = I − PA, PB = |B〉〈B|

and PB = I − PB . At time t2, one projective decomposition of the identity

is considered: {PΦ, PΦ}, where PΦ = |Φ〉〈Φ| and PΦ = I − PΦ, with |Φ〉 =

1√
3
(|A〉+ |B〉− |C〉). Two families of histories are defined, F1 and F2. F1 is the

family generated by the following atomic histories

P̆AΦ = PA ⊗ PΦ, P̆AΦ = PA ⊗ PΦ,

P̆AΦ = PA ⊗ PΦ, P̆AΦ = PA ⊗ PΦ,

and F2 is the family generated by

P̆BΦ = PB ⊗ PΦ, P̆BΦ = PB ⊗ PΦ,

P̆BΦ = PB ⊗ PΦ, P̆BΦ = PB ⊗ PΦ.

For the initial state ρ0 = |Ψ〉〈Ψ|, F1 and F2 satisfy weak and medium consis-

tency conditions.

In order to show the existence of inferences of contrary histories, first we

define the following contrary histories:

P̆AI = P̆AΦ + P̆AΦ = PA ⊗ I,

P̆BI = P̆BΦ + P̆BΦ = PB ⊗ I.

The history P̆AI belongs to F1 and the history P̆BI belongs to F2. To prove

that they are contrary histories, it is enough to show

P̆AI P̆BI = (PA ⊗ I)(PB ⊗ I) = PAPB ⊗ I = 0,

where in the last step we have used the orthogonality between vectors |A〉 and

|B〉.
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The next step is to show that there is a third history, which belongs to both

families F1 and F2, from which it can be inferred P̆AI and P̆BI . We defined the

history P̆IΦ as

P̆IΦ = I ⊗ PΦ.

It is easy to see that P̆IΦ belongs to F1 and F2.

Finally, using family F1 and the initial state ρ0, we can define the conditional

probability of P̆AI given P̆IΦ; and using family F2 and the same initial state,

we can define the conditional probability of P̆BI given P̆IΦ. From definitions

(4) and (10), we obtain

Prρ0(P̆AI |P̆IΦ) = 1 and Prρ0(P̆BI |P̆IΦ) = 1.

Therefore, from history P̆IΦ, we can infer contrary histories P̆AI and P̆BI , using

families F1 and F2, respectively.

We have already mentioned that for some proponents of the quantum histo-

ries approach [25, 26] the retrodictions of contrary properties are not a problem,

because each retrodiction is obtained using incompatible families of histories,

which, accordingly to the single framework rule, cannot be simultaneously con-

sidered for describing a physical system. The solution appealing to the single

framework rule can also be applied to the case of inferences of contrary histo-

ries. However, this rule was criticized by several authors [23, 24, 27, 28]. On

the one hand, because it seems to be an ad hoc solution imposed in order to

avoid inconsistencies, and on the other hand, for implying that what is real de-

pends on the choice of the consistent family of histories. Therefore, looking for

stronger consistency conditions which do not allow contrary inferences seems to

be needed in order to have an adequate formulation of the quantum histories

approach [23, 29].

In the next section, we are going to show that this problem disappear if we

consider globally consistent families.
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3.2. Global consistency condition

In a previous paper [30], it was proved that the quantum histories approach

with the global consistency condition (8) does not admit retrodictions of con-

trary properties, which are a particular case of inference of contrary histories. In

this section, we generalize that result. We will show that, if consistent families

of histories satisfy the GCC, then it is not possible to infer contrary histories.

More precisely, we are going to prove the following result.

Theorem:

There are no three histories P̆ , Q̆ and R̆, which satisfy the following condi-

tions:

• There are two globally consistent families of histories F1 and F2, such

that P̆ , R̆ ∈ F1 and Q̆, R̆ ∈ F2.

• P̆ and Q̆ are contrary histories, i.e., P̆ Q̆ = Q̆P̆ = 0.

• For some initial state ρ0, P̆ is inferred from R̆, and Q̆ is inferred from R̆,

i.e.,

Prρ0(P̆ |R̆) = 1, and Prρ0(Q̆|R̆) = 1.

Proof:

We suppose that there are three histories P̆ , Q̆ and R̆, which satisfy the

theorem conditions. Since F1 and F2 are globally consistent families of histories,

then C(P̆ ) and C(Q̆) are orthogonal projectors (see Lemma 1 of the Appendix).

Also, since P̆ and Q̆ are contrary properties, C(P̆ )C(Q̆) = 0 (see Lemma 2 of

the Appendix).

The condition C(P̆ )C(Q̆) = 0 implies that I − C(P̆ ) − C(Q̆) is also an

orthogonal projector and it is orthogonal to C(P̆ ) and C(Q̆). Therefore, C(P̆ ),

C(Q̆) and I − C(P̆ )− C(Q̆) form a projective decomposition of the identity of

H. Then, for all states ρ, the following condition holds:

Tr
{
ρ
[
C(P̆ ) + C(Q̆)

]}
+ Tr

{
ρ
[
I − C(P̆ )− C(Q̆)

]}
= 1.
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Since the two terms are non-negative, for all states ρ we have:

Tr
[
ρC(P̆ )

]
+ Tr

[
ρC(Q̆)

]
≤ 1. (11)

Furthermore, for each state ρ, the conditional probability of P̆ given R̆ is

Prρ(P̆ |R̆) =
Prρ(P̆ R̆)

Prρ(R̆)
=

Tr
[
ρC(P̆ R̆)

]
Tr
[
ρC(R̆)

] =

=
Tr
[
ρC(P̆ )C(R̆)

]
Tr
[
ρC(R̆)

] =
Tr
[
C(R̆)ρC(R̆)C(P̆ )

]
Tr
[
C(R̆)ρC(R̆)

] , (12)

where we have used the cyclic property of the trace and the properties proved

in Lemma 1 of the Appendix: C(P̆ R̆) = C(P̆ )C(R̆), C(R̆) is an orthogonal

projector and [C(P̆ ), C(R̆)] = 0.

Analogously, for each state ρ, we can obtain the conditional probability of

Q̆ given R̆,

Prρ(Q̆|R̆) =
Tr
[
C(R̆)ρC(R̆)C(Q̆)

]
Tr
[
C(R̆)ρC(R̆)

] . (13)

For each state ρ, we define another state ρ∗ = C(R̆)ρC(R̆)

Tr{C(R̆)ρC(R̆)} . It is easy to

prove that ρ∗ is a density operator. The conditional probabilities (12) and (13),

in terms of ρ∗, take the following forms:

Prρ(P̆ |R̆) = Tr
[
ρ∗C(P̆ )

]
, Prρ(Q̆|R̆) = Tr

[
ρ∗C(Q̆)

]
.

Then, taken into account equation (11), we obtain

Prρ(P̆ |R̆) + Prρ(Q̆|R̆) = Tr
{
ρ∗C(P̆ )

}
+ Tr

{
ρ∗C(Q̆)

}
≤ 1.

Therefore, both conditional probabilities cannot be equal to one. This result

contradicts the previous assumptions, so we conclude that there are no three

histories P̆ , Q̆ and R̆ satisfying the conditions of the theorem.�

We have proved that the global consistency condition does not allow infer-

ences of contrary histories, even if we ignore the single framework rule. This

result makes an important difference with the other two conditions, the WCC

and the MCC, and it can be considered an interesting advantage of the GCC.
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4. Conclusions

A. Kent proved that in the quantum histories approach, it is possible to

retrodict with certainty two contrary properties from different consistent fam-

ilies which satisfy WCC and MCC [23]. In a previous paper [30], we analyzed

that problem using the GCC, and we found that it does not allow to retrodict

contrary properties. In this paper, we generalized this result to a more general

case: contrary inferences of quantum histories.

First, in Section 2, we described the quantum histories approach, and we

presented three different consistency conditions that can be imposed to families

of histories: weak, medium and global consistency conditions. The first two are

well-known conditions, which were studied in several works. The last condition

results from imposing the WCC for all states of the system, and it is a necessary

and sufficient condition for having consistent families independent of the initial

state [18]. An equivalent condition to the GCC was first proposed by Laura and

Vanni [17, 22], and the equivalence was proved in [18].

In Section 3, we defined a contrary relation between histories, which gener-

alizes the definition of contrary properties used in the discussions of contrary

retrodictions. This definition is based on the orthocomplemented lattice struc-

ture of the set of quantum histories. Then, we used the contrary relation to study

the possibility of inferences of contrary histories. We considered the quantum

histories approach with the previously mentioned consistency conditions.

In Section 3.1, we showed that families of histories which satisfy the WCC

and MCC allow inferences of contrary histories. To do that, we considered the

example presented by J. B. Hartle [26] and we pointed out that a retrodiction of

contrary properties is a particular case of inference of contrary histories. Finally,

in Section 3.2, we considered globally consistent families and we proved a general

result: families of histories which satisfy the GCC do not admit inferences of

contrary histories.

This result points out an interesting advantage of the GCC compared with

the other two conditions. However, since this condition is more restrictive than
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the others, it is still necessary to continue studying the possibility that some

relevant families of histories are not admitted with this condition. We do not

have a definite answer to this question, but some successful results in that

direction where obtained in [20, 21, 22]. On the basis of those results, we

consider that the GCC condition can be fruitfully applied to the most common

experimental set-ups, which are, in one way or another, variations of the above

cases. Furthermore, the quantum histories approach based on weak and medium

consistency conditions has been target of several further criticisms, beyond the

problem of contrary inferences [24]. Therefore, it seems reasonable to explore

alternative consistency conditions which avoid those criticisms.

Appendix A.

Lemma 1: Given a globally consistent family of histories F , the following

statements are true:

1. If P̆ ∈ F , then C(P̆ ) is an orthogonal projector.

2. If P̆ , Q̆ ∈ F , then C(P̆ Q̆) = C(P̆ )C(Q̆) = C(Q̆)C(P̆ ).

Proof:

Let P̆k be the atomic histories which generate the family F , where

P̆k = P k11 ⊗ ...⊗ P knn , k ∈ σ1 × ...× σn = σ̆, (A.1)

and with each {P kii }ki∈σi
a projective decomposition of the identity of H. Since

F is a globally consistent family, it must satisfy the equivalent condition to the

GCC (9), i.e., for i, j = 1, ... n,

[P kii,0, P
kj
j,0] = 0, ∀ ki ∈ σi, ∀ kj ∈ σj . (A.2)

Given two histories P̆ , Q̆ ∈ F , we can express them as sums of the atomic

histories P̆k,

P̆ =
∑

k∈∆1⊆ σ̆

P̆k, Q̆ =
∑

k′ ∈∆2⊆ σ̆

P̆k′
.
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According to expressions (2) and (3), the chain operators of P̆ and Q̆ are given

by

C(P̆ ) =
∑

k∈∆1

C(P̆k) =
∑

k∈∆1

P k11,0...P
kn
n,0,

C(Q̆) =
∑

k′ ∈∆2

C(P̆k′
) =

∑
k′ ∈∆2

P
k′1
1,0...P

k′n
n,0.

1. Each product P k11,0...P
kn
n,0 is an orthogonal projector, because a product of

commuting orthogonal projectors is an orthogonal projector. Also, a sum

of orthogonal projectors, which are orthogonal to each other, is also an

orthogonal projector.

Therefore,

C(P̆ ) =
∑

k∈∆1

P k11,0...P
kn
n,0

is an orthogonal projector.

2. The product of C(P̆ ) and C(Q̆) is given by

C(P̆ )C(Q̆) =
∑

k∈∆1,k′ ∈∆2

P k11,0...P
kn
n,0 P

k′1
1,0...P

k′n
n,0 =

=
∑

k∈∆1,k′ ∈∆2

P k11,0...P
kn
n,0δk1,k′1 ...δkn,k′n =

=
∑

k∈∆1 ∩∆2

P k11,0...P
kn
n,0 =

=
∑

k∈∆1 ∩∆2

C(P̆k), (A.3)

where we have used the commutation condition (A.2). From (A.3), we

conclude that C(P̆ )C(Q̆) = C(Q̆)C(P̆ ).

Furthermore, the product of P̆ and Q̆ is given by

P̆ Q̆ =
∑

k∈∆1,k′ ∈∆2

P̆kP̆k′
=

=
∑

k∈∆1,k′ ∈∆2

P̆kδk,k′ =
∑

k∈∆1∩∆2

P̆k.

Then, C(P̆ Q̆) =
∑

k∈∆1∩∆2
C(P̆k), and comparing with equation (A.3),

we conclude that C(P̆ Q̆) = C(P̆ )C(Q̆). Therefore, C(P̆ Q̆) = C(P̆ )C(Q̆) =

C(Q̆)C(P̆ ).�
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Lemma 2:

Let F1 and F2 be two globally consistent families of histories, and let P̆ ∈ F1

and Q̆ ∈ F2 be two contrary histories. Then, C(P̆ )C(Q̆) = 0.

Proof:

Let {P̆k}k∈σ̆ and {Q̆l}l∈σ̆′ be the atomic histories which generate the families

F1 and F2, respectively, where

P̆k = P k11 ⊗ ...⊗ P knn , k ∈ σ1 × ...× σn = σ̆,

Q̆l = Ql11 ⊗ ...⊗Qlnn , l ∈ σ′1 × ...× σ′n = σ̆′,

and with each {P kii }ki∈σi
and each {Qlii }li∈σ′

i
a projective decomposition of the

identity of H.

Since F1 and F2 are globally consistent families, they must satisfy the equiv-

alent condition to the GCC (9), i.e., for i, j = 1, ... n,

[P kii,0, P
kj
j,0] = 0, ∀ ki ∈ σi, ∀ kj ∈ σj , (A.4)

[Qlii,0, Q
lj
j,0] = 0, ∀ li ∈ σ′i, ∀ lj ∈ σ′j . (A.5)

We can express P̆ and Q̆ as sums of the atomic histories P̆k and Q̆l, respec-

tively,

P̆ =
∑

k∈∆⊆ σ̆

P̆k, Q̆ =
∑

l∈∆′⊆ σ̆′

Q̆l.

The product of the chain operators C(P̆ ) and C(Q̆) is

C(P̆ )C(Q̆) =
∑
k∈∆

∑
l∈∆′

C(P̆k)C(Q̆l). (A.6)

Since P̆ and Q̆ are contrary properties, P̆ Q̆ =
∑

k∈∆

∑
l∈∆′ P̆kQ̆l = 0. Then,

for all k ∈ ∆ and for all l ∈ ∆′, we have P̆kQ̆l = 0.

The condition P̆kQ̆l = P k11 Ql11 ⊗ ... ⊗ P knn Qlnn = 0 implies that, for some

1 ≤ i ≤ n, P kii Q
li
i = 0, and also P kii,0Q

li
i,0 = 0.
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Moreover, it is easy to see that C(P̆k) = C(P̆k)P kii,0 and C(Q̆l) = Qlii,0C(Q̆l):

C(P̆k) = P k11,0... P
ki
i,0... P

kn
n,0 = P k11,0... P

ki
i,0P

ki
i,0... P

kn
n,0 =

= P k11,0... P
kn
n,0P

ki
i,0 = C(P̆k)P kii,0,

C(Q̆l) = Ql11,0... Q
li
i,0... Q

ln
n,0 = Ql11,0... Q

li
i,0Q

li
i,0... Q

ln
n,0

= Qlii,0Q
l1
1,0... Q

ln
n,0 = Qlii,0C(Q̆l),

where we have used the chain operator definition (2), the relations P kii,0P
ki
i,0 = P kii,0

and Qlii,0Q
li
i,0 = Qlii,0, and the commutation relations (A.4) and (A.5). Therefore,

C(P̆k)C(Q̆l) = C(P̆k)P kii,0Q
li
i,0C(Q̆l) = 0, (A.7)

where we have used the result P kii0 Q
li
i0 = 0. Finally, replacing expression (A.7)

in (A.6), we obtain C(P̆ )C(Q̆) = 0.�
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