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Abstract

The stationary distributions of sums of positions of trajectories generated by the lo-
gistic map have been found to follow a basic renormalization group (RG) structure: a
nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and
a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in
detail the crossover distributions that can be generated at chaotic band-splitting points
that mediate between the aforementioned fixed-point distributions. Self affinity in the
chaotic region imprints scaling features to the crossover distributions along the sequence
of band splitting points. The trajectories that give rise to these distributions are governed
first by the sequential formation of phase-space gaps when, initially uniformly-distributed,
sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summa-
tion of positions of trajectories already within the chaotic bands closes those gaps. The
possible shapes of the resultant distributions depend crucially on the disposal of sets of
early positions in the sums and the stoppage of the number of terms retained in them.

PACS 5.45.Ac Low-dimensional chaos

PACS 05.45.Pq Numerical simulations of chaotic systems

PACS 05.10.Cc Renormalization group methods

1 Introduction

A few years ago [1] a possible generalization of the central limit theorem (CLT) was put
forward, as suitable for strongly correlated variables and that would have as its stationary
distribution the so-called q-gaussian function [1]. Subsequently, it was surmised that
a fitting model system for the observation of this generalization would be the period-
doubling accumulation point of the logistic map [2]. This development led to increased
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Figure 1: (a) Attractor bands (in black) and gaps between them (white horizontal regions) in logarithmic scales, − log(|µ−µ∞|)
and log(|x|) in the horizontal and vertical axes, respectively. The band-splitting points Mn (circles) follow a straight line indicative
of power law scaling. The vertical white strips are periodic attractor windows. (b) Sequential gap formation for M5 by an ensemble
of trajectories with initial conditions uniformly distributed along the map phase space. Black dots represent absolute values of
trajectory positions |xt| at iteration time t. See text.

interest and discussion [3]-[9] about whether sums of correlated deterministic variables at
vanishing, or near vanishing, Lyapunov exponent λ give rise to a general type of non-
gaussian stationary distribution.

As it turned out [3], [5], [6], the distributions resembling q-gaussians at the period-
doubling accumulation point require, unusual, specific procedures to be obtained. The
first one is to work with a small but positive Lyapunov exponent λ & 0. The second is
to discard an initial tract of consecutive positions in the ensemble dynamics, the disposal
of a ‘transient’, before evaluating the sum of the remaining positions. And the third is
to stop the summation at a finite number of terms. When the transient set of terms is
not discarded the resulting distribution would show an irregular, jagged, serrated, shape,
whereas if the summation continues towards a larger and larger total number of terms
the distribution approaches a gaussian shape. The q-gaussian-like distributions were ob-
served along a sequence of values of the map control parameter µ that in latter studies [6]
were identified as those approximately obeying the Huberman-Rudnick scaling law [10],
the power law that relates distance in control parameter space to Feigenbaum’s univer-
sal constant δ, or, equivalently, the number 2n, n = 0, 1, 2, . . ., of bands of the chaotic
attractors.

Here we provide a thorough rationalization, backed by ample evidence, of the proper-
ties of sums of consecutive positions and their distributions for ensembles of trajectories
associated with the sequence of chaotic 2n-band attractors of the logistic map. We add
to previous understanding [7]-[9] on the distributions of sums of positions at the period-
doubling accumulation point for trajectories initiated within the attractor or with an
ensemble of them uniformly-distributed across the entire phase space (the domain of the
map). In the former case [7], [8] the support of the stationary distribution is the multifrac-
tal set that makes up the Feigenbaum attractor and its amplitude follows its multifractal
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nature. For the latter case [9] we demonstrated that the stationary distribution possesses
an infinite-level hierarchical structure that originates from the properties of the repellor set
and its preimages. We have also established [7], [8] that the entire problem λ ≥ 0 can be
couched in the language of the renormalization group RG formalism in a way that makes
clear the identification of the existing stationary distributions and the manner in which
they are reached. The RG transformation consists of position summation (and rescaling);
there is only one relevant variable, the control parameter distance to the transition to
chaos ∆µ. There are two fixed-point distributions, the trivial continuum-space gaussian
distribution and the nontrivial multiscale distribution reached only when ∆µ = 0. The
RG transformation modifies behavior similar to that of the nontrivial fixed point into that
resembling the trivial fixed point through a well-defined crossover phenomenon. We show
here that it is at this crossover region that the q-gaussian-like distributions are observed
in Refs. [2]-[6].

In the following Section 2 we set up the elements of our analysis: The chaotic band
splitting cascade of the logistic map [11], [12], along which we study trajectories at the
control parameter points where bands split, also called Misiurewicz (Mn) points [12].
We focus on scaling properties for the sequence of Mn points. There we explain the
dynamics undergone by an ensemble of uniformly distributed initial positions that consists
of consecutive gap formation until arrival at the Mn attractor, after which intraband
chaotic motion drives the dynamics. In Section 3 we present summations of positions and
their distributions at various Mn points for different choices of disposal of initial sets of
positions and different total number of summation terms. We explain the structure of the
sums and their distributions in terms of the dynamics described in Section 2. In particular
we detail the case that leads to distributions that resemble a q-gaussian shape. In Section
4 we discuss our results at some length in terms of the associated RG transformation.

2 Dynamics at chaotic band splitting points

We consider the logistic map fµ(x) = 1 − µx2, −1 ≤ x ≤ 1, 0 ≤ µ ≤ 2, for which the
control parameter value for its main period-doubling cascade accumulation point is µ =
µ∞ = 1.401155189092... When µ is shifted to values larger than µ∞, ∆µ ≡ µ−µ∞ > 0, the
attractors are (mostly) chaotic and consist of 2n bands, n = 0, 1, 2, ..., where 2n ∼ ∆µ−κ,
κ = ln 2/ ln δ, and δ = 4.669201609102 . . . is the universal constant that measures both the
rate of convergence of the values of µ = µn to µ∞ at period doubling or at band splitting
points. See Fig. 1a. The Misiurewicz (Mn) points, are attractor merging crises, where
multiple pieces of an attractor merge together at the position of an unstable periodic
orbit [13]. The Mn points can be determined by evaluation of the trajectories with initial
condition x0 = 0 for different values of µ, as these orbits follow the edges of the chaotic
bands until at µ = µn the unstable orbit of period 2n reaches the merging crises [13].

Trajectories initiated inside a 2n-band attractor consist of an interband periodic motion
of period 2n and an intraband chaotic motion. Trajectories initiated outside a 2n-band
attractor exit progressively a family of sets of gaps formed in phase space between the
2n bands. This family of sets of gaps starts with the largest gap formed around the first
unstable orbit, or first repellor, of period 20, followed by two gaps containing the two
positions of the second repellor of period 21, and so on. See Fig. 1b. The widths of
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Figure 2: Normalized number Wt of bins containing trajectories at iteration time t in logarithmic scales. A uniform distribution
of 106 initial conditions across [−1, 1] were placed in a partition of 106 bins. The curves shown correspond to the band-splitting
points Mn, n = 0, 1, . . . , 5. For each n > 0 there is an initial power-law decay with logarithmic oscillations followed by a final
constant plateau. The former corresponds to sequential gap formation and the latter indicates that all trajectories are within the
attractor bands. The circles labeled t∗n indicate the plateau entry times.

the gaps diminish in a power law fashion as their numbers 2k, k = 0, 1, 2, ..., for each set
increase. We follow the dynamics towards the Mn, n = 0, 1, 2, ..., attractors by setting
a uniformly-distributed ensemble of initial conditions across phase space, −1 ≤ x0 ≤ 1,
and record the normalized number of bins Wt, in a fine partition of this interval, that still
contain trajectories at iteration time t. The results are shown in Fig. 2, where we observe
an initial power law decay in Wt with logarithmic oscillations followed by a transition
into a stay regime, a plateau with a fixed value of Wt, when (practically) all trajectories
become contained and remain in the bands of the attractor.

The properties of Wt show discrete scale invariance associated with powers of 2 char-
acteristic of unimodal maps. The number of logarithmic oscillations in the regime when
trajectories flow towards the attractor coincides with the number of consecutive sets of
gaps that need to be formed at the Mn points, whereas the final constant level of Wt

coincides with the total number of bins that comprise the total width of the 2n bands of
the attractors. We notice that these properties when observed along the plateau entry
points labeled t∗n shown in Fig. 2 obey the Huberman-Rudnick scaling law since the times
t∗n are related to the 2n bands of the Mn points and these in turn are given by ∆µn ∼ δ−n.
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Figure 3: Distributions P (Y ;Ns, Nf ;µn) of centered sums Y ≡ X−〈X〉, where X is given by Eq. (1). The sums were obtained
from a uniform distribution of 106 initial conditions across [−1, 1] at M5 when the attractor of 25 bands is about to split into 26

bands. A value of Ns = 28 is used in all panels. The values of Nf used are: (a) 25, (b) 29, (c) 213 and (d) 217. See text.

3 Sums of positions and their distributions at

band splitting points

We consider now the sum of consecutive positions xt starting with an iteration time t = Ns

up to a final iteration time t = Ns+Nf of a trajectory with initial condition x0 and control
parameter value µ fixed at an Mn point, n = 0, 1, 2, ..., i.e.

X(x0, Ns, Nf ;µn) ≡

Ns+Nf∑

t=Ns

xt. (1)

We studied a collection of these sums for trajectories started from a uniform distribu-
tion of initial conditions in the entire interval −1 ≤ x0 ≤ 1 with different values of n, Ns

and Nf , and we also evaluated their corresponding histograms and finally their distribu-
tions by centering and normalization of the histograms. Clearly, stationary distributions
require Nf → ∞ and, unless there is some unusual circumstance, they are not dependent
on the value of Ns. We know [7], [8] that for all chaotic attractors (∆µ > 0) the station-
ary distribution is gaussian and that in the limit ∆µ = 0 the stationary distribution is
of an exceptional kind with intricate multiscale features [4], [9]. Here we explore other
distributions that can be obtained when Ns and Nf are varied and identify the dynamical
properties that give rise to them.

The observation of q-gaussian-like distributions in Refs. [3], [6] involved a large value
of discarded terms Ns before sums similar to that in Eq. (1) were evaluated. Also, it was
found necessary to limit the number of summands to a finite number Nf to prevent the
distribution approach a gaussian form. For example in Ref. [3] a fixed value of Ns = 212
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was reported to be used for sums evaluated at attractors with a number of bands 2n with n
in the range 4 to 8. These sums were terminated, respectively, with values Nf = 2nf with
nf in the range 9 to 17. In these studies the values of ∆µ were not precisely fixed at band
splitting points as we do here but the dynamical properties we describe are equivalent.
We can understand the effect of the values of n, Ns and Nf used in terms of the dynamics
of trajectories from the knowledge gained in the previous section. In references [3] and
[6], the starting times t = Ns in the sums in Eq. 1 satisfy the condition t∗n ≪ Ns. We can
conclude with the assistance of Fig.2, that the terms discarded in those studies comprise
the flow of trajectories towards the attractors plus a significant segment of dynamics
within the chaotic bands, therefore all of the terms contained in the sums correspond to
the dynamics within the chaotic bands.

As a representative example we show in Fig. 3 the distributions P (Y ;Ns, Nf ;µn) for
the sums in Eq. (1), with Y = X − 〈X〉, and where 〈X〉 is the average of X over x0.
In this figure n = 5 and Ns = 28, and Nf takes the values Nf = 25, 29, 213 and , 217,
respectively, in panels (a), (b), (c) and (d). In (a) the sum comprises only one visit to
each band and the structure of the distribution is the result of one cycle intraband motion
of the ensemble of trajectories. In (b) the sum contains already about 24 = 16, band
cycles, for which we obtain a distribution with q-gaussian-like shape but sharp drops at
the edges. In (c) the q-gaussian-like shape is disappearing after 256 band cycles, while in
(d), when there are 4096 band cycles, we observe already the stationary gaussian form.
The same distribution progression pattern shown in Fig. 3 is observed at other Mn points.
Furthermore, the sums and their distributions for any value of n can be reproduced by
rescaling consistent with Huberman-Rudnick law. This is illustrated in Fig. 4 where we
show in panels (a), (b) and (c) the resemblance of the centered sums Y for the band
merging points M3, M4 and M5, respectively. In panel (d) we show the distributions P
for these sums without rescaling of the horizontal axis Y .

4 Summary and discussion

We have shown that there is an ample variety of distributions P (Y ;Ns, Nf ;µn) associated
with the family of sums of iterated positions, as in Eq. (1), obtained from an ensemble
of trajectories started from a uniform distribution of initial conditions in the interval
−1 ≤ x0 ≤ 1. The shapes of these distribution vary with Ns and Nf but there is scaling
property with respect to n. All the types of distributions obtained can be understood
from the knowledge of the dynamics that these trajectories follow, both when flowing
towards the chaotic band attractors and when already within these attractors. There
exists throughout the family of chaotic band attractors with λ > 0 an underlying scaling
property, displayed, e.g., by the self-affine structure in Fig. 1a. This scaling property is
present all over, here highlighted by: i) The sequential formation of gaps shown in Fig.
1b. ii) The number of bins Wt still containing trajectories at iteration time t, shown
in Fig. 2, both for its initial decay with logarithmic oscillations and the final constant
regime. And iii) the different classes of sums and their distributions obtained for a given
value of n are reproduced for other values of n under appropriate rescaling, as shown
in Fig. 4. For adeptness and precision purposes we chose here to study the family of
Misiurewicz points Mn but similar, equivalent, results are obtained for chaotic attractors
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Figure 4: Rescaled sums obtained from a uniform distribution of 3 ∗ 106 initial conditions across [−1, 1] at the band-splitting
points Mn, n = 3, 4, 5 with labels (a),(b),(c), respectively, and with their corresponding distributions in (d). The values of Ns and
Nf used are, respectively Ns = 26, 27, 28, and Nf = 212, 213, 214.

between these points.
The discussion about the types of distributions P (Y ;Ns, Nf ;µn) is assisted by recall-

ing [7], [8] the RG framework associated with summation of positions. Positions xt for
trajectories within chaotic-band attractors can be decomposed as xt = xt + δxt, where xt
is chosen to be (for example) fixed at the center of the band visited at time t and δxt is
the distance of xt from xt. When the number of bands 2n is large all the values of δxt are
small. The sum in Eq. ( 1) can be written as

X ≡ X + δX, X =

Nf∑

t=Ns

xt, δX =

Nf∑

t=Ns

δxt, (2)

where X captures the interband periodic (and therefore correlated) motion and δX con-
sists of the intraband chaotic (and therefore random) motion. As discussed in Refs. [7],
[8] the action of the RG transformation, summation, is driven by δxt and results in grad-
ual widening of all the chaotic bands, such that eventually for a sufficiently large number
of summands all of them merge into a single band. When 0 ≤ Ns . t∗n gap formation
competes with band widening, while when t∗ . Ns band widening develops unimpeded.
When 0 ≤ Ns . t∗n the combined processes of the dynamical evolution of the ensemble of
trajectories and the repeated RG transformation is dominated initially by gap formation
but it is always followed by gap merging. Initially, the distributions for these sums re-
semble the jagged multiscale shape of the stationary distribution for the nontrivial fixed
point at ∆µ = 0 but they necessarily evolve towards the gaussian distribution of the
trivial fixed point present for ∆µ > 0 [7], [8]. When t∗n ≪ Ns, as in Refs. [2], [3], [5],
[6], the trajectory positions considered in the sums are all contained within the attractor
bands and from the first term t = Ns the gaps begin to close due to the action of δxt
that is akin to an independent random variable. As we have shown in Fig. 3, when the
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number of summands grow the shape of the distribution evolves by first eliminating the
initial serrated features, then developing a symmetrical shape that shows possible long
tails but that end in a sharp drop (the claimed q-gaussian type), and finally the approach
to the gaussian stationary distribution. All of the above can be observed for each 2n-band
chaotic attractor, basically from n ≥ 1 , and when a self-affine family of these attractors
is chosen, like the Misiurewicz points Mn the sums and their distributions can be rescaled
such that they just about match for all n, as shown in Fig. 4, where the sums where
started at Ns ≃ t∗n.

Concisely, the elimination of a large enough set of early positions in the sums for a given
n, such that the location of its first term Ns is located inside the plateau of Wt in Fig. 2,
ensures that the sums capture only the dynamics within the 2n-band attractor. Therefore
the shape of the distributions are dominated by the uncorrelated chaotic contributions δxt,
that as t increases evolves towards the final gaussian shape. A nongaussian distribution
can only be obtained if there is a finite number of summands Nf . Self-affinity in the
chaotic-band family of attractors, provides scaling properties to the distributions of sums
of positions that are described by an appropriate use of the Huberman-Rudnick power-law
expression.
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