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A B S T R A C T

The dynamic study of a short span timber footbridge with uncertain mechanical properties under the action of a
deterministic walking load model which represents one individual is presented. The aim of the work is to
quantify the influence of the uncertain material properties in the natural and forced vibration problems of a short
span timber footbridge. These structural systems made of timber are increasingly employed due to the high
stiffness/weight ratio that this material exhibits. This feature can lead to lightweight structural systems in which
the acceleration levels can exceed the human comfort limits. The assumed sources of uncertainties of this
structural model are the Modulus of Elasticity (MOE) and the mass density. Also, the geometrical design of the
boards that compose the laminated timber beams supporting the floor involves variability of the distances be-
tween finger joints. Probability Density Functions (PDFs) of the timber properties are formulated from the
Principle of Maximum Entropy (PME). The finger joints distance generates the lengthwise variability of the MOE
and the mass density in each board of the laminated beams. The PDFs of the natural frequencies of the structure,
the mode shapes and the structural response are numerically obtained through the Finite Element Method (FEM)
and statistic tools. In order to carry out this analysis, plate and laminated beam elements derived from the First
Order Shear Deformation Theory (FSDT) are employed. The variation of the effective stiffness and mass along
the elements due to the union of boards with different properties produces an important reduction of the
standard deviation of the natural frequencies. The conditions in which the stochastic properties of the structure
lead to unacceptable acceleration levels are studied. In some scenarios, the variation of the material properties
can lead to unacceptable serviceability performances of the structure and a reduction in the pedestrian comfort,
according to the codes in force. However, new design guidelines replace the line limits by comfort regions which
are also discussed here.

1. Introduction

Footbridges are one of the most common timber structures mainly
due to the high stiffness/weight ratio that this material presents in
comparison to other construction materials and the possibility of cov-
ering long spans owing to the development and implementation of la-
minated beams. This type of beams has become greatly employed, and
has allowed the construction of slender timber structures. In this work,
the complete structure is made of Argentinian Eucalyptus grandis, one of
the most important renewable species cultivated in Argentina. A simple
method for visually strength grading sawn timber of these species has

been developed by Piter [1]. As reported in this thesis, the presence of
pith and knots are considered the most important visual characteristic
for strength grading this material by the Argentinian standard IRAM
9662-2 [2]. Experimental studies related with the bending strength and
stiffness in Eucalyptus grandis laminated beams have been presented by
Piter et al. [3] and Saviana et al. [4]. In these works, the high stiffness/
weight ratio of the structural elements is highlighted.

Due to its natural origin, structural timber is characterized by
considerable variability of its mechanical properties. Then, it is ap-
parent that a stochastic approach becomes desirable in order to attain a
more realistic structural model. The stochastic approaches employed
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for the modeling of timber mechanical properties are derived from the
probabilistic theories of random variables and processes. They allow
simulating the timber mechanical properties within a structural ana-
lysis. A probabilistic model of timber structures where the MOE is re-
presented as a random variable with a lognormal PDF and the mass
density through a random variable with normal distribution, both as-
suming a homogeneous value within a structural element, was pre-
sented in Köhler et al. [5]. In Casciati and Domaneschi [6], a random
field of the timber beam imperfections is introduced into the finite
element model of beams. Then, the tensile strength and stiffness
properties of timber boards and finger joint connections are modeled
through a probabilistic approach in Fink and Köhler [7]. Brandner and
Schickofer [8] use probabilistic models for the MOE and the shear
modulus considering serial and parallel systems to represent timber
elements. The stochastic modeling of Argentinean Eucalyptus grandis
timber beams is presented in García et al. [9] and García and Rosales
[10]. In these works, the random field of the Modulus of Elasticity
(MOE) and the mass density are modeled through a gamma random
variable based on tests of fit and the application of the Principle of
Maximum Entropy (PME).

Timber footbridges must satisfy strength and serviceability re-
quirements. Generally, due to their low weight, the serviceability re-
quirements in terms of peak accelerations constitute the most restrictive
condition in their design. An extensive literature review and state of the
art report of the dynamic behavior of footbridges is presented in
Z̆ivanović et al. [11]. Among other topics, the loads models, standards
requirements and studies of the walk of people and crowns are re-
ported. The study of the vertical vibrations in existing footbridges of
concrete and steel simulated in a Finite Element Method (FEM) soft-
ware are presented in Da Silva et al. [12] and Figueiredo et al. [13].
Two deterministic load models were employed in these works, the
standard one through a Fourier series and a model that includes the
heel impact effect over the deck. An evaluation of the serviceability of
eight footbridges with the most recent codes in practice is presented in
Van Nimmen et al. [14]. In this work, a modified load model that leads
to a more robust serviceability evaluation is reported. Numerical works
related to the study of the dynamic behavior of timber footbridges are
not frequent despite being a common timber structure. However and
related with timber floor vibration, recently in Casagrande et al. [15]
the effectiveness of different assessments (analytical, numerical and
experimental) for the evaluation of vibration performance is presented.
In Casciati et al. [16], a model for the stochastic fields that represent the
forces induced by the walking of a small group of pedestrians, is pre-
sented. A numerical example is solved with a finite element model of an
existing wood footbridge with deterministic material properties. Ana-
logously, few works address the uncertainty in the material properties
of the footbridges. The dynamic analysis of a footbridge with uncertain
structural parameters (density and modulus of elasticity), subjected to
stochastic impact load is presented in Rama Rao et al. [17]. The ef-
fectiveness of the direct optimization approach based on the fuzzy finite
element method and adaptive Taylor methods in the evaluation of the
dynamic response of structures with multiple uncertainties, is demon-
strated.

The aim of the present work is to quantify the influence of the un-
certain material properties in the natural and forced vibration problems
of a short span, simply supported timber footbridge made of
Argentinian Eucalyptus grandis. To the authors’ best knowledge, this
structural configuration is extensively employed but not adequately
studied in the literature, and in particular, the uncertainties of the
timber material properties are not adequately considered. The sources
of uncertainties in the structural model herein presented are assumed in
the timber mechanical and physical properties, and in the geometrical
design of the layers that compose the laminated timber beams that
support the floor of the footbridge. This geometric uncertainty involves
the distances between finger joints which were obtained from visual
survey of structural size Eucalyptus grandis laminated beams. Then, the

Probability Mass Function of the distance between finger joints is
constructed. The Probability Density Functions (PDFs) of the MOE and
the mass density are obtained through the application of the Principle
of Maximum Entropy (PME) proposed by Shannon [18] and Jaynes
[19]. In order to measure the fit between the experimental and theo-
retical PDFs of the MOE and the mass density, tests of fit were used.
Between the pieces of timber, defined by the distance among fingers
joints, the properties vary stochastically and in a non-correlated way.
According to the Argentinean standard IRAM 9662-2 [2], each board of
the laminated beams comes from a specific strength class (C1 or C2).
Within this quality class, the properties vary stochastically. For the
propagation of the uncertainties, a numerical model of the structure is
obtained through the Finite Element Method (FEM) employing lami-
nated beams and plate elements [20] with the transversal isotropy as-
sumption for the timber boards. Then, the propagation of these sources
of uncertainty in the first natural frequency of the footbridge that
constitute one of the evaluation parameters of the serviceability per-
formance, is studied. To accomplish this, the PDF of the first natural
frequencies is found via Monte Carlo simulations [21]. An important
reduction in the standard deviation of the natural frequency is reported
due to the implementation of random finger union distances. The
second important parameter in the study of the serviceability perfor-
mance is the acceleration. Two deterministic load models [12,13] are
employed for the study of the peak accelerations. It is expected that the
uncertainty introduced by loads on structures be higher than the un-
certainty in the material properties. However, in this work, the focus is
placed in the uncertain material properties of structural elements made
of Argentinean Eucalyptus grandis, which have a higher degree of ran-
domness in comparison with other structural materials. For this reason,
deterministic load models are employed. The conditions in which the
stochastic properties of the structure lead to unacceptable acceleration
levels are reported according to the codes in force. In some scenarios,
the variation of the material properties can lead to an unacceptable
serviceability performance of the structure and a reduction in the pe-
destrian comfort, according to the codes in force. However, new design
guidelines replace the line limits by comfort regions which are also
discussed here.

2. Problem statement

The study of the vertical dynamical behavior of a short span timber
footbridge with stochastic mechanical properties under walking loads is
presented in this work. The structure is composed of three laminated
beams simply supported with a span-wise length of 13.2 m and a se-
paration of 0.6m in the transversal direction of the structure, five
transversal laminated beams with a separation of 3.3 m in the long-
itudinal direction of the structure and a deck of timber boards. The
width of the laminated beams and the timber boards of the deck was
fixed in 0.15m, and the height of each lamina of the beams and of the
timber boards, in 0.0375m. The total height of the beams was dimen-
sioned for strength resistance according to the Argentinean standard
CIRSOC 601 [22] and for serviceability requirements. The latter con-
stitutes the main factor of the structural design analyzed later in this
work. The structure dimensions constitute reference values which are
frequent in short span timber footbridges. The number of layers of the
beams was considered equal to 16, laminated beams with 0.6 m of
height (Fig. 1).

3. Timber Material

3.1. Elastic model

The material model derived from the general assumption of ortho-
tropy in which each board has a longitudinal direction parallel to the
main material fibres direction associated with the x axis, a tangential
direction with respect to the growth rings of the transversal section
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associated with the y axis, and finally a radial direction with respect to
the growth rings of transversal section associated with the z axis (Eq.
(1)).
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In this work, the orthotropic model (Fig. 2) is reduced to the
transversal isotropic model with two main directions: the longitudinal
(L) also named parallel to the main fibres direction E EL x= , and the
perpendicular direction that includes the radial (R) and tangential (T)
material direction E E ER T yz= = . The basic stochastic properties pro-
posed in this work are the longitudinal MOE (Ex) and the mass density
( ). In what follows, these stochastic properties will be noted as x and
, respectively. For a transversally isotropic material, the elastic and

shear modulus are defined as ,zy xy xz15 16
x x= = = [23]. Mean-

while, in a general form the Poisson coefficients for hardwood are
0.67, 0.46RT LT= = and 0.39LR = [24]. For a transversally isotropic

formulation 0.67zy RT= = and 0.425xzy 2
LT LR= =+ and

zy 2(1 )
zy

zy
= + .

3.2. MOE and mass density stochastic representation

If a stochastic approach is applied to this problem, first a PDF should
be chosen for the random variable. A statistical concept of entropy was
introduced by Shannon [18] and its maximization by Jaynes [19]. The
Principle of Maximum Entropy (PME) states that, subjected to known
constrains, the PDF which best represents the current state of knowl-
edge is the one with largest entropy. The measure of uncertainties of a
continuous random variable X is defined by the following expression:

S f f x ln f x dx( ) ( ) ( ( ))X D X X= (2)

in which fX stands for the PDF of the random variable X and D is its
domain. It is possible to demonstrate that the application of the prin-
ciple under the constraints of positiveness and bounded second mo-
ment, leads to a gamma PDF. The PME conduces to this PDF due to the
fact that the domain of both the MOE and the mass density is real and
positive.

To find the parameters of the marginal PDF of the MOE and mass
density, experimental data presented by Piter [1] were employed. These
values were obtained by means of two point load bending tests, per-
formed with 349 sawn beams of Argentinean Eucalyptus grandis with
structural dimensions and density measurements. Bending tests and
density measurement were carried out according to the standard UNE-
EN 408 [23]. Using these data, the parameters of the gamma marginal
PDFs of the MOE and density are estimated with the help of the Max-
imum Likelihood Method (MLM). Then, the Kolmogorov-Smirnov (K-S)
and the Andersson-Darling (A-D) tests of fit are used, (e.g. Benjamin and
Cornell [26]). The PDF that best fits with the experimental values of the
MOE is the gamma one, in agreement with the PME result. The test of fit
was also carried out with the lognormal, normal and truncated normal
PDFs, the first one proposed by Köhler et al. [5] to model the MOE and
the second PDF, very often employed to represent mechanical proper-
ties. The normal PDF fits the experimental data best. However, the use
of this PDF in the model would occasionally lead to negative values of
the MOE which are physically unacceptable unless a truncated form is
used. Thus, the gamma and lognormal PDF seem to be more suitable.
On the other hand, for the density, the four PDFs fulfill the critical
value, but the lognormal and gamma fit best with respect to the ex-
perimental values. Here, following the PME and due to the small dif-
ference found among the lognormal and gamma, the last PDF is adopted
in order to introduce the mass density uncertainty in the stochastic
model. The gamma marginal CDF of the MOE and mass density (García
et al. [9]) is:

F x a b
b a

t e dt( | , ) 1
( )a

x a t
b

0
1=

(3)

where a and b denote the shape and scale parameters, respectively. For
the MOE, the parameters are a=34.582 and b=0.402 with a mean
value of the MOE equal to 13.902 GPa and a standard deviation of
1.498 GPa. In the case of the mass density, a=72.179 and b=7.659,
the mean value of the mass density equal to 552.819 kg/m3 and a
standard deviation of 65.069 kg/m3.

3.3. Laminated beams

Laminated beams are composed of several layers formed by the
union of boards with different mechanical properties. Upper and lower
faces of the boars are glued to the superior and inferior continuous
board. Previously, the boards of each lamina are assembled by finger
joints union. The influence of the finger joints configuration in the
natural frequencies will be studied assuming randomness. Distances
between finger joint obtained from a visual survey of laminated beams
were employed in order to simulate the different boards that conform a
laminated beam. With the results of the survey, the Probability Mass
Function (PMF) of the distance between fingers joints was constructed.
The mean value and standard deviation of the distance between joints
are 0.865m and 0.247m, respectively. The finger joint union is shown
in Fig. 3a and an illustration of the distances between consecutive un-
ions in each laminate obtained from the PMF in Fig. 3b. The simulated
distances fulfill the requirements of the Argentinean standard
IRAM:9660-1 [27].

4. Load models

Two deterministic load models that represent the effect of an

Fig. 1. Timber footbridge model.

Fig. 2. Orthotrophy assumption of a wood board [25].
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individual walking on the footbridge, are considered. These models
were adopted because the aim of the present work is to quantify the
influence of the uncertain material properties in the natural and forced
vibration problems of a timber footbridge. For this reason deterministic
load models are employed. Then, in future works, stochastic load
models and diverse transit conditions will be considered.

In both models, the load position is changed according to the in-
dividual location along the footbridge. The first walking load model
(WL1) is composed of the static load of the pedestrian weight and a
combination of harmonic forces represented by a Fourier series:

F t P if t( ) [1 cos(2 )]i s i= + + (4)

where P is the pedestrian weight, here considered equal to 700 N, i is
the dynamic coefficient of the harmonic force also called Dynamic Load
Factor (DLF), i is the harmonic order, fs is the step frequency and i the
harmonic phase angle as listed in Table 1. This load model is frequently
employed in the structural design standards for the verification of ser-
viceability requirements [11,13,28].

The second load model (WL2) incorporates the human heel impact
effect over the floor [13]. The formulation of this model is presented in
the following equation:
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where Fm is the maximum value of the Fourier series, fmi is the heel
impact factor (here, 1.12), Tp is the step period, C1 and C2 are force
coefficients. This model has the same parameters than the first model,
but changes the harmonic phase angle i (Table 1). The walking velo-
city, step distance and frequency considered in this work are depicted in
Table 2. Time and frequency representations of both load models are
shown in Fig. 4.

5. Finite element discretization

The application of the Hamilton’s principle and the discretization of
the system lead to the usual matricial expression:

t t t tMx Cx Kx f¨ ( ) ( ) ( ) ( )+ + = (7)

in which M C, and K are the global matrices of mass, damping and
stiffness, respectively; t xf( , ) is the global nodal forces vector and

t tx x¨ ( ), ( ) and tx( ) are the global vectors of nodal accelerations, velo-
cities and displacements, respectively. The equation of motion is dis-
cretized for laminated beams using Timoshenko beam elements with
two nodes and three degrees of freedoms per node. Cubic and quadratic
shape functions for the translational and rotational degrees of freedom
and a lineal shape functions for the torsional one, are employed [20].
The torsional stiffness are obtained from Swanson [29] considering the
transversal isotropy of the layers. Rotational, translational and torsional
inertial terms are taken into account. The equation of motion is dis-
cretized for the footbridge deck by rectangular bilinear plate elements
with four nodes and three degrees of freedom per node [20]. The
damping matrix in Eq. (7) is considered proportional to the stiffness
matrix, with damping ratios equal to 5% and 7% in the first natural
vibration mode. These values have been suggested by Chopra [30] for
wood structures with nailed or bolted joints. Natural frequencies and
mode shapes are obtained through the following equation:

K M[ ] 0n n
2 = (8)

in which n is the nth natural circular frequency and n is the associated
mode shape. Then and in order to obtain the dynamic response, the
Modal Superposition Method is applied [30]. The nodal displacements
vector is expressed as the product between the mode shape matrix and
the vector of modal amplitudes t tx y( ) ( )= . Then, replacing the nodal
displacements vector in Eq. (7):

t t t tM y C y K y f¨ ( ) ( ) ( ) ( )+ + = (9)

in which the components of nodal forces vector are defined as:

f t F t t t t t
t t t t t( ) ( ) for

0 for yi
d

d

0 0

0 0
= +

< > +

where F t( ) is equal to the load function in the time domain, t0 is the
arrival time to the node i t Le v, /d p= is the step time between nodes, vp
is the pedestrian velocity and Le is the distance between nodes. For the
adopted damping model, the damping relationship for each one of the
considered vibration modes is expressed as a( /2)n n= where a is

Fig. 3. Laminated beams design.

Table 1
Forcing frequencies fs, dynamic coefficients i and harmonic phase angle i.
Deterministic load models 1 and 2, Figueiredo et al. [13].

Harmonic i ifs Hz i i

WL1 WL2

1 1.6–2.2 0.5 0 0
2 3.2–4.4 0.2 /2 /2
3 4.8–6.6 0.1 /2
4 6.4–8.8 0.05 /2 3 /2

Table 2
Human walking characteristics.

Activity Step distance Step frequency
(m) (Hz)

Slow walking 0.6 1.60–1.85
Normal walking 0.75 1.85–2.15
Fast walking 0.9 2.15–2.30

D.A. García et al. Structural Safety 77 (2019) 10–17
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obtained assuming n equal to 5–7% for the first vibration mode. Re-
placing aC K= and multiplying the Eq. (9) for the transpose of the
modal shape vector n and due to the orthogonality property of the
mode shapes, we can obtain the equation of motion in generalized
coordinates for each mode n:

M y t aK y t K y t f t¨ ( ) ( ) ( ) ( )n n n n n n n+ + = (10)

in which f t v t F t( ) ( ) ( )n n p= for the time between t t t td0 0 + . Ap-
plying the principle of effects superposition, the total Mid-Span (MS)
accelerations induced for the total number of pedestrians (NP) con-
sidering N vibration modes is obtained from:

x t x t¨ ( ) ¨ ( )MS
i

NP

n

N

MS n n
1 1

,=
= = (11)

6. Numerical results

6.1. Modal analysis

A convergence study of the first natural frequency was carried out
due to the fact that the step harmonic, the step frequency and the step
distance of the load model are considered in this section as functions of
the first natural frequency of the footbridge. A number of 3000 in-
dependent Monte Carlo Simulations (MCS) is adopted for the stochastic
study. The PDF of the first natural frequency F f F, ( )1 1 is shown in Fig. 5
for laminated beams with and without finger joint unions. As can be

observed, the mean value remains equal in both cases, µ F( ) 6.78 Hz1 =
while the standard deviation decreases in the first case, F( ) 0.06 Hz1 =
and F( ) 0.12 Hz1 = respectively. This effect is based in the variation of
the effective stiffness and mass properties along the beams, introduced
by the stochastic model with finger joints union. This behavior was
already reported by Brandner and Schickhofer [8] who represented the
laminated beams as a system with serial and parallel elements.

6.2. Forced Vibration

According to the Argentinian standard CIRSOC 601 [22], when the
first natural frequency of a timber structure is lower than 8 Hz, a dy-
namical study is needed for ensuring the serviceability behavior. Hence,
the serviceability performance of this type of structures can be eval-
uated through the study of the peak accelerations and the first natural
frequencies, according to the international normative [11,31–34].

6.2.1. Dynamic response
The dynamic response registered in the mid-span of the footbridge

in terms of displacements and accelerations are presented in Fig. 6 for
the load model 1 (WL1) and in Fig. 7, for the load model 2 (WL2). The
time variation of the displacements and accelerations are shown in the
upper plots while the corresponding Fast Fourier Transform (FFT), in
the lower plots of each figure. As can be observed, the shapes of the
time functions change with the applied load model. The heel impact
effect in the second load model (WL2) is clearly observed in the peaks of
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the displacement and acceleration functions (Fig. 7). WL2 model pro-
duces structural responses with more frequency components and higher
values of displacements and accelerations are observed in comparison
with the results obtained when the WL1 model is applied. In compar-
ison with footbridge structures with similar natural frequencies and
different materials [12,13], the herein obtained accelerations are larger
and the displacements smaller. This can be explained due to the high
ratio stiffness/weight of the timber material. In what follows, the study
of the serviceability performance of the structure will be presented in
order to show the influence of the material uncertainties in the accel-
erations levels.

6.2.2. Serviceability performance
First, in this section, the excitation frequency of the load is adopted

in such a way that ifs (second column of Table 1) be equal to the first
natural frequency of the footbridge (F1). Thus, the step frequency fs
becomes a random variable related with the values of F1. Depending on
the value that this variable adopts (third column Table 2) the activity

and the step distance of the force model applied to the footbridge are
defined. For the load models applied at the center line of the deck, the
bending vibration modes have the higher contribution in the response.
The serviceability performance of the results obtained through a sto-
chastic study is presented in Fig. 8 for the first load model (WL1) and, in
Fig. 9 for the second load model (WL2). For the serviceability evalua-
tion, the first natural frequency of the footbridge (F1) and the peak
acceleration (amax) constitute the main variables that relate to a limit
value of acceleration. In both cases, the left plots were obtained for 5%
of damping and the right plots for 7% in the first natural mode. The
joint probability of the random variables peak acceleration (amax) and
the first natural frequency (F1) is shown in the color bar at the right of
the figure. In an illustrative form, two classic limit values of peak ac-
celerations according to the standards EUROCODE 5 [31] (0.7m/s2)
and ISO 10137 [32] (0.49m/s2) for outdoor footbridges were con-
sidered. In the most recent structural guidelines, the pedestrian comfort
levels are indicated considering ranges instead of specific limit values of
(amax) [33,34]. Comfort situations for vertical vibrations in footbridges
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Fig. 6. Displacement results (left) and acceleration results (right) at the midspan point of the footbridge. Upper plots: time register, lower plots: Fast Fourier
Transform (FFT). First load model (WL1).
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Fig. 7. Displacement results (left) and acceleration results (right) at the midspan point of the footbridge. Upper plots: time register, lower plots: Fast Fourier
Transform (FFT). Second load model (WL2).
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in function of the acceleration levels are depicted in Table 3.
For the results herein presented, the third and fourth harmonic of

the force models (WL1 and WL2) are coincident with the first natural
frequencies F1; this aspect is defined due to the frequency range of this
random variable (Fig. 5). As can be observed, when the structure is
crossed with a fast walking with the third harmonic component of the
forces in concordance with the fist natural mode of the footbridge, the
peak accelerations in some samples result higher than the EC5 and ISO
10137 limits. In this cases, the dynamic coefficient i is higher than for
the fourth harmonic, Table 1. The second load model is clearly the most
demanding for the structure. The slope of the group of results indicates
situations of timber bridges with higher natural frequencies due to the
reduction of the effective mass of the structure and the increment of the
effective stiffness but with higher accelerations levels produced mainly
due to the mass reduction. As can be observed, the range of the natural
frequencies variation is higher than the amplitude of the peak accel-
erations change. Hence, the traditional analysis with a mean model
would be inadequate in the frequency zone in which the footbridge
could be excited by a fast walking with the third harmonic or by a
normal walking with the fourth harmonic of the force in coincidence
with the first natural frequency of the footbridge. According to the
numerical results, the variation of the material properties could lead to
an unacceptable serviceability performance of the structure and a re-
duction in the pedestrian comfort due to the excitation level or the
change in the structural effective properties. In view of the codes in

force with line limits, the above presented results are either acceptable
or unacceptable. If the guidelines depicted in Table 3 are applied, the
outcomes would lead to either regions of maximum or mean comfort,
which, in the authors opinion is a more rational assessment.

7. Conclusions

A stochastic study of the serviceability performance of a short span
timber footbridge made of Argentinean Eucalyptus grandis was pre-
sented. To the authors’ knowledge, this structural configuration is ex-
tensively employed but not adequately studied in the literature. The
stochastic analysis allows us to extend the range of the response starting
from a model with mean properties. In comparison with footbridges
structures with similar natural frequencies and different materials, the
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Fig. 8. Serviceability performance of the timber footbridge. First load model (WL1) (damping: 5 % left and 7 % right).
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Table 3
Human comfort levels for vertical vibrations of footbridges
[33,34].

Comfort level Acceleration range
(m/s2)

Maximum 0–0.5
Mean 0.5–1
Minimum 1–2.5
Inadmissible 2.5>
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obtained values of accelerations are significant and the displacements,
small. This fact can be explained due to the high stiffness/weight ratio
of the timber material.

The influence of the finger joints distances and the stochastic model
of the material properties in the natural frequencies were presented.
From a visual survey carried out in structural size laminated beams, the
PMF of the distance between finger joints was constructed. The varia-
tion in the effective stiffness and mass along the elements producing by
the union of boards with different properties produces a lower standard
deviation in the natural frequencies than when the finger joints unions
are not considered. The mean value of the natural frequency remains
equal and is not influenced by the laminated beam model.

Through the application of two deterministic walking load models,
it has been shown that the variation of the stochastic material proper-
ties could lead to an unacceptable serviceability performance and a
reduction in the pedestrian comfort due to the excitation level or due to
the change in the structural effective properties. New design guidelines
provide more comprehensive tools to assess the comfort levels by
means of regions. The results were also discussed under these re-
commendations. Generally, the stochastic variability of the timber
material properties is not taken into account in the structural evalua-
tion. The stochastic analysis allows to obtain a larger range of results
than a deterministic study, and the effect of the mechanical properties
in the results is better understood.

Future works will include the stochastic variability in the induced
human load and the consideration of multiple pedestrian transit sce-
narios. It is expected that the uncertainty introduced by loads on
structures be higher than the uncertainty in the material properties.
However, in this work, the focus was placed in the uncertain material
properties of structural elements made of Argentinean Eucalyptus
grandis, which have a higher degree of randomness in comparison with
other structural materials.

Acknowledgments

The authors are grateful for the financial support of CONICET,
SGCyT-UNS, MINCyT from Argentina and CAPES, CNPq, and FAPERJ
from Brazil. The experimental data provided by J.C. Piter, E. A. Torrán
and co-workers from FRCU-UTN (Argentina) is greatly acknowledged.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, athttps://doi.org/10.1016/j.strusafe.2018.11.001.

References

[1] Piter JC. Strength grading of sawn timber as structural material: development of a
method for the Argentinean Eucalyptus grandis (in Spanish). La Plata: Universidad
Nacional de la Plata; 2003. [PhD thesis].

[2] IRAM:9662-2. Structural glued laminated timber. Visual strenght grading of boards.
Part 2: Boards of eucalipto (Eucalyptus grandis) (in Spanish). Instituto Argentino de
Normalización y Certificación (IRAM), Buenos Aires; 2006.

[3] Piter JC, Cotrina AD, Sosa Zitto MA, Stefani PM, Torrán EA. Determination of
characteristic strength and stiffness values in glued laminated beams of Argentinean
Eucalyptus grandis according to European standards. Holz als Roh-und Werkstoff
2007;65(4):261–6.

[4] Saviana J, Sosa Zitto MA, Piter JC. Bending strength and stiffness of structural la-
minated veneer lumber manufactured from fast-growing Argentinean Eucalyptus
grandis. Maderas, Ciencia y Tecnologa 2009;11(3):183–90.

[5] Köhler J, Sørensen JD, Faber MH. Probabilistic modeling of timber structures. Struct

Saf 2007;29(4):255–67.
[6] Casciati S, Domaneschi M. Random imperfection fields to model the size effect in

laboratory wood specimens. Struct Saf 2007;29(4):308–21.
[7] Fink G, Köhler J. Probabilistic modelling of the tensile related material properties of

timber boards and finger joint connections. Eur J Wood Prod 2015;73(3):335–46.
[8] Brandner R, Schickhofer G. Probabilistic models for the modulus of elasticity and

shear in serial and parallel acting timber elements. Wood Sci Technol
2015;49(1):121–46.

[9] García DA, Rosales MB, Sampaio R. Eigenproblems in timber structural elements
with uncertain properties. Wood Sci Technol 2016;50(4):807–32.

[10] García DA, Rosales MB. Deflections in sawn timber beams with stochastic proper-
ties. Eur J Wood Prod 2017;75(5):683–99.

[11] Živanović S, Pavić A, Reynolds P. Vibration serviceability of footbridges under
human-induced excitation: a literature review. J Sound Vib 2005;279(1).

[12] Da Silva JGS, Vellasco PDS, De Andrade SAL, De Lima LRO, Figueiredo FP.
Vibration analysis of footbridges due to vertical human loads. Comput Struct
2007;85(21):1693–703.

[13] Figueiredo FP, Da Silva JGS, De Lima LRO, Vellasco PDS, De Andrade SALA.
parametric study of composite footbridges under pedestrian walking loads. Eng
Struct 2008;30(3):605–15.

[14] Van Nimmen K, Lombaert G, De Roeck G, Van den Broeck P. Vibration service-
ability of footbridges: Evaluation of the current codes of practice. Eng Struct
2014;59:448–61.

[15] Casagrande D, Giongo I, Pederzolli F, Franciosi A, Piazza M. Analytical, numerical
and experimental assessment of vibration performance in timber floors. Eng Struct
2018;168:748–58.

[16] Casciati F, Casciati S, Faravelli L. A contribution to the modelling of human induced
excitation on pedestrian bridges. Struct Saf 2017;66:51–61.

[17] Rama Rao MV, Pownuk A, Vandewalle S, Moens D. Transient response of structures
with uncertain structural parameters. Struct Saf 2010;32(6):449–60.

[18] Shannon CA. mathematical theory of communication. Bell Tech J
1948;27:379–423.

[19] Jaynes E. Information theory and statistical mechanics. Phys Rev
1957;106(4):620–30.

[20] Reddy JN. An introduction to the finite element method 2. New York: McGraw-Hill;
1993. p. 2.

[21] Rubinstein RY. Simulation and the Monte Carlo method. John Wiley and Sons, Inc;
1981.

[22] CIRSOC 601. Argentinean standard of timber structures (In Spanish). Instituto
Nacional de Tecnología Industrial (INTI)- Centro de Investigación de los
Reglamentos Nacionales de Seguridad para las Obras Civiles (CIRSOC), Buenos
Aires; 2013.

[23] UNE-EN. 408. Timber structures. Structural timber and glued laminated timber.
Determination of some physical and mechanical properties. Madrid: Asociación
Española de Normalización y Certificación (AENOR); 1996. [in Spanish].

[24] Argüelles Álvarez R, Arriaga Martitegui F, Martínez Calleja JJ. Timber structures.
Design and calculation. Madrid: Asociación de Investigación Técnica de las
Industrias de Madera (AITIM); 2000. [in Spanish].

[25] Forest Products Laboratory. Wood handbook: Wood as an engineering material.
General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of
Agriculture, Forest Service, Forest Products Laboratory; 2010.

[26] Benjamin RJ, Cornell CA. Probability, Statistics and Decision for Civil Engineers.
McGraw-Hill; 1970.

[27] IRAM:9660-1. Structural glued laminated timber. Part 1: Strenght classes and
manufacture and control requirements (in Spanish). Instituto Argentino de
Normalización y Certificación (IRAM), Buenos Aires; 2006.

[28] Piccardo G, Tubino F. Simplified procedures for vibration serviceability analysis of
footbridges subjected to realistic walking loads. Comput Struct
2009;87(13):890–903.

[29] Swanson SR. Torsion of laminated rectangular rods. Compos Struct
1998;42(1):23–31.

[30] Chopra AK. Dynamics of structures vol. 3. New Jersey: Prentice Hall; 1995.
[31] EUROCODE 5. Design of timber structures, Part 2: Bridges. European Committee for

Standardization, London, UK; 2004.
[32] ISO 10137. Bases for design of structures: Serviceability of buildings and pedestrian

walkways against vibration. International Organization for Standardization,
Geneva, Switzerland; 2007.

[33] International Federation for Structural Concrete (FIB). Guidelines for the design of
footbridges: Guide to good practice. Ecole Polytechnique Fédérale de Lausanne
(EPFL); 2005.

[34] Technical Department for Transport, Roads and Bridges Engineering and Road
Safety (Sétra)/French Association of Civil Engineering (AFGC). Footbridges:
Assessment of vibrational behavior of footbridges under pedestrian loading,
Technical guide; 2006.

D.A. García et al. Structural Safety 77 (2019) 10–17

17

https://doi.org/10.1016/j.strusafe.2018.11.001
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0005
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0005
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0005
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0015
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0015
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0015
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0015
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0020
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0020
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0020
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0025
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0025
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0030
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0030
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0035
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0035
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0040
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0040
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0040
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0045
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0045
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0050
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0050
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0055
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0055
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0060
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0060
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0060
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0065
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0065
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0065
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0070
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0070
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0070
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0075
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0075
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0075
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0080
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0080
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0085
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0085
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0090
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0090
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0095
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0095
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0100
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0100
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0105
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0105
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0115
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0115
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0115
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0120
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0120
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0120
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0130
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0130
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0140
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0140
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0140
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0145
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0145
http://refhub.elsevier.com/S0167-4730(18)30112-7/h0150

	Dynamic behaviour of a timber footbridge with uncertain material properties under a single deterministic walking load
	Introduction
	Problem statement
	Timber Material
	Elastic model
	MOE and mass density stochastic representation
	Laminated beams

	Load models
	Finite element discretization
	Numerical results
	Modal analysis
	Forced Vibration
	Dynamic response
	Serviceability performance


	Conclusions
	Acknowledgments
	Supplementary data
	References




