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a b s t r a c t 

We present a comprehensive study of temporal Low-Level acoustic Descriptors (LLDs) to automatically 

segment anuran calls in audio streams. The acoustic segmentation, or syllable extraction, is a key task 

shared by most of the bioacoustical species recognition systems. Consequently, the syllable extraction 

has a direct impact on the classification rate. In this work, we assess several new entropy measures in- 

cluding the recently developed Permutation Entropy, Weighted Permutation Entropy, and Permutation 

Min-Entropy, and compare them to the classical Energy, Zero Crossing Rate and Spectral Entropy. In ad- 

dition, we propose an algorithm to estimate the optimal segmentation threshold value used to separate 

deterministic segments from stochastic ones avoiding the creation of thin clusters. To assess the perfor- 

mance of our segmentation approach, we applied a frame-by-frame, a point-to-point and an event-to- 

event comparisons. We show that in a scenario with severe noise conditions (SNR ≤ 0dB), simple entropy 

descriptors are robust, achieving 97% of segmentation performance, while keeping a low computational 

cost. We conclude that there is no LLD that is suitable for all scenarios, and we must adopt multiple or 

different LLDs, depending on the expected noise conditions. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The loss of amphibian biodiversity is a worldwide concern.

nuran (frogs and toads) have a close relationship with the en-

ironment. By monitoring anuran populations, we can detect eco-

ogical stress in early stages ( Carey et al., 2001; Cole, Bustamante,

einoso, & Funk, 2014; Luque, Romero-Lemos, Carrasco, & Barban-

ho, 2017 ). The variations in anuran populations can help us under-

tand what is happening in their environment. Most of the moni-

oring programs are based on acoustic surveys applied by a group

f experts and collaborators, who move from one place to another

hile counting the species and individuals ( Gibbs, Whiteleather,

 Schueler, 2005; MacKenzie, Nichols, Hines, Knutson, & Franklin,

003 ). The full study takes many years and demands a lot of hu-

an and economic resources. 

One possible solution to mitigate that cost is the development

f an automatic method to detect the presence of different anu-
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an species through their calls, without human intervention. In

his context, the problem can be addressed by using Wireless

coustic Sensor Networks (WASNs) ( Colonna, Cristo, & Nakamura,

014; Colonna, Ribas, Santos, & Nakamura, 2012; Ribas, Colonna,

igueiredo, & Nakamura, 2012 ) and Machine Learning classification

echniques to detect the presence of particular species ( Brandes,

008; Colonna et al., 2016; Somervuo, Harma, & Fagerlund, 2006 ).

owever, the low cost of this technology results in hardware and

oftware resource constraints, which demand algorithmic solutions

f lower computational cost ( Nakamura, Loureiro, Boukerche, &

omaya, 2014; Nakamura, Loureiro, & Frery, 2007 ). 

In the context of WASNs, the sound acquisition is performed

on-intrusively by the sensor nodes, which allow us to monitor the

nvironment for a long-term period. Replacing the sensor batteries

ay be too expensive or even unfeasible. Hence, we need to de-

elop efficient methods that minimize the amount of information

eing processed, transmitted, or recorded, by the sensor nodes. 

To enable monitoring with WASNs, it is necessary to embed an

utomatic Call Recognition (ACR) method into the sensor nodes. A

eneral ACR method for recognizing frog species, based on their

alls, is shown in Fig. 1 . This method consists of three major

https://doi.org/10.1016/j.eswa.2018.03.062
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2018.03.062&domain=pdf
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Fig. 1. Automatic Call Recognition Framework (ACR). 
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processing blocks. The first block performs the acoustic signal seg-

mentation, recognizing the start and end of a minor vocalization

unit, named syllable ( Huang, Yang, Yang, & Chen, 2009; Somervuo

et al., 2006 ). The second block maps the syllable into a feature vec-

tor ( Brandes, 2008 ). The last block is a pattern-matching algorithm

that considers the input feature vector and a feature set represent-

ing all the species included in the reference dataset ( Colonna et al.,

2014; McIlraith & Card, 1997; Wichern, Xue, Thornburg, Mechtley,

& Spanias, 2010 ). Note that the classification step is not covered in

this article. 

As we can observe, the segmentation block impacts on the fi-

nal species recognition rate, i.e., the better the segmentation result,

greater is the probability of the correct species recognition ( Alonso

et al., 2017; Colonna, Cristo, Salvatierra, & Nakamura, 2015; Jaafar,

Ramli, & Shahrudin, 2013 ). Moreover, given the limitations of the

sensors, keeping the segmentation method as economical as pos-

sible, from the viewpoint of computational complexity, is our ma-

jor challenge. Therefore, here we provide a solid acoustic descrip-

tor evaluation and comparison for bioacoustic signal segmentation

that detects and extracts the syllables of an anuran call in an un-

supervised manner. 

In real situations, such as rain forests, the scenarios can be com-

plex and present a high acoustic richness, as a result of the interac-

tion of several species at the same place ( Depraetere et al., 2012 ).

Therefore, it is not possible to know all possible signal patterns a

priori . Hence, we propose a change in the segmentation paradigm:

instead of trying to identify different signal patterns, we identify

only noise segments. Thus, the remaining segments may be consid-

ered syllables (see Section 2 ). This is possible because in our for-

mulation the segmentation task is equivalent to an unsupervised

binary classifier, in which we separate features that belong to seg-

ments of either “signal” class or “noise” class. After the segmenta-

tion, the final classifier (third block of Fig. 1 ) is responsible for the

species recognition. The impact of the segmentation on the final

recognition rate has been studied ( Colonna et al., 2015; Jaafar et al.,

2013; Somervuo et al., 2006 ), but nothing was reported about indi-

vidual LLDs applied to segmentation. The classification step is out

of scope of this work. 

We present an unsupervised segmentation approach. We focus

our experiments on using only a reduced set of Low-Level acous-

tic Descriptors (LLDs) from temporal and spectral domains to cope

with the hardware restrictions of low-cost sensors. Moreover, our

method is useful for segmenting calls stored into a bioacoustic

database in an unsupervised manner. We then analyze the seg-

mentation performance considering several noise conditions, in-

cluding white and colored noises (blue, red, violet and pink). In

literature few authors discuss the problem of such color noises, but

given the goal of our application it is essential. 

The contributions of this work are twofold: 

1. a comparative assessment of three unconventional LLDs

based on the new Permutation Entropy (PE) methodology

and its variants (Weighted Permutation Entropy - WPE and

Permutation Min-Entropy - PME), one LLD based on Spectral

Entropy (H FFT ), and two common temporal LLDs (Energy - E

and Zero Crossing Rate - ZCR); and 

2. an algorithm to find the optimal segmentation threshold for
the syllables using the descriptors mentioned above. t  
Hence, we perform several evaluations trying to answer why

he same features, such as E, ZCR and H FFT , are often used in the

iterature, even in situations where the noises may have different

pectral characteristics. To evaluate the performance of our algo-

ithm to find the best threshold, we compared it against the Otsu

nd k-Means methods. To the best of our knowledge, this is the

rst work that applies and compares the new Permutation Entropy

ethodology, and its variants, to segment bioacoustic signals. 

Finally, the performance was quantified by computing: the Area

nder the ROC Curve (AUC), the Acoustic Event Error Rate (AEER),

he false positive and false negative rates (FPR and FNR), the F-

core (F1), and the accuracy (Acc). Then, supported by experimen-

al results, we demonstrate that these entropy quantifiers are ro-

ust enough for real applications, even considering noise levels be-

ow than 0 dB, achieving an accuracy superior to 95%. These re-

ults are significant to those who intend to design and implement

 non-intrusive environmental monitoring method. 

All these evaluations are equally important to obtain the final

erformance of the segmentation approach. Each metric helps to

ighlight different aspects of the segmentation. A complete assess-

ent is generally not considered in the related works, in which

he quality of the segmentation is frequently evaluated through the

lassification rate of the species. The problem with this is that the

lassifier also produces errors that mask the segmentation errors.

his makes it difficult to identify the real failures of the whole sys-

em. 

The remainder of this paper is organized as follows.

ection 2 defines the segmentation problem of bioacoustic

alls. Related works are presented in Section 3 . Section 4 describes

he set of LLD assessed in our comparative study. The algorithm

e propose to find the optimal threshold value is presented in

ection 5 . We also show three different performance assessments

f the segmentation task in the Sections 6.1, 6.2 and 6.3 . Ad-

itionally, given that the LLDs are not necessarily correlated, in

ection 6.4 we show a ranking of LLDs based on Information

ain criterion and an evaluation of some LLD combinations.

ection 7 discusses which are the most robust LLDs to segment

nuran calls. 

. Problem description 

The accuracy of species recognition depends on two major fac-

ors: (1) the classifier’s ability to separate different signal patterns

epresented in the feature space; and (2) the quality of the map-

ing function, which transforms the raw signal segments into dis-

riminating features. The quality of features depends on the map-

ing function, but also depends on using the correct part of the

nput signal, which contains more useful information. Thus, the fi-

al accuracy of the complete system, presented in Fig. 1 , depends

n the capacity to select the appropriate signal segments from the

nput. 

Although different frog species may have different types of calls

or different purposes, such as territory delimitation or mating,

n all cases there are small signal patterns repeated along time.

hese units, known as syllables, are the smallest bioacoustics pat-

ern useful to identify different species. Thus, each species has its
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Fig. 2. Three different syllable patterns belonging to the species (a) Adenomera h. , 

(b) Hypsiboas cinerascens and (c) Scinax ruber . The vertical dot lines represent 

the beginning and end of each segment. 
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wn set of syllables. Fig. 2 depicts three syllables from three dif-

erent species. 

Fig. 3 is a vocalization sample with three consecutive syllables

f the species Adenomera h. . Between each syllable, we have the

ackground noise. The segmentation problem consists of recog-

izing the beginning and the end of each segment that contains

nly noise, doing this accurately and automatically (background

egments on Fig. 3 ). Consequently, the remaining segments corre-

pond to the syllables that we want to classify. In this approach,

e do not need to know all possible syllable patterns a priori to

e able to extract such syllables. 

Formally, the input bioacoustic signal x (t) = { x 1 , x 2 , . . . , x N } is a
ime series in which the values represent the acoustic pressure lev-

ls (or amplitude) within 1 ≤ t ≤ N , in which N is the maximum sig-

al length. A frame x k = { x i , x i +1 , . . . , x i + n } is a subset of size n with

onsecutively signal values. Thus, a representation of the signal by

 frameset can be obtained by a sliding window of size n . The main

hallenge is how to classify these frames into: “signal” or “noise”

1 or 0). To address this problem, we can represent the frame val-

es x k by a set of LLDs. For example, if we use the entropy value

f the first frame x 1 , we can applied the binary decision rule: 

lass (x 1 ) = 

{
1 if H (x 1 ) ≤ T H 

0 if H (x 1 ) > T H 
, (1) 

n which T H is a threshold for the entropy value of each frame.

ith this rule, we assign the class “signal” to frames of low en-

ropy. Since entropy can be interpreted as a measure of “impurity”,
ig. 3. Three syllables of an Adenomera h. call: signal amplitude (above) and spectro

atterns in time and frequency domains. Note that between the 0 and 300 kHz freque

yllables. 
he higher the value, the greater the probability that the underly-

ng signal is a random noise. A similar rule can be built for other

LDs. 

A secondary challenge, associated with the application of this

ule, is how to find the optimal threshold value T H . The optimal

 H is a trade-off between the sensitivity to the noise and the pre-

ision of the syllable boundaries. To accomplish this, we present

 binarization technique described in Algorithm 2 . The results and

xperiments of Section 6.1 , support the hypothesis that this algo-

ithm produces an optimal frame division. 

. Related work 

In bioacoustic monitoring approaches, the recognition task has

een discussed and studied extensively. However, the audio seg-

entation is usually neglected, treated as a secondary task or per-

ormed manually ( McIlraith & Card, 1997; Strout et al., 2017 ). For

nstance, Luque et al. (2017) explain that syllable extraction is a

ighly complex task, especially in the case of noisy recordings, and

hey proposed an alternative method based on the processing of

uccessive frames to avoid it. Tomasini, Smart, Menezes, Bush, and

ibeiro (2017) proposed a new set of acoustic features to avoid

egmentation. However, segmentation is still very useful for reduc-

ng the amount of data transmitted, processed, or stored. 

Most of the related works perform a syllable segmentation, but

nly a few of them are concerned about the Low-level Acoustic De-

criptors (or features) employed and the combination of such fea-

ures to segment anuran calls. The impact of the segmentation is

lso neglected in frog recognition problems ( Colonna et al., 2015;

vangelista, Priolli, Silla, Angelico, & Kaestner, 2014; Jaafar et al.,

013; Lopes, Koerich, Silla, & Kaestner, 2011; Somervuo et al., 2006;

ichern et al., 2010 ). Lopes et al. (2011) highlighted the impor-

ance of segmentation compared to the use of the entire audio

n bird species recognition tasks. Evangelista et al. (2014) com-

ared manual segmentation against automatic techniques for bird

alls showing gains between 7% and 23% of recognition rate.

aafar et al. (2013) and Colonna et al. (2015) confirmed that the

utomatic segmentation can separate the most relevant audio frag-

ents in anuran calls, hence, becoming a fundamental part of the
gram (below). The vertical dot lines represent the beginning and end of syllable 

ncy bands there is background noise present all the time, inside and outside the 
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monitoring framework. However, there is no consensus on how we

should evaluate the gains over the recognition rate. 

We identify that most of the bioacoustic related works use

heterogeneous sets of features without performing an appropriate

evaluation of each individual feature or even using different feature

combinations. Using an extensive set of features becomes unfeasi-

ble when the processing (or transmission) capacity is limited by

memory or power-saving requirements. 

Automatic sound segmentation has been widely studied in

other contexts, usually focusing on music and human voice

streams ( Foote, 20 0 0; Giannakopoulos, Pikrakis, & Theodoridis,

2008; Sarkar & Sreenivas, 2005; Theodorou, Mporas, & Fakotakis,

2014 ). In such studies, it is common to prioritize robust solutions

even when they lead to higher costs, being impractical for a low-

cost sensor. Expensive approaches were also employed in the study

of bioacoustic signals as digital image processing from its spec-

trogram ( Bardeli, 2009 ). For instance, morphological filters can be

applied over the spectrogram by using it as an image, and find-

ing regions of interest comprising neighboring pixels ( Aide et al.,

2013; Oliveira et al., 2015; Potamitis, 2014; Xie et al., 2015 ). How-

ever, image processing techniques are too expensive for memory to

low-cost sensors. 

Cettolo, Vescovi, and Rizzi (2005) state that the segmentation

models can be classified into three categories: 

• Energy models: in these models the energy of each frame

is compared to a threshold. The frames of which energy is

higher than the threshold are considered signal, while the oth-

ers are considered noise ( Alonso et al., 2017 ). The changing

point is identified when two successive frames belong to dif-

ferent classes. The signal energy can be obtained in the tempo-

ral or spectral domains ( Noda, Travieso, & Sánchez-Rodríguez,

2016 ), and other features such as the Zero Crossing Rate may

also be used to detect a change point ( Colonna et al., 2015 ).

The energy-based segmentation algorithms can be easily imple-

mented and applied in an unsupervised manner. As the energy

of the signal is closely related to the amplitude (or sound pres-

sure level), these models are susceptible to the noise floor level

and the impulsive noise ( Colonna et al., 2012 ). A major chal-

lenge in these approaches is the choice of the optimal thresh-

old. 
• Probabilistic models: in these models each acoustic class (e.g.,

music, speech or noise) is represented by the underlying prob-

ability distribution function (PDF) of the signal values or their

feature values, from which a comparison criterion between

PDFs is applied to find the segmentation boundaries. Some

common criteria are the Bayesian Information Criterion (BIC)

( Cettolo et al., 2005; Cheng & Wang, 2003; Heinicke et al., 2015 )

and the Dynamic Bayesian Network (DBN) ( Wichern et al.,

2010 ). Other possibilities include the comparison of segmented

regions of different entropy values ( Shen, Hung, & Lee, 1998;

Wu & Wang, 2005 ) or the computation of similarity as the

Kullback–Leibler (KL) divergence or the Maximum Mean Dis-

crepancy ( Fagerlund & Laine, 2014; Sinn, Keller, & Chen, 2013 ).

Although these models are more robust than a simple energy

detector, finding a suitable PDF is a challenge that usually de-

mands different methodologies. 
• Explicit models: with these models each silence (or signal pat-

tern) in the audio stream is detected by a supervised explicit

model that was trained with past examples ( Neal, Briggs, Raich,

& Fern, 2011 ). These are the most robust approaches, but the

past samples must be labeled by a human expert, consuming

more time and human effort. An advant age of these approaches

is the possibility of performing segmentation and recognition

of species in a single step ( Chu & Blumstein, 2011; Ren et al.,

2009 ). This category includes the approaches that employ digi-
tal image processing, based on morphological filters, applied to

the spectrogram ( Aide et al., 2013; Potamitis, 2014 ). Despite the

good results, the usage of morphological filters is computation-

ally expensive. 

A similar categorization for the segmentation approaches was

iven by Theodorou et al. (2014) . They used two categories:

he distance-based and the model-based segmentation. The model-

ased segmentation is similar to the explicit models defined above,

hese methods use supervised machine learning algorithms. The

istance-based segmentation can use Euclidean distance, BIC, KL,

eneralized Likelihood Ratio (GLR), and the Hotelling T2 statistic.

o improve the segmentation result, the distance-based model al-

ows us to estimate the distance: frame-to-frame, frame-to-group,

r group-to-group of frames. These methods are less sensitive to

ocal anomalies of the signal. 

We propose Algorithm 2 to find the optimal segmentation

hreshold and avoid the issues of the energy models. This algo-

ithm employs all the signal frames to find an equidistant value

etween the averages of the two groups (“signal” and “noise”),

aximizing the intra-class distance, while trying to keep the PDFs

f the groups balanced. This is a group-to-group approach. In ad-

ition, to obtain the signal features, we first apply different PDF

ethodologies, then we compute the entropy values. Thus, we

an consider our method as a hybrid approach that combines the

implicity of the energy models, the discrimination power of the

robabilistic models and the robustness of the group-to-group ap-

roaches. 

. Fundamentals concepts 

This section presents the fundamental knowledge that supports

his work. 

.1. Energy and zero crossing rate 

The signal’s Energy (E) allows us to know when the signal am-

litude increases, while the Zero Crossing Rate (ZCR) provides an

pproximation of the dominant frequency. These two temporal fea-

ures, commonly used in bioacoustics processing methods ( Jaafar &

amli, 2013; Jaafar et al., 2013; Rahman & Bhuiyan, 2012 ) are given

y: 

 = 

1 

n 

n ∑ 

i =1 

x 2 i , and (2)

CR = 

1 

2 n 

n ∑ 

i =1 

| sign (x i ) − sign (x i −1 ) | , (3)

n which x i is the amplitude of the audio signal and n the frame

ize. The function sign ( · ) is defined as: 

ign (x i ) = 

{+1 , if x i ≥ 0 ;
−1 , if x i < 0 . 

(4)

.2. Spectral entropy 

To compute the spectral entropy, a frame x k is first transformed

nto the spectrum S ( f ) = F(x k ) by using a Fast Fourier Transform

FFT) ( Sueur, Pavoine, Hamerlynck, & Duvail, 2008; Wu & Wang,

005 ). This spectrum S( f ) is normalized to obtain a probability

ass function: 
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Algorithm 1 Permutation entropy (PE) calculation. 

1: function PE ( x , �,m,tau) 
2: n=length( x ); 
3: f=zeros(1,m!); � Initial frequency of each π j 

4: for i=1 to n-tau*(m-1) do 
5: [values,indices]=sort( x (i:tau:i+tau*(m-1))) 
6: j = HashTable(indices, �); � Pattern index 
7: f(j)=f(j)+1; � Increment of π j 

8: end for 
9: f=f(find(f=0)); � To avoid NaN 

10: p=f./sum(f); � Normalization 
11: return PE=-sum(p.*log(p))*(1/log(m!)); 
12: end function 
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 ( f ) = 

| S ( f ) | 
f s / 2 ∑ 

f=0 

| S ( f ) | 
, (5) 

hich is used to compute the normalized Spectral Entropy 

 FFT = −
f s / 2 ∑ 

f=0 

S ( f ) log ( S ( f )) 

log (n ) 
, (6) 

here n is the length of S( f ) and f s the sampling frequency. In this

ase, only the positive part of the spectrum is used. 

.3. Permutation entropy 

The Permutation Entropy (PE) characterizes the dynamics of a

ime series ( Bandt & Pompe, 2002; Soriano, Zunino, Rosso, Fischer,

 Mirasso, 2011 ). This quantifier, together with the permutation

tatistical complexity, allows us to compare or distinguish deter-

inistic, stochastic, and chaotic behaviors in time series ( Labate,

oresta, Morabito, Palamara, & Morabito, 2013; Rosso, Larrondo,

artin, Plastino, & Fuentes, 2007 ). 

Bandt and Pompe (2002) transform a temporal series of

eal values into a symbolic representation known as “ordi-

al patterns” ( π j ). Thus, the complete series is represented

y a set of symbols � = { π1 , π2 , . . . , πm ! } , in which m is the

ength of each pattern ( embedding dimension ). The set � is

onstructed with all possible permutations of integers num-

ers between 1 and m , e.g., for m = 3 the symbol set is � =
 (1 , 2 , 3) , (1 , 3 , 2) , (2 , 1 , 3) , (2 , 3 , 1) , (3 , 1 , 2) , (3 , 2 , 1) } . 

The numbers in each π j pattern represent the sequential index

f the original real values after being sorted. For example, given a

et of three real numbers (0.4, 2.3, 1.5), with indices (1,2,3), after

hese being sorted in descending order (0.4,1.5,2.3), the resulting

ndex permutation is (1,3,2), which matches the pattern π2 of set

. We can summarize the procedure to obtain the histogram of �

s follows: 

1. Select m consecutive values of the signal (x i , . . . , x i + m 

) ; 

2. Apply sort(x i , . . . , x i + m 

, ‘descending’ ) , recover the indices of

the sorted values, and find the corresponding π j into �; 

3. Increase the relative frequency of the corresponding pattern

and the time index, f π j 
= f π j 

+ 1 and i = i + 1 ; 

4. Repeat the steps above until the end of the signal is reached.

he normalized histogram of � is the frequent approach to obtain

he probability associated with each ordinal pattern π j , and we de-

oted it by p π j 
, from which the normalized permutation entropy

an be computed as: 

E = −
m ! ∑ 

j=1 

p π j 
log (p π j 

) 

log (m !) 
(7) 

The entire procedure is summarized in Algorithm 1 1 . Here,

( time lag ) is an extra parameter that controls the time

cale of PE. For example, suppose we analyze the time se-

ies x = { 0 . 4 , 2 . 3 , 1 . 5 , 1 . 7 , 0 . 5 , 1 . 0 } using m = 3 and τ = 1 , the

orresponding pattern are: sort(0 . 4 , 2 . 3 , 1 . 5) = (1 , 3 , 2) → π2 ,

ort(2 . 3 , 1 . 5 , 1 . 7) = (2 , 3 , 1) → π4 , sort(1 . 5 , 1 . 7 , 0 . 5) = (3 , 1 , 2) →
5 , and sort(1 . 7 , 0 . 5 , 1 . 0) = (2 , 3 , 1) → π4 . If we keep m = 3

nd change τ = 2 , the corresponding pattern will be:

ort(0 . 4 , 1 . 5 , 0 . 5) = (1 , 3 , 2) → π2 , and sort(2 . 3 , 1 . 7 , 1 . 0) =
(3 , 2 , 1) → π6 . This change permits us to observe the occur-

ence of π6 , which was not possible with τ = 1 . Hence, τ is

seful to analyze the behavior of the signal at different time scales

 Soriano et al., 2011; Zunino, Soriano, & Rosso, 2012 ). 
1 A Matlab sample code is available at https://goo.gl/VQvfYm 

i  

a  
The last consideration of this methodology is the condition

 ! � n ( n is the frame size), which we must satisfy to ensure that

e have a high probability of observing all π j . When the sequence

f � ≡ { p j : j = 1 , . . . , m ! } , generated from the underlying signal,

as a uniform histogram, then PE ≈ 1. In this case, if the condition

 ! � n is satisfied, we conclude that the frame x k is a sequence

f white noise, i.e., generated by an independent and identically

istributed (i.i.d.) random variable. The opposite case, when the

istogram of � is concentrated in one particular π j , then PE ≈ 0,

nd the signal is characterized by a deterministic behavior or has

 high trend. Within the interval 0 ≤ PE ≤ 1, there are several his-

ograms of � describing the level of randomness of the signal.

n this work, we use this property to separate frames with back-

round noise from syllables. 

.4. The weighted permutation entropy and the permutation 

in-Entropy 

The Weighted Permutation Entropy (WPE) and the Permuta-

ion Min-Entropy (PME) are two quantifiers derived from the

riginal PE methodology. The WPE was proposed to put more

eight on the patterns that have abrupt amplitude changes

 Fadlallah, Chen, Keil, & Príncipe, 2013 ). To do this, we must

eplace line 7 in Algorithm 1 by f(j) = f(j)+var(values) ,
here var(values) is the variance of the signal values of π .

his change arises from the observation that the same ordinal pat-

ern π j may come from values with a different amplitude, as in our

revious example, where the values (2.3,1.5,1.7) and (1.7,0.5,1.0) be-

ong to the same ordinal pattern π4 , but with a different variance.

The PME only considers the π j among � with the highest prob-

bility ( Zunino, Olivares, & Rosso, 2015 ). To do this, we should

eplace line 10 in the Algorithm 1 by p = max(f./sum(f)) ,
nd line 11 by PME = -log(p) ∗(1/log(m!)) . This modification

olds the original properties of PE and becomes more robust to

nd deterministic components under high noise conditions. 

.5. Colored noise 

Many physical phenomena can produce diverse types of colored

oise ( ξ ) ( Lowen & Teich, 1990; Vasseur & Yodzis, 2004 ). Record-

ngs of acoustic signals are not an exception ( Voss & Clarke, 1978 ).

n this cases, the noise time-series may be characterized by a func-

ion with Power Spectral Density (PSD) that obeys a power law of

he form ( Kasdin, 1995 ): 

( f ) = 

L ( f ) 

| f | α , (8) 

n which the exponent α is a real number within [ −2 , 2] ,

nd L ( f ) is a constant proportional to the process variance

https://goo.gl/VQvfYm
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2 Our annotated dataset is available at http://bit.ly/1Kd6jYx . 
( Kasdin, 1995; Plaszczynski, 2007 ). The following α values deter-

mine some common types of noise: 

• α = 0 models the white noise containing equal amount of en-

ergy in all frequency bands; 
• α = 1 models the pink noise with equal sound pressure level

in each octave band decreasing the energy as the frequency in-

creases; 
• α = 2 models the red (or brown) noise, which is common in

oceanographic recordings, it describes the ambient underwater

noise from distant sources ( Rudnick & Davis, 2003 ); 
• α = −1 models the blue noise that contains more energy as the

frequency increases ( Ballón et al., 2011 ); and 

• α = −2 models the violet noise, which further increases the en-

ergy at high frequencies. 

The Signal-to-Noise Ratio (SNR) can be obtained by: 

SNR = 20 log 10 

(
σx 

σξ

)
, (9)

in which σ x and σ ξ are the standard deviations of the original

signal and the added noise, respectively. By varying this ratio, we

simulate different distances between the animal, which produces

the call, and the sensor, which records the sounds. 

4.6. Peak noise 

Peak noise is the sparse occurrence of impulses (high en-

ergy and short duration). Typically, these impulses are denoted by

±δ(i − k ) , in which i stands for temporal index of x i and k the tem-

poral position of δ. In a signal with normalized amplitude within

the range [ −1 , 1] , δ( •) may randomly assume the maximum or

the minimum values ± 1. The occurrence time k is a uniform ran-

dom variable, and the noise density is the ratio between the total

amount of impulses K , added to the signal, and the length of the

signal ( N ): 

d δ = 

1 

N 

∑ 

∀ k ∈ K 
| δ(i − k ) | . (10)

This is an extremely uncorrelated noise condition and may appear

due to several causes, e.g., electrical discharges or loud noises due

to weather or environmental conditions. 

4.7. The ROC curve 

In this work, we use the Receiver Operating Characteristic

(ROC) curve to summarize the performance of our binary clas-

sifiers. The ROC curve is generated by plotting the True Positive

Rate (TPR) with the False Positive Rate (FPR) while varying the

decision threshold level between zero and one, and assigning a

class to each observation, which is compared to the correct class.

Thus, the detection conditional probability becomes a function of

the false-alarm probability and help us select the possibly opti-

mal model, independently of the class distribution ( Fawcett, 2006;

Slaby, 2007 ). 

We also use the Area Under ROC curve (AUC) as an accuracy

measurement of a given test. This metric is suitable to understand

the ROC plot as a single scalar value which indicates the perfor-

mance of the classifier. The most important property of AUC is

that it represents the probability of randomly selecting a pair of

instances (positive and negative). 

4.8. Metrics based on decision table 

In addition to the ROC analysis, which performs a compari-

son by frames, we need to know the number of missing syllable’s
oints. By comparing each point of the segmented signal to the

rue segmentation, and considering this as a binary variable, we

an build a decision table. Hence, the result can be summarized by

he true positives (TP), true negatives (TN), false positives (FP) and

alse negatives (FN), and traditional metrics such as Precision (Pre),

ecall (Rec), and F-Score (F1) can be computed. These metrics are

efined as: 

rec = 

TP 

TP + FP 

, (11)

Rec = 

TP 

TP + FN 

, (12)

nd 

1 = 

2 Pre Rec 

Pre + Rec 
. (13)

rom the decision table, we also derive the False Negative Rate

FNR), or miss rate; the False Positive Rate (FPR), or false alarm;

nd the accuracy (Acc): 

NR = 

FN 

TP + FN 

, (14)

PR = 

FP 

FP + TN 

, (15)

nd 

cc = 

TP + TN 

TP + FN + FP + TN 

. (16)

. Experimental methodology 

The manual signal segmentation of the database is a crucial

tep to provide the Ground Truth (GT) and to access the meth-

ds’ performance. We collected the audio of fourteen different frog

pecies with 3155 syllables and 6324 segments, which were manu-

lly labeled by a human expert into two classes: “signal” or “back-

round noise”2 (BN). These recordings were collected in situ in the

mazon rainforest, in geographic areas around the Federal Univer-

ity of Amazonas. All of them were recorded without compression

n raw format ( .wav ) with a sampling frequency of 44.1 kHz. No

ignal filter was applied. Table 1 presents the species (first column)

nd their respective number of syllables (second column). 

Every call was mapped to a frame set ( S ). The frame length

hosen was 23.21 ms ( n = 1024 points) to cope with the PE con-

ition m ! � n , in which m = 4 and τ = 1 . We decided not to

se overlapping to avoid counting repeated points, which would

esult in an artificial improvement in the segmentation perfor-

ance. Each frame was represented by a feature value of those

escribed in Section 4 , and its timestamp S ( f, t ). As a result, we

btained a new temporal series within the feature space S id =
 S( f, t 0 ) , S( f, t 1 ) , . . . , S( f, t n ) } in which id stands for the ID of the

all. Fig. 4 a depicts an anuran call (in gray) and its representation

hrough different features. 

We normalize the values of S into the interval 0 ≤ ˆ S ≤ 1 , by ap-

lying the equation: 

ˆ 
 id = 

S id − min (S id ) 

max (S id ) − min (S id ) 
, (17)

o E and ZCR features, and 

ˆ S id = 1 − ˆ S id to the entropy-based fea-

ures (PE, WPE, PME and H FFT ). This normalization allows us to use

he feature values as output scores retrieved by a binary classifier. 

The Energy models explained in Section 3 require finding an

ptimal segmentation threshold. The procedure we propose to find

hat threshold is presented in Algorithm 2 . This algorithm di-

ides the frameset ( ̂  S id ) into two groups of maximum separation

http://bit.ly/1Kd6jYx
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Fig. 4. A call of the Adenomera h. species in gray: (a) feature values of the signal frame-by-frame using: E, WPE, H FFT , and ZCR; (b) an example of segmentation using only 

E values and applying the threshold computed by the proposed algorithm, the Otsu method and a binary k-Means. Note that the segmentations corresponding to Otsu and 

k-Means are superimposed. 

Algorithm 2 Optimal threshold selection. 

1: function Threshold ( ̂  S ) 
2: T i =0; m 1 =0; m 2 =0; T f =mean( ̂  S ); 
3: while | T f − T i | > 0 . 01 do 
4: m 1 =mean( ̂  S ≤ Tf); 
5: m 2 =mean( ̂  S > Tf); 
6: T i =T f ; 
7: T f =(m 1 +m 2 )/2; 
8: end while 
9: return T f ; 

10: end function 
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Table 1 

Dataset description. The first two columns list the species analyzed and their num- 

ber of syllables identified by a human expert (Ground Truth (GT)). The other 

columns present the number of syllables retrieved by each LLD we assessed: En- 

ergy (E), Permutation Entropy (PE), Weighted Permutation Entropy (WPE), Permu- 

tation Min-Entropy (PME), Zero Crossing Rate (ZCR), and Spectral Entropy (H FFT ). 

Features 

Species GT E PE WPE PME ZCR H FFT 

Adenomera h. 58 57 83 91 94 155 158 

Hyla m. 39 51 93 89 97 217 12 

Adenomera a. 50 50 193 164 194 168 156 

Ameerega t. 86 92 105 99 104 128 0 

Osteocephalus o. 26 33 310 248 323 324 582 

Rhinella g. 2 3 2 3 2 66 0 

Scinax r. 57 27 17 34 20 58 0 

Hypsiboas c. 1548 1403 2533 1941 2971 4021 2233 

Brachycephalus e. 1184 116 132 115 131 2 0 

Aplastodiscus albof. 28 28 147 133 151 125 0 

Aplastodiscus albos. 8 7 155 181 215 158 3 

Aplastodiscus p. 13 13 13 13 24 110 0 

Dendropsophus a. 49 46 256 194 213 182 2 

Dendropsophus e. 7 7 75 81 123 1 0 

Total 3155 1933 4114 3386 4662 5715 3146 

a  

2  

G

 

c  

t  

w  

l  
etween their means trying to maximize the inter-class distance

lines 4 through 7). Note that Algorithm 2 does not require the

rame labels as input, it just needs the entropy values or any other

eature representing each frame. 

Different from other clustering our method attempts to bal-

nce the PDFs of the resulting sets to avoid creating thin clusters

ith few samples. This procedure is based on an optimal image

inarization technique ( Sezgin & Sankur, 2004 ). Once we find the

hreshold, a simple comparison rule is applied to decide whether it

s signal ( ̂  S id ( f, t) ≥ T f ) or background noise ( ̂  S id ( f, t) < T f ). The re-

ation between false positives and true positives given by this rule

s illustrated in Fig. 5 a. 

Given the time-sparse characteristics of the syllables in anuran

alls, there is usually a much larger number of frames correspond-

ng to silences (or background) than frames of syllables. This class

mbalance causes traditional threshold selection methods, such
s the Otsu method ( Yuan, Martínez, Eckert, & López-Santidrián,

016 ) or clustering techniques like k-Means ( Kamper, Livescu, &

oldwater, 2017 ), fail to losex a larger number of signal frames. 

Fig. 4 b shows a segmentation example of an Adenomera h.

all using only the energy of the signal. This example depicts

hat the Otsu and k-Means methods produce higher thresholds

hich cause the partial loss of a syllable. Regarding this prob-

em, we performed several tests and we found that these two
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Fig. 5. ROC curves showing the segmentation behavior of each feature adding different noise profiles at 0 dB. The black dots ( ∗∗∗) exemplify the output produced by the rule 

of Eq. (1) combined with Algorithm 2 . The notation for the different LLD used is the same as in Table 1 . 
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methods produce slightly worse results than those obtained with

our proposed algorithm. Additionally, we also notice that the ran-

dom initialization of the k-Mean centroids might produce an in-

stability in the resulting segmentation. For these reasons in the

next sessions we will analyze the segmentation results using only

Algorithm 2 . 

In the experiments presented in the following sections, we

employ the temporal features E and ZCR, and the spectral fea-

ture H FFT as our baselines. The signal energy was used by

Alonso et al. (2017) to segment the anuran calls, a combi-

nation of E and ZCR was adopted by Colonna et al. (2015) ,

and finally, Wu and Wang (2005) have applied H FFT for end-

point detection in noisy environments. Therefore, comparing these

features with the set of features based on Permutation En-

tropy is equivalent to comparing against the baseline approaches
cited. 
o  
. Results 

In the previous section we present a segmentation example

ith the proposed method. In this section we analyze a larger set

f species. To determine which are the most appropriate features,

e used different metrics to evaluate the quality of segmentation:

a) a frame-by-frame metric quantified by receiver operating char-

cteristic (ROC) curves and the AUC values; (b) an event-to-event

etric, called Acoustic Event Error Rate (AEER); and (c) a point-to-

oint metric that account errors by measuring the Precision, Recall

nd F-Score (F1). 

.1. Frame-by-frame analysis 

To segment syllables, we need to determine whether a frame

f ˆ S should be transmitted based on its feature values. Thus, we
id 
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Table 2 

The performance of each feature quantified through the AUC with 

different noise types. BN stands for background noise. The α param- 

eter is from Eq. (8) . Numbers in bold represent the best performance 

values of each column. 

BN α = 0 α = −1 α = 1 α = 2 α = −2 

E 0.97 0.95 0.95 0.95 0.93 0.95 

PE 0.76 0.93 0.69 0.95 0.77 0.46 

WPE 0.76 0.96 0.81 0.97 0.77 0.62 

PME 0.72 0.94 0.77 0.94 0.73 0.61 

ZCR 0.47 0.04 0.04 0.38 0.84 0.04 

H FFT 0.76 0.97 0.95 0.93 0.32 0.91 
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Table 3 

AEER quantifying the error rate of the syllables retrieved. The last line shows 

the average AEER (or Macro-AEER). The t -test with significance level p ≤ 0.05 

was applied to compare E to the rest of LLD. The best values are highlighted 

in bold. The notation for the different LLD used is the same used in Table 1 . 

Features 

Species E PE WPE PME ZCR H FFT 

Adenomera h. 0.06 2.08 2.67 2.74 3.32 3.64 

Hyla m. 2.18 5.21 4.84 5.15 14.46 1.11 

Adenomera a. 0.23 5.44 4.92 5.60 5.13 3.96 

Ameerega t. 0.88 0.93 0.97 1.02 2.86 1.02 

Osteocephalus o. 2.52 13.66 11.32 14.09 14.24 23.86 

Rhinella g. 1.60 0.00 1.00 0.60 28.60 1.40 

Scinax r. 1.35 1.78 2.06 2.05 3.46 1.04 

Hypsiboas c. 0.12 3.09 3.11 3.44 3.43 1.74 

Brachycephalus e. 0.72 0.74 0.97 0.86 1.00 1.00 

Aplastodiscus albof. 0.00 6.70 6.26 6.94 6.24 1.03 

Aplastodiscus albos. 1.70 18.70 22.29 26.29 20.64 1.82 

Aplastodiscus p. 1.55 0.00 0.00 1.03 10.18 1.07 

Dendropsophus a. 0.45 6.12 4.47 5.37 5.17 1.10 

Dendropsophus e. 0.00 12.06 12.86 18.46 1.40 1.13 

Macro-AEER 0.95 5.46 5.55 6.69 8.58 3.21 
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3 An implementation of ( Giannoulis et al., 2013 ) can be found at https://goo.gl/ 

6H5Ucm . 
arried out an experiment in which we assign the positive class

 +1 ) to each frame if at least 30% of its points belong to a ground

ruth syllable. After that, we use the feature value ˆ S id as the clas-

ifier score to plot the ROC curve. With this curve, we calculate

he AUC to access the segmentation performance. Fig. 5 a shows the

OC curves for all the species listed in the Table 1 . 

In a real environment, we might face different noise patterns.

ence, we contaminated the original dataset by adding: white,

lue, pink, red, and violet noise, with the same variance value as

he original signals. Fig. 5 shows the performance of the segmen-

ation by adding different artificial noise at 0 dB, using Eq. (8) . The

lack dots ( ∗∗∗) represent the FPR-TPR relation given by the thresh-

ld found with Algorithm 2 . Thus, as we expect, the threshold pro-

uces low FPR and high TPR for the best curves, i.e., the curves

hat maximize the AUC. It should be stressed that the construction

f the ROC curves takes into account all the FPR-TPR rates pro-

uced by all possible thresholds T H ∈ [0, 1]. 

The performance of all features is shown in the BN column of

able 2 . These values indicate that, for this scenarios, E has a bet-

er performance separating the amplitude of the syllables in the

riginal signals. The remaining columns show the AUC for back-

round noise with the addition of different types of colored noise

 y = x + ξ ), resulting in a Signal-to-Noise Ratio (SNR) of 0 dB. The

egmentation based on entropy measures is suitable when we have

andom noise, being able to better differentiate frames with deter-

inistic patterns from those with stochastic patterns. 

The ZCR has the poorest performance due to its sensitivity to

requency changes. Since it is a rough approximation of the main

requency, any spectral perturbation may produce a negative im-

act on its value. In cases with white, blue, or violet noise (es-

ecially those with high spectral energy into upper frequencies),

he inversion of the ZCR rule can produce a good result. However,

he ZCR is impractical for a real application due the fact that is

ot possible to know the contamination a priori or invert the rule

hen the acoustic scenario changes. 

In Fig. 6 , we show the AUC variation as a function of σ ξ for the

ases of white, blue, pink, red, and violet noises. As we can ob-

erve, for an SNR smaller than −25 dB the decision of segmentation

s nearly random using all LLDs. For high SNR values, the segmen-

ation based on E shows better results. The entropy-based LLDs

howed a different behavior: when the SNR decreases the result of

he segmentation enhances because weak correlations are broken

y the addition of random noise of high variance. The maximum

oints are reached at SNR ≈ 5 ± 5 dB. Among the entropy features,

he WPE better captures the amplitude differences in the syllables.

n the case of white noise, E outperforms the other descriptors,

ven in situations with low SNR, except for the pink noise. 

Fig. 7 depicts the AUC variation in terms of peak density added

o the signals, i.e., the percentage of signal points changed by

δ. The performance of all features quickly decreases when the

mount of peak noise increases. The exceptions are WPE and H FFT :

fter the initial point, in approximately 0.05% of peak density, the

egmentation improves. The reason is that the addition of the
tochastic component helps break the weak correlations. WPE has

he worst downward trend due to the increase in the relative fre-

uency of some patterns ( π j ) and their high variances. 

.2. Event-to-event analysis 

In Table 1 , we have presented the total number of syllables re-

rieved by each acoustic descriptor being considered. The rows of

he table were separated by species to clearly show the difficulty

n segmenting the different vocalization patterns. In some cases,

uch as the Adenomera a. or Osteocephalus o. species, the de-

criptors often found more syllables than actually exist, caused by

icro segmentation (e.g. one syllable is split in two). In the op-

osite case, e.g. Brachycephalus e. , the total number of syllables

as lower than the actual values, which indicates that the descrip-

ors were not sensitive enough. Among the columns, E produces is

loser to GT. 

Analyzing the results by the number of recovered syllables may

esult misleading. Since each syllable can be considered as an iso-

ated acoustic event, we need to quantify how many events are lost

r incorrectly recovered. Given this context, we present the Acous-

ic Event Error Rate (AEER), a useful metric to quantify the event-

o-event errors. This metric is frequently used for audio context-

etection ( Giannoulis et al., 2013 ), and it was applied to the bioa-

oustic segmentation problem by Colonna et al. (2015) . 

The AEER is defined as: 

EER = 

D + I + U 

K 

, (18) 

n which K is the number of syllables in each recorded call, D is the

umber of missed syllables, I the number of extra syllables, and U

he number of replaced syllables computed as U = min (D, I) 3 . We

onsider that an event is correctly segmented if it starts and ends

ithin ± 50 ms of the event’s real boundaries and if it has at least

0% of the real syllable timespan. In addition, duplicated events are

onsidered false alarms. Thus, in the best case, AEER = 0 . 

The AEER values presented in Table 3 show that the lowest

vent-to-event error was achieved by the energy and the spectral

ntropy. This indicates that fewer events have been lost or mis-

akenly added. In addition, these two LLDs can retrieve syllables

onger than half the original total time. Retrieving syllables with-

ut fragmenting them may favor any future classification method.

https://goo.gl/6H5Ucm
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Fig. 6. The relationship between the SNR and the AUC variation. These curves show the segmentation performance of each LLD among the extreme levels of SNR. The values 

at 0 dB are consistent with Table 2 . The notation for the different LLD used is the same used in Table 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Precision, Recall and F-Score from point-to-point bound- 

aries evaluation. The bold numbers represent statistically 

significant (p ≤ 0.05) differences comparing all LLD to 

the highest value of each row. 

E PE WPE PME ZCR H FFT 

Pre 0.87 0.39 0.36 0.34 0.12 0.15 

Rec 0.53 0.93 0.96 0.95 0.44 0.23 

F1 0.61 0.48 0.46 0.44 0.16 0.13 

t  

R  

i  

t  

a  

a  

s  
In our formulation, the AEER considers only events omitting the

class labels. Therefore, an AEER value can be obtained for each de-

scriptor in each recording. The last line of this table corresponds

to the average AEER, also known as Macro-AEER. As a general rule,

the Macro-metrics are recommended when the dataset is unbal-

anced ( Sokolova & Lapalme, 2009 ). Table 3 can be compared with

Table 1 to realize the proportion of syllables retrieved and errors

incurred. 

6.3. Comparing the segmentation using point-to-point metrics 

To measure the accuracy of the estimated boundaries, we com-

pared the GT to the automatic segmentation, by counting point-

to-point errors. Thus, each point of the segmented signal is com-

pared to each point of the GT segmentation by using metrics based

on a decision table (see Section 4.8 ). These metrics are very useful

for comparing the retrieved signal points that are relevant, and the

fraction of relevant points that are retrieved. The higher the value,
he better the automatic segmentation. Table 4 shows Precision,

ecall and F-Score of each feature in all records with only the orig-

nal background noise. We highlighted the results that show statis-

ically significant gains over the best value of each row, considering

 95% confidence level. As we can note, E had the highest precision

nd F1 values meaning that the binary test correctly identifies the

yllable’s points. On the other hand, the entropy-based features PE,
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Fig. 7. AUC variation considering the percentage of peak noise. The values at 0% 

are consistent with the Table 2 . The notation for the different LLD used is the same 

used in Table 1 . 
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Fig. 8. An example of the behavior of point-to-point metrics FPR and FNR when we 

add white noise ( α = 0 ) and vary the SNR for the species Aplastodiscus Perviridis . 

Table 5 

Information Gain rankings under normal background noise 

(left) and white noise at 0 dB (right). 

BN White noise 

Ranking LLD IG LLD IG 

1 st E 0.4811 H FFT 0.3163 

2 nd PE 0.4809 WPE 0.2738 

3 rd WPE 0.4807 E 0.2727 

4 th H FFT 0.4807 ZCR 0.2643 

5 th PME 0.2282 PME 0.2623 

6 th ZCR 0.1480 PE 0.1243 
PE and PME had the highest recall meaning that the binary clas-

ification test better identifies the negative points. This result is

eneral and is held for the majority of the species recorded. 

We used an audio stream of the Aplastodiscus perviridis to

epict a visual example of what happens when we add white noise

t different SNRs. We choose this example because the background

oise of the original signal in this recording is almost uncorrelated.

ig. 8 presents three plots with FNR, FPR, and Accuracy (Acc), con-

idering different SNR (see Eqs. (14) –(16) ). 

In these plots, we can highlight interesting points. First, the ac-

uracy of entropy features is higher than E. This suggests that the

ddition of a purely random variable (even with low amplitude)

s enough to break the weak correlations of the background noise.

econdly, Fig. 8 c shows that E and H FFT are more robust to the

ncrease of σ ξ , keeping a high accuracy until −15 dB . In addition,

he H FFT curve at 45 dB, depicts a change in the behavior, which is

aused by the increment in the noise floor, that helps equalize the

pectrum and reduce the entropy values. 

Similar considerations hold for FPR and FNR, except for E, in

ig. 8 a, which has a higher miss rate compared to the entropy

LDs. In this case, the segmentation using E caused the loss of

oints at the beginning and end of the syllables, indicating that

he segmentation criterion is extremely strict. 

.4. Ranking and combination of LLDs 

Since each acoustic feature is not necessarily related to the oth-

rs, combining features might improve performance. In order to

ddress this hypothesis, two issues must be considered: (1) how

o combine features avoiding the combinatorial problem with ex-

onential complexity, and (2) how to reduce the combination to

 1-dimensional array to apply Algorithm 2 . Hence, we decided to

ank the LLDs according to the Information Gain criterion and ap-

ly Principal Component Analysis (PCA) for dimensional reduction.

Information Gain (IG) evaluates attributes by measuring the re-

uction of uncertainty with respect to the class considering the en-

ropy as a measure of “impurity” ( Witten & Frank, 2005 ). In other

ords, IG measures the impurity reduction caused by each feature

n a collection of samples. Thus, features that perfectly partition

he set of classes should give maximal information, and unrelated

eatures should give no information. The LLD ranking and their

Gs are shown in Table 5 for two different noise conditions: with

ackground noise ( BN ) and white noise at 0 dB. Comparing the IG

olumns of this table, we realize that an increase in SNR leads to

 decrease in IG. Regardless, the AUC values of Table 6 show im-
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Table 6 

AUC values of the ROC curves shown in Fig. 9 . 

BN White noise 

LLDs AUC LLDs AUC 

E 0.973 H FFT 0.972 

E,WPE 0.830 H FFT , WPE 0.971 

E,WPE,H FFT 0.862 H FFT , WPE,E 0.969 

E,WPE,H FFT 0.854 H FFT , WPE,E 0.974 

PE ZCR 

E,WPE,H FFT 0.841 H FFT , WPE,E 0.974 

PE,PME ZCR,PME 

E,WPE,H FFT 0.842 H FFT , WPE,E 0.975 

PE,PME,ZCR ZCR,PME,PE 

Fig. 9. ROC curves of LLD combination and reduction. The PCA output represent 

an incremental combination of LLDs. The notation for the different LLD used is the 

same used in Table 1 . 
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provements for some LLD combinations. This fact confirms once

again that the presence of white noise improves the performance

of LLDs. 

After ranking, the LLDs were combined sequentially and re-

duced via PCA. Fig. 9 a and b show the ROC curves of such com-

binations applying the same methodology of Section 6.1 . The AUC

of each curve is shown in Table 6 . Among all curves the signal’s

Energy performs better under BN while the H FFT is better in the

presence of white noise. The combinations including PE, WPE, and

PME achieved similar performance among them. Also, when we

add ZCR to the set of combinations under BN , the performance

reduces even more. We conclude that feature combination in the

first scenario ( Fig. 9 a) does not improve the segmentation perfor-

mance as we expected. However, in the second scenario ( Fig. 9 b),

with white noise, all combinations obtain a similar performance

(see Table 6 ). Beyond that, and given the variations of AUC, we

note that the ranking based on the IG coefficient can be misleading

for the LLDs tested here. 
Finally, Fig. 10 shows a visual example of segmentation using

hree features separately and their PCA combination. These fea-

ures (E, WPE, and H FFT ) are essentially unrelated because they

ere obtained through different procedures. Fig. 10 also shows a

ix of syllables belonging to three different species, i.e., we con-

atenate the three vocalizations of different species in only one

tream. The vertical dotted lines mark the start and end point of

ach vocalization. In addition to the background noise, we added

hite noise at 20 dB. We can then visually check the boundaries

ound using each LLD. In this case, E was too strict, because it cuts

arts of the syllables or loses the whole syllable (e.g, as the last

ne). In contrast, the boundaries of WPE and H FFT were less strict

ncurring in two false positives. The PCA reduction achieved a bal-

nced performance neither strict nor tolerant. 

. Conclusions and final comments 

In this work, we presented a comprehensive evaluation of dif-

erent Low-Level acoustic Descriptors (LLDs or features) used for

utomatically segmenting anuran calls. As an additional contribu-

ion, we showed that, depending on the noise pattern, the Permu-

ation Entropy (PE) quantifier and its variants can improve signal

egmentation. The idea is to combine the simplicity of the energy

odels with the robustness of the probabilistic models in an un-

upervised manner. Hence, we computed the entropy value of the

DF derived from the signal and used it as an LLD. Considering the

rame size n , both features the Energy and ZCR have linear com-

utational complexity 	( n ); the H FFT , which depends on the FFT

ransform, has a complexity 
( n log 2 ( n )) in the best case and O( n 2 )

n the worst case. The LLDs derived from the PE methodology have

( n ) and O( mn ) complexities, for the best and the worst cases, re-

pectively, in which m is the embedding dimension. In addition, we

resented an algorithm to find the optimal segmentation threshold

 Algorithm 2 ). 

We showed that for signals with abrupt amplitude changes, un-

orrelated background noise, and low SNR, the entropy based on

he WPE methodology is the best option, unless we have more

han 0.05% peaks of impulsive noise. This LLD has a linear com-

utational complexity, weighted by the constant m (embedding

imension), being higher than Energy and lower than H FFT . For

he cases in which the noise is completely white, and the spec-

rum of the noise floor is approximately uniform, the H FFT is the

est choice. However, the computational complexity of the FFT

ransform should be considered if the final application runs in a

esource-constrained sensor. 

Permutation Entropy and its variants perform well with pink

nd red noise (low frequencies), but they experiment lower accu-

acy with blue and violet noise (high frequencies). Moreover, the

ddition of white noise improves the segmentation for almost all

ntropy-based LLDs, because it breaks weak correlations. This ef-

ect was also reported by Bandt and Pompe (2002) and Veisi, Pariz,

nd Karimpour (2007) , being a consequence of the invariant trans-

ormation property of PE. In the case of spectral entropy, the addi-

ion of white noise improves the segmentation, because this noise

preads energy uniformly in all frequencies, masking the small

eaks of the spectrogram. Most likely, the spectrum is more con-

entrated around the fundamental frequencies, hence, decreasing

he entropy. 

By considering every syllable as an acoustic event and measur-

ng the Acoustic Event Error Rate (AEER), we observed that most of

he LLDs produce several false positive samples of events (micro-

egments) that might affect the species (syllable) recognition step.

ne reason is the length of the intervals between each syllable,

hich is closely related to the frame size chosen. The frame size

nd the overlap factor were not varied in our experiments and can

e done in a future evaluation. Also, a postprocessing method, such
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Fig. 10. Example of segmentation boundaries in a stream with three different species: Adenomera h. , Hyla m. , and Scinax r. , contaminated with white noise at 20 dB. The 

dotted vertical lines indicate the beginning and end of each species. 
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s smoothing filter, should be evaluated in order to eliminate a

reater number of false positives. However, we keep the method

s simple as possible, avoiding any extra processing block, unless

t is extremely necessary. 

The overall accuracy of our method depends on the threshold

elected during the segmentation. We presented evidences, such

s the position of the black points in Fig. 5 or the quality of the

oundaries in Fig. 10 , suggesting that Algorithm 2 has optimal per-

ormance for the given task. We would like to emphasize that

OC curves represent the output of all possible thresholds regard-

ess the technique adopted to find them. Besides that, a continu-

us audio stream coming from a real scenario can present a non-

tationary behavior of background noise, in which case, the thresh-

ld should be updated regularly. The threshold updates can be per-

ormed onboard the sensor node, without any human intervention

r data transmission/reception, just by buffering the feature values

orresponding to the most recent frames and recalculating the op-

imal threshold. Such update would be infeasible with a supervised

echnique. 

We would like to emphasize that for a practical deployment in

 sensor node, a initial setup stage must be included, in which the

rst signal frames should be used to obtain the optimal threshold.

therwise, if the goal is to segment a call previously stored in a

atabase, we can use all the signal frames to find the optimal seg-

entation. As a grouping method, there is no need to label data,

e should only ensure that sample signal and background noise

re available when the threshold is calculated. Nevertheless, our

esults provide a lower bound for any future segmentation tech-

ique that uses information theory. 

In a future work, Algorithm 2 can be transformed to an adap-

ive method by replacing lines 4 and 5 for the incremental mean

alculation ( Finch, 2009 ). With the incremental mean calculation

he threshold value T (line 7 of same algorithm) can be updated

sing each incoming frame of the input signal. 

As a general conclusion, we recommend that before choosing

ny LLD one should test the type of noise and the level of the

oise floor. Furthermore, it is important to avoid the zero cross-

ng rate (ZCR), because it is highly sensitive to the noise present in

ain forests. Moreover, the type of the rain forest noise is a matter

arely studied in the related works. A more accurate noise model

ould help do a more realistic simulation in future work. Another

nteresting future work is the implementation and evaluation of a

ignal filter before the segmentation step. 
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