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Dynamic Update of Discrete Event Controllers
L. Nahabedian?, V. Braberman?, N. D’Ippolito?, S. Honiden+, J. Kramer†, K. Tei? and S. Uchitel†?

Abstract—Discrete event controllers are at the heart of many software systems that require continuous operation. Changing these
controllers at runtime to cope with changes in its execution environment or system requirements change is a challenging open
problem. In this paper we address the problem of dynamic update of controllers in reactive systems. We present a general approach to
specifying correctness criteria for dynamic update and a technique for automatically computing a controller that handles the transition
from the old to the new specification, assuring that the system will reach a state in which such a transition can correctly occur and in
which the underlying system architecture can reconfigure. Our solution uses discrete event controller synthesis to automatically build a
controller that guarantees both progress towards update and safe update.

Index Terms—Controller Synthesis, Dynamic Update, Adaptive Systems.
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1 INTRODUCTION

D YNAMIC software update is a key feature for systems
that require continuous operation. Such a requirement

is commonplace in many domains including safety, mission
and business critical systems. Continuous operation entails
runtime update of systems to account for changes in the
execution environment and in the requirements they are
expected to achieve. Engineering systems such that they
be changed in a sound, predictable manner without stop-
ping or disrupting their operation is technically challenging
and has been addressed in complementary ways, including
dynamic component update and reconfiguration (e.g. [1]),
controller reconfiguration (e.g., [2, 3, 4]) and more recently
in the design of adaptive systems [5].

Consider, for instance, workflow management software
systems aimed to support continuous operation. Such sys-
tems have an explicit runtime representation of the proce-
dure by which the system supports achieving the organisa-
tion’s goals (i.e, the workflow). Deployed in organisations
whose business evolves beyond the scenarios known at the
time of design, development or deployment time, these
systems are built with the premise that they are long-
running and that they must support new specifications [6].
They need to provide support for runtime modification of
the workflow to accomodate changes in business goals and
interfaces to other systems, increased regulatory procedures,
weakened assumptions on potential fraudulent activity, and
so on. Similarly, many reactive systems have a controller
component that enacts a strategy (abstractly represented as
a state machine) that coordinates multiple components and
services to achieve mission goals [7]. Changes at runtime
in the execution environment and/or in the requirements
need runtime mechanisms to compute a new controller and
hot-swap it so as to guaranteeing the correct behaviour of
the system throughout the transition from the old system
specification to the new one.

In this paper we formulate and address the problem
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of dynamic controller update (DCU) which describes how a
system must cope with specification changes in the require-
ments and/or the environment. This problem can be cast as
automatically building an update controller that manages the
hot swap of the current controller (that guarantees the old
specification) with a new one (that is to guarantee the new
specification). The update controller must first take control
of the system. Then, whilst satisfying the old specification,
it must guide the system (ensuring progress) towards a
state in which both reconfiguration and the change from
guaranteeing the old specification to the new one can occur,
ensuring that transitional requirements (if any) are satisfied.
Finally it must operate guaranteeing the new specification.

Our approach to solving the DCU problem is based on
discrete event controller synthesis (e.g. [8, 9, 10]). Con-
troller synthesis automatically builds an operational strat-
egy (which can be represented compactly as a state machine)
that monitors events and command actions in such a way
that it guarantees a given goal under given environment
assumptions. Although controller synthesis for general lin-
ear temporal logic is EXP2TIME complete, the restriction
of specifications to safety properties results in goals for the
controller synthesis to be limited to safety and reachability
properties, thus retaining linear time complexity.

The main contributions of this paper are twofold:
• a precise formulation of the dynamic controller update

problem that includes architectural reconfiguration and
supports flexible transition requirements, and

• a solution to the update problem based on controller
synthesis that not only guarantees progress towards
update, but guarantees satisfaction of the transition
requirements.

In particular, we i) show how transition requirements be-
tween specification changes can be described, restricting
when the change can occur and when any reconfiguration
needed should occur; ii) formalise the dynamic controller
update problem, showing correctness, soundness and com-
pleteness; and iii) define an automatic procedure, based
on discrete event control theory, for computing an update
controller that handles hot swapping, reconfiguration and
the new specification. The input of the synthesis procedure
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is the current controller and its specification, the transition
requirements, the new specification to be satisfied and a
state mapping between the current and the new specifica-
tion. The output of the procedure is a controller that can be
hotswapped with the current controller at any point in time,
that continues to satisfy the old specification but guides
the system to a safe transition state and then guarantees
the new specification. Alternatively, if it is not possible to
control the running system to move from one specification
to another without violating the transition requirements or
one of the specifications, then no controller is synthesised.
The synthesis procedure is complete, hence if there is no
strategy that can guide the current system to a safe state to
allow a safe update with respect to transition requirements
and the new specification, then, the procedure reports so.

The problem of dynamic update has been studied ex-
tensively. The problem defined in this paper builds on,
and extends, existing work in a number of ways. We build
on the need to have explicit, user specified, requirements
for controller transitions as in [11, 12] but compute an
update strategy for these requirements automatically. Au-
tomatic strategy computation has been addressed before
(e.g., [13, 14, 15]) for more restricted transition requirements.
Compared to these approaches a noteworthy distinction is
that we drop the assumption that the system to be updated
will reach, on its own, a state in which it is safe to perform
the update. We use discrete event controller synthesis to au-
tomatically build a controller that guarantees both progress
towards update and safe update.

This paper extends our previous work [16] in three major
ways. Firstly, we overcome a limitation of that formalisation
that leads to increasingly complex specifications. In [16]
the new specification to be enforced is required to include
all the propositions of the old specification. This means
that as the specification evolves in time, old propositions
cannot be discarded, leading to bloated specifications and
incurring in additional computational cost. In this paper, to
avoid bloating, we recast the formalisation of the controller
update problem based on Labelled Transition System and
Fluent Linear Temporal Logic instead of using Labelled
transition Kripke Structures (see Section 3). We also allow
a more general mechanism for specifying how states from
the old specification are mapped to states in the new one.
Second, we provide a proof showing soundness and com-
pleteness of the approach. Finally, we provide more detailed
and comprehensive validation and evaluation that includes
amongst others an industrial case study from the workflow
management domain.

The rest of the paper is structured as follows. Section 2
presents an illustrative example based on a production cell.
Then, formal definitions are presented in Section 3. These
are required to formalize the problem of dynamic controller
update in Section 4. Later, in Section 5, we propose a
solution to this problem giving a proof of correctness and
completeness. Validation is presented in Section 6. Finally,
we present a discussion and related work and then con-
clude.

2 ILLUSTRATIVE EXAMPLE: PRODUCTION CELL

Consider an industrial automation scenario [17] in which
a robotic arm applies various tools to raw products taken
from an In tray and then drops the finished products on
the Out tray. The operation of the factory is driven by a
software controller that sequences commands adhering to a
specification E, G and A. A is the set of events the controller
can execute, for instance drill, polish, clean, and stamp. E
models the assumptions that the controller can rely on to
achieve its goals. E may include, for instance, that the paint
tool once commanded to polish product x (polish(x)) will
respond with polishOK(x) or polishNOK(x) representing
success or failure in polishing x. Such an assumption can
be easily modelled with an automaton. Finally, G models
the goals for the controller. For instance, G may require a
product to be placed in the Out tray only if it has been
cleaned, polished and drilled (in that order) and no errors
have occurred, or alternatively if an error has occurred and
it must have been stamped as faulty. A formalisation using
the linear temporal logic of fluents (see FLTL in section 3) of
some of the goals may be:

ToolOrder ≡ 2 ∀x · (Cleaned(x)⇒ Polished(x)) ∧
Polished(x)⇒ Drilled(x))

ToolsRequired ≡ 2 ∀x · out(x)⇒ (Faulty(x) ∨
(Drilled(x) ∧ Polished(x) ∧ Cleaned(x) ∧ ¬Stamped(x)))

NoProcessingIfFaulty ≡ 2 ∀x · (Faulty(x)⇒
¬(drill(x) ∨ polish(x) ∨ clean(x)))

Consider a scenario in which while the factory is pro-
cessing products it is decided that the production process
must be changed. This decision may be taken due to many
different factors: the set of available tools changes (e.g., a
tool breaks, or a new tool is introduced), the specification
of how to process a product type changes (e.g., new busi-
ness rules), or other constraints change (e.g., a new energy
consumption requirement constrains the concurrent use of
certain tools). A simple solution to this problem is to wait
for the production line to be empty (i.e., wait for all products
to be processed and moved to the out tray), stop the plant,
change the controller and then restart the plant. An off-line
update such as this one may be unacceptable where factory
down-time has serious economic consequences.

Assume that for business reasons, a polishing tool is to
be exchanged for a paint tool where the change entails a re-
ordering in the production workflow. The new production
workflow is captured by specification E′, G′ and A′ where
A′ no longer has polish but has paint instead. For instance,
E′ will include assumptions on how the Paint tool works
and G′ may have the revised goals:

ToolOrder’ ≡ 2 ∀x · (Drilled(x)⇒ Painted(x)) ∧
(Painted(x)⇒ Cleaned(x))

ToolsRequired’ ≡ 2 ∀x · out(x)⇒ (Faulty(x) ∨
(Drilled(x) ∧ Painted(x) ∧ Cleaned(x) ∧ ¬Stamped(x)))

How should the current controller be updated to satisfy
the new specification? When is it safe to swap controllers?
What strategy should the new controller use once it is in
place? When can the Paint tool driver be instantiated and
bound into the current software architecture? When can the
Polish tool be removed from the current architectural config-
uration? The answers to these questions are domain specific.
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As explained in [18], the answers to these questions are
transition requirements that must be provided by domain
experts.

For instance, what should be done with products that
have been partially processed according to G? Perhaps they
should be finished off according to the new requirements
expressed in G′? Should a polished but not clean product
be cleaned and then placed on the Out tray? Should it be
discarded without further processing? Or should the update
be delayed until there are no polished products on the line?

To specify transition requirements, we must first define
what a transition is and how to refer to it. For this, assume
that within the update process there will be a command to
signal when the old specification is dropped (stopOldSpec)
and an event to signal from when the new specification
is to be guaranteed (startNewSpec). For indicating if these
events have occurred, we use fluents OldSpecStopped and
NewSpecStarted.

One possible transition requirement is that no polished
product should be on the line:

T1 = startNewSpec ⇒ ¬OldSpecStopped ∧ (∀x ·
OnProductionLine(x)⇒ ¬Polished(x))

Another transition requirement could be that products
are to be either output according to the new specification G′

or stamped for trashing. This allows, for instance, partially
processed products that cannot be continued to be processed
according to G′.

T2 ≡ (OldSpecStopped ∧ ¬NewSpecStarted)⇒ (ToolOrder’ ∧
NoProcessingIfFaulty ∧ ToolsRequired” ∧ . . .)

ToolsRequired” ≡ 2∀x · out(x)⇒ (Faulty(x) ∨ Stamped(x) ∨
(Drilled(x) ∧ Painted(x) ∧ Cleaned(x) ∧ ¬Polished(x)))

Returning to the problem of when to reconfigure, T1
may also include a requirement disallowing reconfigura-
tion when the Polish tool is working on a product (i.e.,
reconfigure =⇒ ∀x · ¬BeingPolished(x)). Such a require-
ment would ensure that the command reconfigure (which
will bind the paint tool driver and unbind the polish tool
driver) is issued safely.

Note that if T1 were selected, an interesting liveness
problem may arise. It may be the case that there is always
a polished product on the line: if new products arrive reg-
ularly and the current controller sends them to be polished
before existing polished products on the line are drilled and
placed in the Out tray, the reconfigure command can never
be issued as it would violate T1. The current controller needs
to be guided to a state in which the update can occur. In
fact, it must be stopped from further polishing and forced
to finish off any already polished products.

The fact that the current controller needs to be guided to
an updatable state shows that a controller update strategy
requires replacing the current controller with another one
that can continue to satisfy G (e.g., finishing off polished
products according to G) while ensuring that eventually an
update state is reached (e.g., no polished products on the
line). Thus, the solution to how the system is updated from
E, G and A; to E′, G′ and A′ also satisfying T1 is to have an
update controller that replaces the current controller, guides
the system to states in which it can reconfigure, can signal
that the old specification is dropped and the new one has
started without violating T1.

Indeed, we present a fully automated technique that
can guarantee a correct update of the controller for the
production plant. Informally, the input to the technique we
present is the current specificationE,G andA, the controller
currently supervising the production plant (C), the new
specification E′, G′ and A′, and transition requirements (T ).
The output (should there be a solution to the problem) is an
update controller (C ′) that assures that the resulting system
satisfies the following requirements:

(i) C can be hot-swapped by C ′ at any point in time.
(ii) G will continue to hold until C ′ signals stopOldSpec.

(iii) T that prescribes stopOldSpec, startNewSpec and recon-
figure holds.

(iv) G′ will hold once C ′ signals startNewSpec.
(v) Once C and C ′ are hot-swapped, the following

will eventually occur: reconfigure, startNewSpec and
stopOldSpec.

A schematic diagram showing examples of dynamic
controller update for three different transition requirements
is given in Figure 1. We depict main update events (hotSwap,
reconfigure, stopOldSpec and startNewSpec), how hotSwap and
reconfigure change the running system (from C‖E to C ′‖E
and from C ′‖E to C ′‖E′ respectively), and when goals G
and G′ hold.

Note that the computation of the update controller can
be performed while the system is in operation. An update
scenario would proceed as follows: The plant is being
controlled by C to satisfy G when a decision is made to
change the production process. This may occur, for example,
because some quality check on finished products fails and
a problem can be traced back to the polisher, or some other
business concerns arise. Such a decision may be the result
of human intervention or may be part of, for example, the
Monitor and Analysis phases of a MAPE loop [19] in an
adaptive system.

Next, a decision on what to do in the face of this unex-
pected problem must be made. In our scenario a decision
would result in G′ and T . Again, this decision may (and
in a production plant is likely to) be done manually, but
could also be the result of an automatic or semi-automatic
plan phase of an adaptive systems’ MAPE loop. Our tech-
nique computes an update controller C ′ that would be hot-
swapped in, removing C and setting the initial state of C ′

according to the current state of C .
Controller C ′ executes a strategy that satisfies the transi-

tion requirement T for any possible state of the plant (e.g.,
number of partially processed products and the particular
stage of the production process each one is in). For instance,
it will trash partially processed products that cannot be fur-
ther processed to satisfy G′; reconfigure the system binding
the paint tool into the production line; continue processing
partially processed products that can be further processed to
satisfy G′; and process all new products that come through
the In tray according to G′.

3 FORMAL FOUNDATIONS

In this section we present the background to allow for-
malisation of the problem of dynamic controller update
and for presenting the proposed rigorous solution based on
controller synthesis.
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Fig. 1: Dynamic controller updates with different transition
requirements (from top to bottom): stopOldSpec ⇒ NewSpec-
Started, startNewSpec⇒ OldSpecStopped and (OldSpecStopped ∧
¬NewSpecStarted)⇒ ϕ, where ϕ is a safety property.

3.1 Labelled Transition Systems
Labelled Transition Systems are a canonical, compositional,
representation of reactive systems.

Definition 3.1. (Labelled Transition System) A Labelled
Transition System (LTS) E is a tuple (SE , AE , ∆E , e0),
where SE is a finite set of states, AE ⊆ Act is its commu-
nicating alphabet, Act is the universe of all observable events,
∆E ⊆ (SE ×AE × SE) is a transition relation, and s0 ∈ SE is
the initial state. We say that E is deterministic if (e, `, e′) ∈ ∆E

and (e, `, e′′) ∈ ∆E , then, e′ = e′′, and is deadlock-free if for all
e ∈ S there exists (e, `, e′) ∈ ∆E .

Notation 1. Let E be an LTS, for a state e ∈ SE , we denote
∆E(e) = {` | (e, `, e′) ∈ ∆E}.

Notation 2. Let E be an LTS, for a state e ∈ SE , we denote
changing the initial state of E from s0 to e as E(e).

Definition 3.2. (Trace) A trace of an LTS E is a sequence of
labels π = `0, `1, . . . , for which there exists a sequence of states
s0, s1, . . . such that s0 is the initial state of E and ∀i ≥ 0 · `i ∈
∆E(si). We denote by π ∈ E a trace on E and by ` ∈ π a label
in a trace π.

We introduce the following equivalence relations be-
tween LTS.

Definition 3.3. (Isomorphism) Let E = (SE , A, ∆E , sE) and
M = (SM , A, ∆M , sM ) be LTS. An isomophism is a bijection
f : SE → SM that preserves transitions:

(q, `, q′) ∈ ∆E if and only if (f(q), `, f(q′)) ∈ ∆M

for all q, q′ ∈ SE . If there exists an isomorphism between E and
M , then we say that E and M are isomorphic, denoted E = M .

Definition 3.4. (Bisimulation) Let P be the universe of all LTS.
A binary relation R ⊆ P × P is a bisimulation if and only if
whenever (P,Q) ∈ R then for each a ∈ Act the following hold:
• if (P

a−→ P ′), then, (∃Q′ ·Q a−→ Q′ ∧ (P ′, Q′) ∈ R)
• if (Q

a−→ Q′), then, (∃P ′ · P a−→ P ′ ∧ (P ′, Q′) ∈ R)

where X x−→ X ′ denotes that the LTS X can execute x reaching
a state x′ and X ′ = X(x′). We denote by P ∼ Q that P and Q
are bisimilar.

Reactive systems are built compositionally. Such compo-
sition is often modeled with LTS as the cartesian product of

component LTS states where communication is modeled as
synchronous communication on shared events and proposi-
tions. We formalise the parallel composition as follows.

Definition 3.5. (Parallel Composition) The parallel compo-
sition E‖C of two LTS E = (SE , AE ,∆E , e0) and C =
(SC , AC ,∆C , c0) is an LTS (SE ×SC , AE ∪AC ,∆‖, (e0, c0))
such that ∆‖ is the smallest relation that satisfies the rules below:

(e, `, e′) ∈ ∆E

((e, c), `, (e′, c)) ∈ ∆‖
` /∈ AC

(c, `, c′) ∈ ∆C

((e, c), `, (e, c′)) ∈ ∆‖
` /∈ AE

(e, `, e′) ∈ ∆E , (c, `, c′) ∈ ∆C

((e, c), `, (e′, c′)) ∈ ∆‖
` ∈ AE ∩AC

The relabelling operation defines an LTS by relabelling or
removing transitions from another LTS. It does so by either
removing a transition when its label is not defined in the
relabelling function, or by changing the label according to
the relabelling function.

Definition 3.6. (Relabelling operator) Let E = (SE , AE ,
∆E , e0) be an LTS and f : AE → Act be an injective
partial function. The relabelling operation [E]f is an LTS
(SE , A

′,∆f , e0), where ∆f is the smallest relation that satisfies
the rule below:

(e, `, e′) ∈ ∆E

(e, f(`), e′) ∈ ∆f

Property 3.1. Let E,B be deterministic LTS, and f : Act →
Act be a partial injective function, then, the following equivalence
holds: [E‖B]f ∼ [E]f‖[B]f

We introduce an interrupt handler operation that defines
the sequential execution of two LTS where the switch from
one LTS to the other is triggered by an event (α).

Definition 3.7. (Interrupt handler) Let E =
(SE , AE ,∆E , e0) and N = (SN , AN ,∆N , n0) be LTS,
H be an interrupt handler relation such that H ⊆ (SE × SN ),
and α be an interrupt event such that α 6∈ (AE ∪AN ),.

The interrupt handler E αHN is an LTS defined as
(SE ∪ SN , AE ∪ AN ∪ {α},∆ , e0), where ∆ is the smallest
relation that satisfies the rules below:

(e, `, e′) ∈ ∆E

(e, `, e′) ∈ ∆ 

(n, `, n′) ∈ ∆N

(n, `, n′) ∈ ∆ 

(e, α, n) ∈ ∆ 
(e, n) ∈ H

Property 3.2. Let A,B,C and D be LTS, H and K be interrupt
handlers relations and ` be an iterrupt event, then, the following
equivalence holds:

(A  αH B) || (C  αK D) ∼ ((A||C)  αH′ B) || ((A||C)  αK′ D)

where ((a, c), b) ∈ H ′ iff (a, b) ∈ H , and, ((a, c), d) ∈ K ′ iff
(c, d) ∈ K .

3.2 Fluent Linear Temporal Logic
Linear Temporal Logic (LTL) is often used to describe be-
haviour requirements [20, 21]. The motivation for choosing
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π, i |=d ¬ϕ , π, i 6|=d ϕ
π, i |=d ϕ ∨ ψ , (π, i |=d ϕ) ∨ (π, i |=d ψ)
π, i |=d Xϕ , π, i+ 1 |=d ϕ
π, i |=d ϕUψ , ∃j ≥ i · π, j |=d ψ ∧

∀ i ≤ k < j · π, k |=d ϕ

Fig. 2: Semantics for the satisfaction operator.

an LTL of fluents is that it provides a uniform framework for
specifying state-based temporal properties in event-based
models [21]. FLTL [21] is a linear-time temporal logic for
reasoning about fluents. A fluent is defined by a pair of
sets and a Boolean value: f = 〈I, T, Init〉, where f.I is the
set of initiating actions, f.T is a set of terminating actions
and f.I ∩ f.T = ∅. A fluent may be initially true or false
as indicated by the f.Init. Note that, every action ` ∈ Act
induces a fluent, namely ˙̀ = 〈 `, Act \ {`}, ⊥〉. Finally,
the alphabet of a fluent is the union of its terminating and
initiating actions.

Let F be the set of all possible fluents and d be a fluent
definition function d : F → 〈I, T, Init〉. An FLTL formula is
defined inductively using the standard Boolean conectives
and temporal operators X (next), U (strong until) as follows:

ϕ ::= f | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ,

where f ∈ F . We define ϕ ∧ ψ as ¬ϕ ∨ ¬ψ, 3ϕ
(eventually) as >Uϕ, 2ϕ (always) as ¬3¬ϕ, and ϕWψ
(weak until) as ϕUψ ∨2ϕ.

Let Π be the set of infinite traces over Act. The trace
π = `0, `1, . . . satisfies a fluent f for a fluent definition d
at position i, denoted π, i |=d f , if and only if, one of the
following conditions holds:

I d(f).Init ∧ (∀j ∈ N · 0 ≤ j ≤ i⇒ `j /∈ d(f).T )
I ∃j ∈ N · (j ≤ i ∧ `j ∈ d(f).I) ∧

(∀k ∈ N · j < k ≤ i⇒ `k /∈ d(f).T )

In other words, a fluent holds at position i if and only if
it holds initially or some initiating action has occurred, but
no terminating action has since then occurred.

Given an infinite trace π, the satisfaction of a formula ϕ
at position i for a fluent definition d, denoted π, i |=d ϕ, is
defined as shown in Figure 2. We say that ϕ holds in π for a
fluent definition d, denoted π |=d ϕ, if π, 0 |=d ϕ.

To support combined reasoning over two specifications
(the old and new) that may have different scopes (i.e. refer
to different sets of events) we introduce a fluent definition
extension and a related property.

Definition 3.8. (Fluent definitions extension) Let d and d′

be fluent definitions over Σ and Σ′ respectively, de is a fluent
definition extension of d and d′, if and only if, the following
conditions hold:

I ∀ (fe, 〈Ie, Te, Inite〉) ∈ de, ∃ (f, 〈I, T, Init〉) ∈ d such that
Ie = I ∪ İ and Te = T ∪ Ṫ where İ ⊆ (Σ′ \ Σ) and Ṫ ⊆
(Σ′ \ Σ).

I ∀ (f, 〈I, T, Init〉) ∈ d, ∃ (fe, 〈Ie, Te, Inite〉) ∈ de such that
Ie = I ∪ İ and Te = T ∪ Ṫ where İ ⊆ (Σ′ \ Σ) and Ṫ ⊆
(Σ′ \ Σ).

I ∀ (fe, 〈Ie, Te, Inite〉) ∈ de, ∃ (f ′, 〈I ′, T ′, Init′〉) ∈ d′ such
that Ie = I ′ ∪ İ and Te = T ′ ∪ Ṫ where İ ⊆ (Σ \ Σ′) and Ṫ
⊆ (Σ \ Σ′).

I ∀ (f ′, 〈I ′, T ′, Init′〉) ∈ d′, ∃ (fe, 〈Ie, Te, Inite〉) ∈ de such
that Ie = I ′ ∪ İ and Te = T ′ ∪ Ṫ where İ ⊆ (Σ \ Σ′) and
Ṫ ⊆ (Σ \ Σ′).

3.3 Labelled Transition Systems Control Problem
The notion of legality (based on Interface Automata [22]) al-
lows modelling controllability and monitorability of events.
A legal LTS cannot block the occurrence of events that it
does not control and cannot attempt actions that it controls
but its environment can not accept.

Definition 3.9. (Legal LTS) Let P = (SP , AP , ∆P ,p0) and
Q = (SQ, AQ,∆Q, q0) be LTS, C ⊆ (AP ∪ AQ) be a set of
events that P does control and U ⊆ (AP ∪AQ) be a set of events
that P does not control.

We say that P is a legal LTS for Q with respect to (C,U) if ∀
(p, q) ∈ SP‖Q, p and q are legal in the following sense:
• (∆P (p) ∩ U) = (∆Q(q) ∩ U), and
• (∆P (p) ∩ C) ⊆ (∆Q(q) ∩ C).

Note that we adopt a slightly stronger notion than that
of [22]. Here, we request the P not to be more robust (i.e.
accept more uncontrollable events) than Q can exhibit.

An LTS control problem can be described as follows:
Given an LTS that describes the behaviour of the envi-
ronment, a set of controllable actions, an FLTL formula as
the goal for the controller, and a fluent definition, the LTS
control problem is to find an LTS that only restricts the
occurrence of controllable actions and guarantees that the
parallel composition between the environment and the LTS
controller is deadlock free and satisfies the goal.

Definition 3.10 (LTS Control [10]). Let E = (SE ,
AE ,∆E , e0) be an environment model in the form of an LTS,
A ⊆ AE be a set of controllable actions, Â ⊆ AE be a set of
uncontrollable actions, G be a controller goal in the form of an
FLTL property, and d a fluent definition. A solution for the LTS
control problem with specification E = (E,G, d,A, Â) is an LTS
C = (SC , AE ,∆C , c0) such that C is a legal LTS for E with
respect to (A, Â), E‖C is deadlock free, and E‖C |=d G.

4 PROBLEM STATEMENT

In this section we precisely state the problem of dynamic
update of discrete event controllers. In other words, we
formalise what it means for an update controller to be hot
swapped into a system at runtime while guaranteeing that
the resulting system will eventually transition correctly to
the new system specification. We first formalise controller
hot-swapping, then environment reconfiguration and finally
a notion of correctness.

4.1 Hot-swapping Controllers
We now formally define the behaviour of a system in
which the current controller is hot swapped by another one.
Assume a controller C is enacted within an environment
E, i.e. a system C‖E. Suppose that the controller C is to
be hot swapped with a new controller C ′. In some cases,
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Fig. 3: Hotswap from (a reduced – two tool) production
cell controller to another (i.e., neither have the cleaner tool).
(C  hotSwap

H C′). Dotted lines represent hotswap transitions
induced by H .

the initial state of C ′ at the time in which it is swapped in
can be fixed at design time. However, in general the initial
state of C ′ depends on the state of the system at the instant
at which C ′ takes control. Thus, we support the modelling
of a controller hot swap with a mapping from the states of
C to C ′ that is user provided and sets the initial state of
the controller C ′. We model the hot-swap of C with C ′ as
(C  hotSwap

H C ′)‖E using the interrupt handler.
We assume that hotSwap is not in the alphabet of C , C ′

and E, and that H covers all states in C . Consequently, in
(C  hotSwap

H C ′)‖E the event hotSwap is unconstrained and
can occur only once but at any point. Indeed, this models
that hotSwap will be triggered by the underlying enactment
infrastructure which will use H to set the current state of C ′

according to that of C .
At the top of Figure 3 we depict a controller C for a

reduced (i.e, two tool) version of the production cell with
slightly modified objectives (reduced to aid understand-
ability of the diagram): after receiving a raw element x
in the tray (in(x)), the controller will drill(x) and polish(x)
the element. The out(x) command will be executed by the
controller when both tools were applied to the element
correctly. At the bottom of the same figure, we show a
controller C ′ that instead of polishing elements, it will
paint them (paint(x)) instead. The combination of both con-
trollers plus the dotted hotSwap transitions is the result of
(C  hotSwap

H C ′), where the hotSwap transitions coincide
with relation H from states in C to states in C ′ (i.e H =
{(0, 0), (1, 1), (2, 2), (3, 3), (4, 3), (5, 3)}).

It is important to note that the communicating alphabet
of C hotSwap

H C ′ is a superset of the alphabets of C and C ′.
Thus, an event ` that is in the alphabet of C that is not in
that of C ′ will be restricted from occurring after hotSwap
in the composition (C  hotSwap

H C ′) because there is no
transition in C ′ labelled with ` (see parallel composition,
Definition 3.5). The same holds for events in the alphabet of
C ′ that are not in the alphabet of C , where such events will
be constrained from occurring in (C  hotSwap

H C ′) before
hotSwap. For instance, in the example, C has in its alphabet
polish(x) but not paint(x) which is in the alphabet of C ′. The
term C hotSwap

H C ′ will prohibit the occurrence of paint(x)

before hotSwap and the occurrence of polish(x) after hotSwap.

4.2 Controlling Reconfiguration
Controllers are updated in systems because the system
goals or the environment assumptions have changed. The
latter may be due to adoption of unrealistic or invalid
assumptions or because the executing (software and/or
hardware) configuration environment of the controller has
changed: an API that provides services to the controller
needs to be changed, a sensor or actuator is not working
with the desired precision. In the case of our example, the
required change in the configuration environment is that
the Polishing tool is no longer needed and Paint tool is. This
involves unloading the driver for the Polish tool and loading
the driver for the Paint tool.

A change in the executing configuration environment
typically needs to be managed and coordinated with the
overall behaviour that is satisfying the system goals. Thus,
the controller that manages the dynamic update needs to
be able to control when reconfiguration should occur, and it
must signal the change at a point in time where the whole
update can be guaranteed to be correct. Note that the latter
setting guarantees planned environment changes where the
update controller chooses when to reconfigure.

We model a controller that is capable of changing its con-
figuration dynamically with the term C ′‖(E reconfigure

R E′)
assuming that reconfigure is part of the communicating
alphabet of C ′. This means that, as opposed to hotSwap,
reconfigure is controlled by the controller C ′. Note that in
this way we are encapsulating a possibly complex recon-
figuration procedure, with multiple steps, as an atomic
reconfigure action. Should an atomic reconfiguration not be
a reasonable assumption, then it is possible to model, in the
spirit of [23, 24], within E′ the reconfiguration steps and
include it as part of the control problem.

The relation R, sets the initial state of E′ according to
the current state of E at the time of reconfigure. One possible
choice for R is to map all states of E to one fixed initial
state of E′ modelling fixed initialisation of the environment.
Note that we do not require R to be defined for all states of
E; this provides a way of restricting when C ′ is allowed to
reconfigure.

It is important to note that R may introduce non-
determinism by mapping one state in E to several states
in E′. This is an important feature that is required to model
scenarios such as the RailCab case study from [13]. The
RailCab, described in more detail in the Validation Section,
discusses a scenario in which the railway infrastructure
has been enhanced with additional sensors. The current
RailCab system receives messages for various milestones as
it approaches a crossing (endOfTrunkSection, lastBrake and
then noReturn. Its goals are stated in terms of actions it
must perform between different milestones. The new system
is to receive an additional message (approachingCrossing)
for a newly introduced sensor that sits halfway between
the endOfTrunkSection and the lastBrake milestones. Figure 4
(ignoring dashed transitions) depicts a portion of the en-
vironment model for the current (top) and new (bottom)
RailCab specifications.

Non-determinism is introduced in the mapping from E
to E′ in the RailCab setting between the state in the current
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Fig. 4: Environment assumptions (E reconfigure
R E′) for the

Railcab dynamic update case study [13]. Dotted reconfigure
transitions indicate how old assumptions are mapped into new
ones according to relation R.

environment that models that the RailCab is between end-
OfTrunkSection and lastBrake and the two states in the new
environment model that describe the fact that the RailCab is
between endOfTrunkSection and lastBrake. Because the event
approachingCrossing is not monitored in E, the correct way
to model the transition to E′ is to make no assumption on
whether approachingCrossing has occurred. Indeed, Figure 4
describes the combination of both environments via an
interrupt action reconfigure and a relation (R = {(0, 0),
(1, 1), (1, 2), (2, 3), (3, 4), (4, 5)}).

On a methodological note, as with hotSwap, the alphabet
of (E reconfigure

R E′) is the union of the alphabets of E and
E′. This entails that events in the communicating alphabet
of E and not in that of E′ (resp. in E′ and not in E) are
restricted from occurring after (resp. before) reconfigure.

4.3 Correctness Criteria for Dynamic Controller Update
We now formalise what it means for an dynamic controller
update to be correct. In particular, what should the be-
haviour of a system be when a controller C that is guar-
anteeing a specification (in the form of current environment
assumptions E, requirements 2G with G a propositional
LTL formula, d a fluent definition, and controllable actions
A) is replaced with a new controller that should satisfy a
new specification (similarly, in the form E′, 2G′, d′ and A′)
under a transition requirement T ?

As an input to the correctness criteria, we require a
specification of how the state of C ′ is to be set based on
the state of C , (i.e. the relation H) and also how the state of
the reconfigured environment E′ is influenced by the state
of E (i.e. the relation R).

We use the following term to model the be-
havior of updating C with C ′ such that the lat-
ter can change its environment E with E′ via recon-
figure: (C hotSwap

H C ′) ‖ (E reconfigure
R E′). stopOldSpec,

startNewSpec and reconfigure should only be in the al-
phabet of C ′ thus stating that it is the new controller
that will signal when the old specification is dropped,
from when the new one is guaranteed and when the
environment is to be reconfigured. As explained previ-
ously in this section, hotSwap should not be in the al-
phabet of C , C ′, E, nor E′. H should be defined for

each state of C . Also, C hotSwap
H C ′ should be legal for

E reconfigure
R E′ with respect to (Au, Âu) where Au = A ∪

A′ ∪ {stopOldSpec, startNewSpec, reconfigure} is the set of
controllable actions for update, and, Âu = Â ∪ Â′ is the
set of uncontrollable actions for update. In other words,
C and C ′ never block monitored events (` ∈ Âu) neither
do controllable events that E and E′ prohibit. In addition,
note that hotSwap is an internal action of C hotSwap

H C ′ and
we do not restrict the execution of this action (i.e. hotSwap
/∈ Au ∪ Âu).

In the following, we define the FLTL formula that mod-
els the expected behaviour of system (C hotSwap

H C ′)‖ (E

 reconfigure
R E′):

Definition 4.1. (Goal for Dynamic Controller Update) Let
2G and 2G′ be the current and new goals for a system that is
to go from a dynamic update of controllers, and G and G′ are
propositional FLTL formulae that do not include stopOldSpec,
startNewSpec, reconfigure, nor hotSwap. Let T be an FLTL
formula modelling the transition requirement that may refer to
stopOldSpec, startNewSpec, and reconfigure, but not to hotSwap.
We define Gu, the goal for a dynamic controller update as the
conjunction of the following FLTL formulae:

1) GW stopOldSpec
2) T
3) 2(startNewSpec =⇒ 2G′)
4) 2(hotSwap =⇒ (3stopOldSpec ∧

3reconfigure ∧3startNewSpec))

The first formula requires that the old goal G holds until
the controller signals stopOldSpec. Recall that if the moment
in which the old goal is dropped needs to be restricted,
this must be specified in the transition requirement T . The
second formula states that the transition requirement T
must hold. It is expected to predicate over stopOldSpec and
startNewSpec as it must constrain these from occurring based
on what is considered a safe update state by the user. In
addition, the third formula simply requires the new specifi-
cation to hold from the point in which the controller signals
startNewSpec. This will force the controller to only produce
this signal only when it can ensure G′. The last formula
requires the controller, once hotSwap occurs, to progress
towards the occurrence of events stopOldSpec, startNewSpec
and reconfigure.

The previous goal for the DCU problem must be evalu-
ated with the fluent definition extension of d and d′ (Defi-
nition 3.8). We will call it du. Note that the union of d and
d′ guarantees that the interpretation of G and G′ does not
change over E and E′ respectively. The following definition
puts all the parts together:

Definition 4.2. (Correctness Criteria for Dynamic Controller
Update) Let P be a tuple (E , C, E ′, C ′, T, H, R, du) where,
C and C ′ are LTS that model respectively the current controller
and the new controller such that the communicating alphabet
of C does not contain stopOldSpec, startNewSpec, reconfigure,
nor hotSwap, and the communicating alphabet of C ′ contains
stopOldSpec, startNewSpec, and reconfigure but not hotSwap;
E = (E,2G, d,A, Â) and E ′ = (E′,2G′, d′, A′, Â′) are, re-
spectively, the old and the new specification of systems for a
dynamic controller update, where G and G′ are propositional
FLTL formulae that neither refer to stopOldSpec, startNewSpec,
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reconfigure, nor hotSwap; du is a fluent definition extension of d
and d′ as defined in Definition 3.8; T is a FLTL formula modelling
the transition requirement, which may refer to stopOldSpec,
startNewSpec, and reconfigure, but not to hotSwap; H and R
are relations defining how C and E are interrupt to be replaced
for C ′ and E′ respectively; Let Gu be defined as in Definition 4.1;

We say that P is a correct DCU if all the following hold:

(1) (C hotSwap
H C ′)‖(E reconfigure

R E′) |=du Gu.
(2) (C hotSwap

H C ′)‖(E reconfigure
R E′) is deadlock-free.

(3) Every state of C is mapped by H .
(4) (C hotSwap

H C ′) is a legal LTS for (E reconfigure
R E′) with

respect (Au, Âu).

For the informal requirements for dynamic controller up-
date discussed in Section 2, rules ii) through v) are captured
in rules 1 through 4 of Definition 4.1. Rule i) is captured by
the fact that hotSwap is not part of the alphabet of C , C ′,
E and E′, and H is defined for every rechable state in C .
Thus, in the term (C hotSwap

H C ′)‖(E reconfigure
R E′), hotSwap

is never constrained from occurring once.
In this paper we are interested in automatic approaches

that produce correct solutions to dynamic controller update
rather than a construct-then-verify approach. This can be
formally described as follows:

Definition 4.3. (DCU Synthesis Problem) LetC be a controller
for the old specification E , and E ′ be a new specification, T be a
transition requirement, R ⊆ (SE ×SE′) be a relation, and du be
a fluent definition extension of d and d′.

A solution for the DCU Synthesis Problem is a pair (C ′, H)
such that (E , C, E ′, C ′, T, H, R, du) is a correct dynamic
controller update.

Note that the DCU problem may or may not have a solu-
tion. The existence of a solution indicates that the controller
resulting from solving the problem will guarantee Gu. The
validity of the assumptions E and E′ is the engineer’s
responsibility. In general, the non-existence of a solution
arises due to too stringent combinations of specifications (E,
G, E′, G′ and T ) and lack of controllability by the controller
of environment events.

The non-existence of a solution to the control problem
can arise in three different situations. The first is that the
new goal under the new environment assumptions are not
achievable by a controller. For instance, there is no way
to handle products to satisfy the new production process
specification. In this case, the new specification must be
corrected.

The second reason is that it is not possible to guarantee
that the transition will satisfy T . For instance, requiring in
T that the new specification be put in place immediately is
impossible as products that have been partially processed
may have been done so in a way that is inconsistent with
the new specification. In this case, the transition requirement
needs to be weakened.

Finally, non-existence of a solution may be due to the
impossibility of guaranteeing that the update will eventually
occur (even though it may actually occur). For instance,
requiring the production line be emptied before changing
cannot be guaranteed by the controller as it does not control
the event in(x). In this case the transition requirement needs

hotSwap reconfigure[E||C] E E'f

Fig. 5: Informal depiction of the three phases of environment
Eu. First as an environment controlled by C but uncontrollable
by C′ ([C‖E]f ), then as an uncontrolled environment behaving
as E and finally an uncontrolled environment behaving as E′

resulting from the reconfigure operation.

to be changed to allow updates with a non-empty produc-
tion line.

5 A PROPOSED SOLUTION

In this section we propose a solution to the dynamic con-
troller update synthesis problem as formulated in Defini-
tion 4.3. The solution is based on recasting the DCU syn-
thesis problem as an LTS control problem (Definition 3.10).
Given a DCU synthesis problem (described by E , C , E ′, T ,
R, and du) we show how to build an LTS control problem
(Eu, Gu, du, Au) such that its solution Cu can be used to
build a solution of the form (C ′, H) of a DCU synthesis
problem.

We first show how to build Eu (du and Au are straight-
forward) and then explain how to extract H and C ′ from
Cu.

5.1 Environment Model

The environment Eu must model the reconfiguration of the
environment from E to E′ and also when the controller Cu
must react to hotSwap event, or when it can use stopOld-
Spec, startNewSpec and reconfigure events. In addition, a key
requirement for Eu is that it ensures that the resulting
controller can be hot-swapped into the new system at any
point, independently of the current state of the controller
being swapped out.

In the following, we describe how to build Eu as an LTS
with three phases. The first phase is designed to support
hot-swapping, and ends when hotSwap occurs. The second
models the behaviour of the current environment E, ending
with reconfigure. The third models the behaviour of the new
evnironment, E′. An informal representation of the three
phases of Eu is depicted in Figure 5.

When Cu is constructed we need it to exhibit behav-
ior equivalent to that of C up to the point where the
hotswap occurs. We achieve this by first making Eu emulate
the current system (Eu‖C) and ensuring that Cu, when
computed, does not restrict its behaviour by weakening
the control that C exerts: we make all events in Eu‖C
uncontrollable. Thus, in this first phase, Cu has no option
but to simply monitor Eu‖C . (Recall the definition of LTS
control, Definition 3.10 that the controller cannot constrain
uncontrollable events). Consequently, the first phase of Eu
may be defined as [E‖C]f where f is a relabelling function
that maps all events ` ∈ A to fresh events that are not in
Au = A ∪A′ ∪ {stopOldSpec, startNewSpec, reconfigure}.

The second phase starts when hotSwap occurs. At this
point the update controller must start restricting the be-
haviour of E to ensure a correct transition to satisfying
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Fig. 6: LTS that define the occurrence of events stopOldSpec
and startNewSpec. Before hotSwap action neither stopOldSpec nor
startNewSpec can happen. After that, they can be signalled in
any order.

the new specification, C is no longer active. Thus, the
second phase can be described with E, while the transition
between the first and second phase is modelled with the
interrupt handler  on hotSwap. Then, the first two phases
are captured by the term: [E‖C]f 

hotswap
I E, where I maps

a state (e, c) of [E‖C]f to a state e of E.
Event reconfigure moves Eu from the second to the third

phase, where the state of the new environment is described
by the user providing the function R that maps states in
E to states in E′. The three phases of Eu can therefore
be described as ([E‖C]f 

hotSwap
I E reconfigure

R E′), as shown
informally in Figure 5.

Finally, to simplify the specification of G, G′ and T , and
to allow a succinct rewrite of ϕ as a safety property Gu, we
introduce in Eu events stopOldSpec and startNewSpec. These
can be signalled once only inEu after the hotSwap action and
at any time before or after reconfigure. This is done by simply
composing the LTS O depicted in Figure 6 with alphabet
{hotSwap, stopOldSpec, startNewSpec}. As reconfigure is not
in the alphabet of O we do not restrict its occurrence. In
summary, the environment model Eu is defined as follows:

Definition 5.1. (Environment for the control problem) Let C
be the current controller, A be the set of events controlled by C , E
and E′ be the current and new environments, R ⊆ (SE × SE′)
be a relation provided by the user.

The Environment for the DCU Synthesis Problem is
an LTS defined Eu , ([E‖C]f 

hotSwap
I E reconfigure

R E′)‖O
where I is a partial function such that ((e, c), e) ∈ I iff
(e, c) ∈ SE‖C , O is the LTS depicted in figure 6 with alphabet
{hotSwap, stopOldSpec, startNewSpec}, and f is the function
that relabels all events ` ∈ A to fresh events ` /∈ A.

5.2 Solving DCU synthesis with LTS control

To derive a correct solution to the DCU synthesis problem,
we first define and solve an LTS control problem (Defini-
tion 3.10) and then extract a controller C ′ and a relation H .

A solution to an LTS control problem can be constructed
using the environment Eu as defined in Definition 5.1, the
goal Gu as defined in Definition 4.1, the set of controlled
events Au defined as the union of the controlled events
A, A′ and {stopOldSpec, startNewSpec, reconfigure} and the
set of uncontrolled events Âu defined as the union of the
uncontrolled events Â, Â′. To produce a controller that does
not restrict the execution of hotSwap, we will include this
action in this set. Lines 2 to 6 in Algorithm 1 show how to
generate these elements.

ALGORITHM 1: Pseudocode for extracting the solu-
tion to DCU synthesis problem S from solving the LTS
control problem with specification Eu.

1 DynamicUpdateofControllers (E , C, E ′, T, R, du, f)
2 Eu ← buildEnv(E , C, E ′, R, f ); // Definition 5.1
3 Gu ← buildGoal(E , T, E ′); // Definition 4.1
4 Au ← {stopOldSpec, startNewSpec, reconfigure };
5 Au ← Au ∪ E .A ∪ E ′.A;
6 Âu ← E .Â ∪ E ′.Â ;
7 du ← ∅;
8 foreach 〈 I, F, Init 〉 ∈ du do
9 I ← I ∪ {f(`) | ` ∈ I};

10 F ← F ∪ {f(`) | ` ∈ F};
11 du ← du ∪ {〈 I, F , Init 〉}
12 end
13 Eu ← (Eu, Gu, du, Au, Âu ∪ {hotSwap});
14 Cu ← solve(Eu); // Definition 3.10
15 if Cu is null then
16 return DCU has no solution
17 H ← ∅;
18 foreach c ∈ states(C) do
19 q ← getBisimilarStateUpToHotSwap(c, Cu);
20 c′u ← getSuccessor(q, hotSwap, Cu);
21 H ← H ∪ {(c, c′u)};
22 end
23 C ′u ← removeStatesBeforeHotSwap(Cu);
24 return (C ′u, H)

Note that traces in C guaranteeing G will not satisfy Gu
when relabelled by f in Eu (recall f from Definition 5.1). To
make traces in [E‖C]f be accepted by Gu, it is necessary to
modify slightly the fluent definition extension du. We use a
fluent definition extension du where each fluent definition in
du is changed as follows: if a fluent is defined as 〈I, T, Init〉
in du, then, it will be defined as 〈 I ∪ {f(`) | ` ∈ I}, F ∪
{f(`) | ` ∈ F}, Init 〉 in du. This construction of du from du
generates a fluent definition extension of d and d′ because
for each fluent definition in du we add events to its initiating
and terminating sets that are not in the alphabet of d nor d′.
Thus, fluent definition extension conditions in Definition 3.8
hold. The first foreach in Algorithm 1 (lines 7 to 12) shows
how to build du from du.

If there exists a solution Cu to the DCU synthesis prob-
lem with specification (Eu, Gu, du, Au, Âu ∪ {hotSwap}), it
can be shown to have a set of states, all of them reachable
from the initial state, that are bisimilar to [C]f up to the
occurrence of hotSwap (see Section 5.4). Indeed, Cu will
have three phases, the first in which is bisimilar to [C]f
(see Section 5.4), the second in which it is handling the
transition between specifications (dealing with 2G, 2G′, T
and reconfiguration) and the third in which both stopOldSpec
and startNewSpec have occurred and Cu is simply dedicated
to satisfying 2G′ (see Figure 7).

The first phase allows the definition of H from states
of C to those of Cu: as [C]f is bisimilar to Cu up to
hotSwap, then, for each c ∈ SC there is at least one state q ∈
SCu such that c and q are bisimilar. In addition, transition
(q, hotSwap, c′u) must exist in Cu and be unique because
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hotSwap
startNewSpec

C

C

CG

T

G'

startNewSpec

stopOldSpecstopOldSpec

Fig. 7: Informal depiction of the three phases of controller
Cu. First behaving exactly like C and thus guaranteeing 2G
(CG), then controlling the transition period (CT ) and once both
stopOldSpec and startNewSpec have occurred, guaranteeing 2G′

(CG′ ). Note that, for simplicity, reconfigure is not depicted.

every state up to hotSwap has this uncontrollable event
enabled in Eu. H should map c to c′u. Lines from 17 to 22
in Algorithm 1 shows a pseudocode for building H where
the method called getBisimilarStateUpToHotSwap returns
only one state q and getSuccessor returns the reachable state
after transitioning through hotSwap from q.

Having defined H , we now construct C ′u from Cu. Note
that H maps all states in C to states in the second phase of
Cu (see CT in Figure 7). This means that states in the first
phase of Cu will never be visited in C hotSwap

H Cu. Thus, we
construct C ′u to be the portion of Cu that does not include
states from its first phase. This ensures thatC ′u does not have
a complete replica of C within it, thereby avoiding bloating
of the controller through successive updates. The method
called removeStatesUpToHotSwap at Line 23 in Algorithm
1 performs the procedure described in this paragraph.

5.3 Complexity
Solving an LTS control problem (as defined in Defini-
tion 3.10 in Section 3) for an arbitrary FLTL property is
2EXPTIME complete [25]. It is straightforward to show that
if T is a safety property then Gu can be encoded as an
obligation property (i.e. disjunction of safety and reacha-
bility assertions,

∧n
i=1(2Si ∨ 3Ri)). LTS control problems

with goals in the form of obligations can be resolved in
linear time with respect to the size of Eu for deterministic
environment models. For non-deterministic environments,
a specialised sub-set construction can be used to produce
a deterministic version, however an exponential explosion
can occur depending on the degree of non-determinism [26].
The same price is paid for allowing partial observability
(in this paper we assume all events not controlled are
observable to the controller) can similarly be reduced to a
deterministic problem with the same cost.

We have extended our synthesis tool [27] to support
the specification of a DCU problem with safety transition
properties (T ), the automatic construction of an LTS con-
trol problem as in Definition 3.10, the resolution of this
problem and the extraction of a solution (C ′u, H) to the
specified DCU problem. The case studies described below
were solved using this tool. Both case studies and tool are
available at [28].

5.4 Soundness and Completeness
In the following we state and prove the soundness and
completeness of our approach. By soundness we mean that
the Algorithm described in Section 5.2 indeed produces a

correct solution to the DCU synthesis problem. By com-
pleteness we mean that if the algorithm does not propose
a solution then there is no solution to the DCU problem.

Theorem 5.1. Let S be a DCU synthesis problem with specifica-
tion (E , C, E ′, T, R, du),Eu be defined as in Definition 5.1 using
function f for relabelling, Gu be defined as in Definition 4.1, Au
be the union of old and new controllable actions plus special events
stopOldSpec, startNewSpec, and reconfigure, and Âu be the union
of old and new uncontrollable actions.
[Correctness] if Cu is the solution to the LTS control problem with

specification Eu = (Eu, Gu, du, Au, Âu∪{hotSwap}), then,
building (C ′u, H) as in Algorithm 1 is a solution of S .

[Completeness] if S has a solution, Algorithm 1 returns a solution.

For the following proof we use  hs and  rec as a short-
hand for  hotSwap and  reconfigure respectively.

Correctness Proof. We must prove that Algorithm 1 returns
(C ′u, H) solution to S . From lines 17 to 23 in Algorithm 1,
C ′u and H are defined as follows: Cu = ([Cu]cut  hsQ C ′u)
and (c, c′u) ∈ H iff ∃q · (q, c′u) ∈ Q and [Cu]cut(q) ∼ [C]f (c)
with cut(`) = ` iff ` 6= hotSwap (see Figure 8 for a better
understanding). Thus, by definition 4.2 we must prove that:

(1) (C  hsH C ′u) ‖ (E  recR E′) |=du Gu.
(2) (C  hsH C ′u) ‖ (E  recR E′) is deadlock-free
(3) Every state of C is mapped by H .
(4) (C  hsH C ′u) is a legal LTS for (E  recR E′) with respect

to (Au, Âu).
For items (1) and (2) we first show that
Cu‖Eu ∼ ([C]f  hsH C ′u) ‖([E]f  hsId E  recR E′).

Then, using that Cu‖Eu |=du
Gu and Cu‖Eu is deadlock-

free we prove items (1) and (2) by contradiction
We first need to show thatCu can always be decomposed

into ([Cu]cut  hsQ C ′u): the decomposition is possible because
hotSwap is enabled in all states of Cu until hotSwap occurs for
the first time (see Lemma 5.1). Also, it is straightforward to
show that [Cu]cut ∼ [C]f (see Lemma 5.2). Thus:

Cu ∼ ([C]f  hsH C ′u)
where by replacing [Cu]cut for [C]f we need to change Q
for H (see Figure 8).

Now, we will work with the environment Eu. By Defini-
tion 5.1, Eu , ([E‖C]f  hsI E  recR E′)‖O, and as E and C
are deterministic LTS, by Property 3.1:

Eu ∼ (([E]f‖[C]f )  hsI E  recR E′) ‖ O
Note that O is an observer that restricts the occurrence

of stopOldSpec and startNewSpec before hotSwap and only
allows each of them to occur once. Cu already exhibits this
behaviour as it is a solution for control problem Eu. Being
both Cu and O deterministic, Cu‖O is bisimilar to Cu, and
therefore:
Cu‖Eu ∼ ([C]f  hsH C ′u) ‖ (([E]f‖[C]f )  hsI E  recR E′)

By Property 3.2 we have:
Cu‖Eu ∼ (([C]f‖[E]f‖[C]f )  hsH′ C ′u) ‖

(([C]f‖[E]f‖[C]f )  hsI′ E  recR E′)
As [C]f is deterministic we have [C]f‖[C]f ∼ [C]f , thus:

Cu‖Eu ∼
(([C]f‖[E]f )  hsH′ C ′u) ‖ (([C]f‖[E]f )  hsI′ E  recR E′)

Applying Property 3.2, and by definition of I in Defini-
tion 5.1, we have:

Cu‖Eu ∼ ([C]f  hsH C ′u) ‖([E]f  hsId E  recR E′)
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Fig. 8: Support for proof sketch. Informal depiction of Cu =
([Cu]cut  hs

Q C′
u). We show that for given states c and q such that

[Cu]cut(q) ∼ [C]f (c), then, H maps c to state c′u in C′
u according

to relation Q.

Now we start proving item (1) by contradiction.
Let assume (C  hsH C ′u) ‖ (E  recR E′) 6|=du Gu.
By Lemma 5.3 we know that (C  hsH C ′u) ‖ (E  recR

E′) is bisimilar to (C  hsH C ′u) ‖ (E  hsId E  recR E′), and
therefore , (C  hsH C ′u) ‖ (E  hsId E  recR E′) 6|=du Gu.

Now, consider a trace π ∈ (C  hsH C ′u) ‖ (E  hsId
E  recR E′) such that π 6|=du Gu. Note that, π is either a
trace such that π = `0, . . . , `n, . . . and hotSwap /∈ π, or π =
`0, . . . , `i, hotSwap, `i+1, . . . .

We can construct a trace π ∈ ([C]f  hsH C ′u) ‖ ([E]f
 hsId E  recR E′) such that either π = f(`0), . . . , f(`n), . . .
and hotSwap /∈ π, or π = f(`0), . . . , f(`i), hotSwap, `i+1, . . . .
Furthermore, π 6|=du

Gu because du changes a value of a
fluent for f(`) if and only if du does so for `.

Trace π introduces a contradiction from assuming that
(C  hsH C ′u)‖(E  recR E′) 6|=du Gu.

Proving item (2), i.e., that (C  hsH C ′u) ‖ (E  recR E′) is
deadlock free follows a similar reasoning.

To prove item (3) we need to find for each c ∈ SC , a
state c′u in C ′u mapped by H . Thus, we need to prove that
there exists a state q ∈ S[Cu]cut

such that (q, c′u) ∈ Q and
[Cu]cut(q) ∼ [C]f (c) (see Figure 8).

Let π be a finite trace in [C]f that reaches a state c. Then,
π can also be executed in [Cu]cut reaching a state q because
[Cu]cut ∼ [C]f (see Lemma 5.2), and therefore, [Cu]cut(q)
∼ [C]f (c). What remains to be shown is that there is a c′u
such that (q, c′u) ∈ Q, in other words that in Cu there is
a hotSwap transition from q to c′u. This is straightforward:
as q ∈ [Cu]cut and Cu ∼ ([Cu]cut  hsQ C ′u) with Q a total
function (Lemma 5.1), by definition of  that transition must
exist.

To prove item (4), we know that for any trace π in
(C  hsH C ′u) ‖ (E  recR E′), that reaches a state (c, e), the
following holds.

If hotSwap 6∈ π then c ∈ SC and e ∈ SE . Furthermore,
(c, e) is reachable in C‖E via π. As C is a solution to E , then
C is a legal LTS for E with respect to (A, Â) and c and e are
legal with respect to (A, Â). This entails that they are also
legal with respect to (Au, Âu), because C and E have no
transitions labelled with Au \A or Âu \ Â.

If hotSwap ∈ π then we can build π that reaches (c, e) ∈
Cu‖Eu by simply relabelling every ` appearing in π before
hotSwap with f(`). As Cu is a legal LTS for Eu, c and e are

legal with respect to (Au, Âu ∪ {hotSwap}). As there is no
hotSwap transition enabled from these states then c and e are
also legal with respect to (Au, Âu).

Completeness Proof. Assuming a solution (C ′, Y ) to S , we
must prove the existence of an LTS X that is a solution
for the LTS control problem Eu. Let X be such that X ,
([E‖C]f  hsY ′ C ′) where ((e, c), c′) ∈ Y ′ iff (c, c′) ∈ Y . In
other words that:

(a) X‖Eu |=du
Gu.

(b) X‖Eu is deadlock-free, and
(c) X is a legal LTS for Eu with respect to (Au, Âu ∪
{hotSwap}),

We first prove item (a):
As (C ′, Y ) is a solution to S we know that

(C  hsY C ′) ‖ (E  recR E′) |=du Gu,
where Y maps every state of C to C ′.

We use as before Lemma 5.3 to decompose E:
(C  hsY C ′) ‖ (E  hsId E  recR E′) |=du Gu.

where Id is the identity relation.
Moreover, using Property 3.2, we have:

(E‖C  hsY ′ C ′) ‖ (E‖C  hsI E  recR E′) |=du Gu.
where ((e, c), e) ∈ I iff (e, e) ∈ Id.

We can relabel controllable actions in E‖C with f while
still guaranteeing Gu if we change the fluent definition du
with du. The following is entailed:

([E‖C]f  hsY ′ C ′) ‖ ([E‖C]f  hsI E  recR E′) |=du
Gu.

As before, we have that ([E‖C]f  hsY ′ C ′) ‖O is bisimilar
to ([E‖C]f  hsY ′ C ′) where O is the observer introduced in
Definition 5.1. This is because O prohibits to do stopOldSpec
and startNewSpec before hotSwap, and allows each one to
occur at most once. Thus we have:
([E‖C]f  hsY ′ C ′) ‖ O ‖ ([E‖C]f  hsI E  recR E′) |=du

Gu.
Finally, using definition of Eu item (a) is proved:

([E‖C]f  hsY ′ C ′) ‖ Eu |=du
Gu

The proof of item (b) follows the same reasoning as
above. Starting from the fact that (C  hsY C ′) ‖ (E  hsId
E  recR E′) is deadlock free and via the same bisimulation
preserving transformations we reach that ([E‖C]f  hsY ′ C ′)
‖ Eu is also deadlock free.

We prove item (c) in straightforward manner. For any
trace π in X‖Eu that reaches a state (x, e), we know the
following:

If hotSwap /∈ π then x ∈ [E‖C]f , and, by definition of
Eu, we also have e ∈ [E‖C]f . As [E‖C]f is a deterministic
LTS, then, x = e. Hence, we have that ∆X(x) = ∆Eu

(e). If
so, x and e must be legal with respect to any pair of sets.

If hotSwap ∈ π then we can build π that reaches the
same pair (x, e) but in (C  hsY C ′)‖((E‖C) hsI E  recR E′) by
simply replacing every relabelled event f(`) appearing in π
before hotSwap for `. Furthermore, π up to hotSwap leads in
(E‖C) hsI E to the same state in E as when π is run directly
on E. Thus, π leads to (x, e) in (C  hsY C ′) ‖ (E  recR E′). As
(C  hsY C ′) is a legal LTS for (E  recR E′), x and e are legal
with respect to (Au, Âu). As there is no hotSwap transition
enabled from these states, then, x and e are also legal with
respect to (Au, Âu ∪ {hotSwap}).

Proofs for the following lemmas, used in the proof
above, are straightforward.
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Lemma 5.1. Let Cu be a solution to the LTS control problem
with specification Eu, then, there exists C ′u such that Cu ∼
([Cu]cut 

hotSwap
Q C ′u) with Q a total function.

Lemma 5.2. Let Cu be a result of an LTS control problem with
specification Eu, then, [Cu]cut ∼ [E‖C]f ∼ [C]f .

Lemma 5.3. Let (C  hsH C ′u) ‖ (E  hsId E  recR E′) and (C  hsH
C ′u) ‖ (E  recR E′) be LTS, then, they are bisimilar.

In this section we have presented a sound and complete
approach, with linear time complexity when transitions re-
quirements are safety properties, to solving DCU synthesis
problems by converting it to an LTS control problem.

6 VALIDATION

In this section we report on the case studies we have run
to validate our approach. The purpose of our validation
is to show applicability and generality of the approach
with respect to existing work using case studies taken from
literature and from industry. As discussed, the complexity
of the DCU synthesis problem is linear and hence scalability
is not a primary concern.

All case studies were run using an extension of the
MTSA tool [27], an extension of LTSA[29]. Like LTSA, MTSA
natively supports specification of LTS [30] and properties
using a textual process algebra and FLTL [21]. The tool also
supports synthesis of controllers for SGR(1) control prob-
lems, which are strictly more expressive than is required for
DCU control problems. The tool was extended to support
definition of DCU control problems, computing Au, Gu and
Eu, and solving the DCU control problems. The extended
version of the tool and case studies can be found at [28].

The selected case studies are the Rail Cab [13], Power
Plant [14], GSM-oriented protocol [12] and MetaSocket [11]
to allow comparison with the work closest to ours. A dy-
namic workflow update case from [31] and the Production
Cell [17] were included to illustrate how the current limi-
tation of workflow systems technology could be overcome
(currently limited to requiring quiescence before updating,
e.g., [32]). We also used a workflow system case study
provided by an industrial partner. Finally, we chose a UAV
surveillance setting inspired from [33] aimed showing an
end-to-end application of the technique, from synthesis to
enactment on an adaptive system infrastructure.

For each case study we experimented with a number of
different situations. We fixed the old and new specifications
for the update and explored the use of various transition
requirements. In addition to domain specific transition re-
quirements defined for each case study, we used two default
transition requirements T> and T∅ on all case studies.

T> = > is a non restricting transition requirement which
permits the old specification to be dropped at any point and
also a period in which anything is allowed before starting
the new specification. As the controllers we construct are ea-
ger to achieve liveness (i.e., to start enforcing the new speci-
fication), the period in which anything goes will be minimal
in the sense that the controller will do just enough to reach
a state from which the new specification can be enforced.
The second default requirement used prohibits events from

occurring during the period in which neither specifica-
tion holds (T∅ = (¬NewSpecStarted ∧ OldSpecStopped) ⇒
¬Event, where Event is a disjunction of all events).

For every case study and transition requirement we
also built a controller that is safe but that does not assure
progress towards the specification change. The purpose of
this was to be able to compare the safe and live controller
against the safe but not live one. This permitted us to ensure
that the liveness requirement does indeed induce an update
controller that guides the system to a safe state in which
the transition requirements can be satisfied and that the
new specification can be achieved. Additionally, produc-
ing both controllers gives an indication of the additional
computational cost of solving a live dynamic controller
update problem. We provide a qualitative discussion on
the differences between the live and non-live controllers for
the first case study, the Production Cell. For the rest, we
show only quantitative information: computational cost and
controller size (see Table 1).

6.1 Production Cell

The general setting for the production cell discussed in
Section 2, which is based on [17], is that of industrial
automation in which a production line being controlled to
process products according to one specification must be
updated to accommodate new production rules. For this, we
modelled various alternative transition requirements and
built update controllers for each of them.

The first transition requirement was one in which the
new specification is required to be put in place when
the production line has no products being processed
(startNewSpec =⇒ Empty). As expected, our tool re-
ported that there is no update controller that can satisfy this
requirement. This is reasonable as in(x) is not an action that
the controller can control: If new products arrive sufficiently
regularly, the production line will never be empty and thus
the plant will never be in a state where the new production
rules can come into effect.

A weaker transition requirement is to force the plan to
always satisfy one of the specifications (T∅). The result is a
controller that delays switching to the new production rules
until all elements that are on the production line are raw
(i.e. no tool has been applied to them). This is because in
this particular case, rules for processing products of the two
specifications are incompatible. If a product has started to be
processed using the old rules, then it is impossible to comply
to the new ones. The only strategy for a partially processed
product is to finish producing it and to delay processing
any new product that may be put onto the production line
(in(x)).

In Figure 9 we depict the update controller for T∅. As
explained in Section 5.2, the dotted box on the left CG con-
tains the states of the update controller that are structurally
equivalent to controlling the production according to the
old production rules. The box on the right CG′ contains all
states of the update controller that describe the behaviour
of the controller once it has finished the transition period
between specifications and guarantees the new production
rules. The behaviour described between the two boxes de-
scribes the strategy of the update controller to reach a state
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in which it can effectively switch specifications. Note that
the behaviour between the boxes has no loops, and thus
guarantees progress towards update.

In contrast, and to emphasise the importance of assuring
progress in dynamic controller updates, Figure 10 shows
the result of building a controller with the transition re-
quirement T∅ without the liveness goal requirement for
dynamic controller update (Definition 4.1). The safe but not
live update controller allows looping behaviour once it has
been hotswapped. This loop, depicted in red, permits the
controller to continue to fully process any new raw product
that enters the production line according to the old spec-
ification (in, drill, drillOk, polish, polishOk, out), thus never
starting to process products using the new specification.

As discussed in Section 2, we also studied a transition
requirement (T1) which specifies that the switch in produc-
tion rules should occur when all products on the production
line have not been polished. To achieve this change, the
update controller must continue to process products that
have been polished but must halt processing products that
have not reached the polish phase so as to ensure that
eventually a state is reached in which T1 holds. Removing
the liveness requirement yields a much larger controller (537
states against 107) that does not guarantee the update will
actually happen.

Finally, we computed the update controller for T2 (see
Section 2) that allows a period in which neither the old nor
the new production specification holds but that requires
that during this intermediate period products are either
processed according to the new specification or are trashed.
The safe and live controller is roughly a quarter of the size
of the safe but not live controller.

6.2 Power Plant

In [14] a controller for the cooling system of a nuclear power
plant is discussed. In order to service maintenance requests,
the existing controller first stops the cooling agent pump
and then restarts it. In a new controller specification, it is
no longer required to stop and restart the pump, and there
is a system invariant which states that the cooling agent
pump may not be stopped indefinitely. The authors show
that if an update is performed naively at a state in which
the current controller has stopped the pump but not yet
restarted it, then the plant risks a dangerous incident as
the new controller may not restart the pump. A safe way
to satisfy the system invariant, they argue, is to require
dynamic update to preserve the behaviour of an offline
update (i.e. equivalent to updating when it has restarted
the pump).

We considered three different DCU control problems for
this case study. Both with T> and T∅ the system exhibits the
invalid behaviour described in [14]. We also used T = T∅ ∧
(startNewSpec ⇒ PumpOn) to require that in the transition
period, should the pump be off, the pump must be started
before the end of the next maintenance procedure. This
requirement avoids leaving the pump off unintentionally.
Furthermore, it is less restrictive than the "equivalent to off-
line update" requirement in [13, 14]. Not only does T allow
specification updates in strictly more states than in [13]
while satisfying the desireable requirement (¬32PumpOff),

it also avoids the manual correctness validation required
in [14] for weaker transition requirements than [13].

6.3 RailCab
The RailCab system [34] consists of autonomous vehicles
that coordinate the transport of passengers and goods on
demand. The subsystem discussed in [13] focuses on control
of RailCabs as they approach a crossing. The RailCab can
monitor events such as endOfTrunkSection and that it has
passed the lastBrake or lastEmergencyBrake milestones. It
controls the brake and emergencyBrake and also can receive
responses to queries it controls such as requestEnter. The
goals for the current and new controller are required to
ensure that the RailCab enters the crossing only if it has been
granted permission to do so. There are also constraints on
when permission may be requested and when brakes can be
applied, and assumptions on when responses to controlled
actions occur. The monitorable events such as milestones
and responses to the system are depicted in Figure 11 with
black and red fonts respectively. Controllable actions are
shown in blue.

The difference between the specifications for the current
and the new controller is that the new specification intro-
duces a new monitored event and additional goals. The
new controller monitors event approachingCrossing which is
assumed to be received at a milestone that occurs between
the endOfTrunkSection and lastbrake. The new controller is
required to perform an additional checkCrossing on the cross-
ing barrier status between the approachingCrossing and the
lastbrake.

The difficulty with this change of specification is what
to do when the system is to be updated having passed end-
OfTrunkSection but not yet reached lastbrake (see Figure 11).
In this scenario, the current system may have unknowingly
passed the approachingCrossing milestone because it cannot
monitor the approachingCrossing event. If the system were
updated between these milestones, the updated system
would not know whether it must start with the additional
checks that are required. Doing so without having passed
approachingCrossing, would violate the intent of the new
specification (i.e. that checkCrossing must occur after passing
approachingCrossing).

In [13] the problem is resolved by simply not allowing
the system to be updated if an update is requested while
the RailCab has received endOfTrunkSection. In this case, the
update is postponed until after the RailCab has passed the
crossing. This postponement is unsatisfactory as a security
update for a critical system should not be postponed unless
strictly necessary.

Using the approach described in this paper we can
update the system even during the period in which the Rail-
Cab is in the endOfTrunkSection-lastbrake zone. The resulting
controller update will reconfigure the system to enable the
monitoring of approachingCrossing events but will have some
uncertainty regarding whether event approachingCrossing is
received before lastbrake. The key is that if the update
controller then receives approachingCrossing, it can go on to
satisfy the new specification by performing checkCrossing.
On the other hand, if the update controller receives lastbrake
it has no choice but to continue with the old specification
resulting in behaviour similar to [13]
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Fig. 9: Update controller for a reduced (two tool) version of the Production Cell with its three phases. CG and CG′ guarantee the
old and new specifications. The middle portion ensures progress between both while guaranteeing T∅.

Fig. 10: Safe but not live Controller CS
u for a reduced (two tool) version of the Production Cell with its three phases. In contrast to

Figure 9, the middle phase has loops (e.g., transitions in red) which do not guarantee update completion.

To produce the update controller described above, we
make use of a non-deterministic mapping between states
of the old and new environment models. That is, the re-
lation R must map the state of E that corresponds to
the endOfTrunkSection-lastbrake zone to two states in E, the
one modelling that the RailCab is in the endOfTrunkSec-
tion-approachingCrossing zone and the one for the approach-
ingCrossing-lastbrake zone (see Figure 4).

We resolved various DCU control problems for three
different transition requirements. For T>, the controller
exhibits unsafe behaviour. Using T∅ the resulting controller
can perform a safe update in more states than the one in [13]:
if an update is requested while the RailCab is between end-

OfTrunkSection and lastBrake. The problem with T∅ is that it
allows the update controller to try approachingCrossing after
reconfigure but before startNewSpec which in practice leads
to a violation of the new specification even if the update
controller has not committed to satisfying it yet. Hence, we
use T = T∅ ∧ (¬OldSpecStopped ⇒ ¬CheckCrossing) as
one possible comprehensive specification for the RailCab
update problem.

6.4 GSM-oriented protocol
In [12] a case study is presented based on a GSM-oriented
protocol [12] used to transfer audio stream in a lossy wire-
less network. The authors describe an update between two
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Fig. 11: Railcab timeline. Milestones in black font, controllable events in blue font and monitorable events in red font.

implementations of the GSM protocol which use different
piggybacking strategies to enhance data transfer. Increas-
ing the amount of piggybacking supports the handling of
networks with higher loss rates. Consequently, performing
dynamic updates between controllers implementing these
strategies enables sender and receiver to adapt their be-
haviour depending on the network failure rate.

A problem arises when updating the system while a
message is in transit. In this situation the message was
sent using the old piggybacking strategy, but the receiver,
having been updated, is expecting a message using the new
strategy. These problems are exhibited by controllers built
using T> and T∅. However, the manually built solution
from [12] can be synthesised with T = T∅∧((startNewSpec∨
stopOldSpec) =⇒ ¬SendingMessage). The resulting con-
troller provides the same guarantees as the one described
in [12], except that in this case, the update strategy is
constructed automatically.

6.5 Surveillance
Consider the case of a UAV required to search for suspicious
activity in a critical area. It is required to fly in the 40 to
50 meter altitude range and transmit a picture for every
potential target while avoiding obstacles. On low battery, it
must return to any available base for recharging. During its
mission, it is decided that the UAV must now immediately
follow the first sighting that corresponds to a specific target
rather than continuing its search. Furthermore, it must now
regularly transmit pictures of suspicious activity. The new
mission requires the UAV to fly in the 20 to 30 meter
range and use an improved image recognition algorithm.
In addition, because it is flying low, it must manage short-
term weather forecasts to anticipate adverse conditions.
New software modules must be loaded onto the UAV (the
image processing module and a client for a weather forecast
service) and the controller updated to achieve its new goals.
Note that the non-overlapping height ranges imply that if
the update is to occur in-flight, then a non-empty transition
period will be required between the two missions (the de-
scent from 40 to 30 meters) in which neither specification
holds.

We produced different controllers by proposing varia-
tions of the transition properties. We first constructed tran-

sition requirements to replicate the condition in [13]. The
result is an update controller that forces the UAV to fly back
to the base where the mission started (while continuing to
photograph and transmit potential targets) and only then to
change mission and start out again. Transition requirement
T∅ is a slightly weaker requirement that forces the change
of mission when at any base (not necessarily the initial one)
as this is the only state in which the flying requirements of
both old and new missions are satisfied. We also produced
even weaker transition requirements that allow in-flight
updates. First we required that while neither specifications
are being enforced, the UAV not change its x and y coordi-
nates to avoid missing any suspicious activity while chang-
ing altitude: (OldSpecStopped ∧ ¬NewSpecStarted) =⇒
¬move. We also included an additional requirement ensur-
ing that when changing specification there should be no
pictures of suspicious targets pending: stopOldSpec =⇒
¬PendingTransmissions.

6.6 MetaSocket
The MetaSocket [11] is a socket that can be adapted through
the insertion and removal of filters. In [11] four com-
binations of filters configurations are considered: DES64,
DES128, DES64COM and DES128COM. As in [11] we gen-
erated a controller which is initially running in the DES64
system and then produced updates that are add or remove
filters, one at a time. We modelled the different update
scenarios and performed various chained updates, adding
and removing filters to see if the technique produces bloated
controllers of continuously increasing size. As described in
section 5.2, the resulting controllers and control problems
did not increase in size as further updates were performed.

6.7 Workflow Management - Simple Example
Workflow management systems automate and coordinate
business processes to reduce costs and flow times. The
problem of changing workflows at runtime to respond to
changes in business goals is critical in this area [18, 31].
In [31] the essence of such a change is illustrated by an
example in which a workflow that allows concurrent exe-
cution of billing and shipping tasks needs to be replaced by
their sequential execution.
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If a workflow update is requested halfway through the
concurrent workflow and the ordering of tasks has occurred
inconsistently with the new sequential workflow, the update
may need to be deferred; this can be achieved automatically
by requiring an empty transition (T∅). However, it is also
possible to specify that the old specification should be
dropped as soon as possible and that any items that cannot
be processed according to the new specification be rolled-
back as follows: (OldSpecStopped ∧ ¬NewSpecStarted) ⇒
(G′ ∨ rollback).

6.8 Workflow Management - Industrial Case Study

This case study is a business workflow provided by an in-
dustrial partner. The workflow manages a complex approval
process that can take weeks to complete and is required
to coordinate different areas of the company that review
particular documents, create new ones and forward them to
other actors.

The process can be divided into three main phases that
correspond to the development and approval of three dif-
ferent documents: a Terms of Reference document (TOR),
a Decision Support Document (DSD) and a Gate Form
(GF). The documents themselves can be completed in any
order, but revision and approval of the documents must be
sequential: First TOR, then DSD and finally GF. At different
points, actors responsible for the validation of documents
can reject approvals or changes performed by other actors,
making the worflow go back to a previous state.

The workflow was provided as an activity diagram and
we converted it into a control problem. The environment
model was designed to describe the various actors involved
in the process with the assumption that each one, when
required to complete, validate, or approve a document,
would eventually do so. The goals encoded the precedence
relations between different tasks and also the various de-
cisions that can force tasks to be redone. We validated
the description by ensuring that the controller that was
synthesised was equivalent to the one provided by our
industrial partner.

A postulated workflow change, that was validated with
our industrial partner, involved inverting the order between
DSD and TOR approvals and adding additional backward
links depending on the Gatekeeper decisions upon review-
ing documents. The change scenario required additional
decisions regarding what to do when an instance is halfway
through its approval process, in particular when TOR has
been approved but not DSD. In this case, how should the
approval process continue? Should the TOR be approved
and then the DSD required to be approved again? Or should
the DSD approval be cancelled to then continue with TOR
and then DSD?

We constructed update controllers with different tran-
sition requirements. Naturally, transition requirement T>
allows an arbitrary treatment of half-processed instances.
To produce update scenarios where pending proposals
are forced to finish the flow satisfying the old specifi-
cation, T∅ can be used. Finally, the requirement transi-
tion T = (OldSpecStopped ∧ ¬NewSpecStarted) =⇒
(G′ ∨ reviewForms), produce controllers for immediatelly
satisfing new requirements, but if it is not possible, the

system will ask to the leader proposal to resend every
document.

6.9 Summary of Experience

Overall, 24 DCU synthesis problems were defined and
solved, corresponding to different choices of transition re-
quirements for each case study. In addition, we ran the
Metasocket example only for testing a multiple updates
scenario. We showed that resulting controllers after each
update did not increase the amount of states avoiding a
bloated controller. Table 1 summarises the case studies, the
size of the environment model that describes them, the size
of the resulting safe and live controller (Cu) and the time
it took to compute it. The table also shows the size and
synthesis time for the safe but not live controller (CSu ) for
each case study.

The majority of the safe and live controllers were syn-
thesised in a few seconds. Noteworthy examples of com-
putationally more complex controllers were those that had
over 100 Eu states. Maximum synthesis time was close to 5
minutes.

Note that the controller synthesised when liveness was
not required do not guarantee that update will eventually
occur. In other words, in all case studies, to guarantee that
dynamic update eventually occurs, an update controller that
actively guides the system towards a safe transition state
is needed. The cost of computing live controllers, when
compared to safe but not live ones, varies significantly. In
the majority of cases liveness did not greatly exacerbate the
time for computing a safe controller, however the worst
case was the workflow case study in which the synthesis
time for a live controller was 20 times that of the safe one,
approximately.

In addition, note that the synthesis algorithm is eager
when attempting to achieve liveness. In other words, the
controllers will attempt to perform an update in the least
number of actions. This is very different from the con-
trollers that only have safety requirements. The latter are
synthesised to be maximal (allow every safe trace). This
explains why the size of the live controllers were on average
60% smaller than the safe ones. A noteworthy example
is the GSM case study in which for one of the transition
requirements there was no reduction but a few more states.

7 DISCUSSION AND RELATED WORK

Dynamic software update has been studied extensively and
there are a plethora of different problems that must be
addressed depending on the application domain, technol-
ogy stack and the objective of the update (see [35] for a
survey). Approaches to dynamic update typically assume
that there is no specification change or it is not explicitly
provided [36, 37] and hence that the behaviour is to be
preserved (minus bugs to be fixed) (e.g., [38]), or that the
specification is generic (e.g., [1, 39, 40, 41, 42, 43]) and not
user provided. Examples of the latter, apart from ensuring
the update does not lead to crashes, ensure safety (e.g., [44])
and data isolation between versions [45]. Quiescence [1] and
related notions (e.g., [42, 43, 46]) do not originally deal with
an explicit representation of the properties to be preserved,
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Case Study Transition
Requirement |E|+ |E′| |d|+ |d′| |G|+ |G′| |T | |R| |Eu| |Eu‖Gu| |C| |CS

u | CS
u ms |Cu| Cu ms

Power Plant
T>

8 13 10
0

4 16
80

8
88 141 97 294

T∅ 8 66 72 153 52 241
Leaves pump on 11 49 56 146 34 319

Railcab
T>

34 18 42
0

21 63
728

21
731 482 346 730

T∅ 18 663 668 570 276 466246
brakes on update if late 5 750 744 289 360 763

Production
Cell

T>

14 21 43

0

7 23

469

9

467 542 189 551
No polished on update 3 419 411 270 174 617
Remove polished or G′ 5 798 795 440 227 5961

Update while Empty 2 291 293 217 - 787
T∅ 10 163 164 263 103 541

Keeps Old Spec 7 397 396 252 180 459

GSM
T>

17 2 2
0

8 25
81

8
76 99 83 117

T∅ 13 83 76 866 75 896
No send while update 6 78 74 123 74 143

Workflow Management
(simple)

T> 128 27 57 0 64 150 2782 22 2790 6412 592 7817
T∅ 17 176 182 3464 132 111895

Surveillance

T>

60 26 34

0

30 117

3226

56

3231 518 1287 992
T∅ 16 611 615 29960 365 30057

No move while update 7 2900 2907 696 1236 1005
No picture while update 7 1714 1718 684 1047 863

Workflow
Management

T>
240 13 29

0
120 304

3425
64

3420 388 3196 816
T∅ 11 1272 1264 543 1567 687

Resubmit documents 7 2881 2872 497 1844 6808

TABLE 1: Dynamic update controller synthesis report. |d| and |d′| are the number of fluents in the old/new specifications. |G|
and |G′| are the number of logic operators in the old/new specifications. |T | is the number of logic operators of the transition
requirement. |Eu‖Gu| is the number of states of the composition of Eu and the automata representation of Gu. The hyphen (-)
indicates an unrealizable controller.

but have been used in conjunction with techniques that
ensure semantic consistency (e.g., [47]).

The need for user-specified update properties has been
recognised by [11] where property specification is discussed,
[12, 48, 49] take manual or semi-automatic construction and
then verify approaches, while [13, 14, 50, 51] discuss fully
automatic synthesis.

A characterisation of different update property patterns
was presented in [11] where it is argue that different patterns
are applicable to different domains and update scenarios.
For instance, in an emergency scenario, an update may be
allowed to occur at any point in time and be required to
occur as soon as possible, this corresponds to the “one-
point” update property. In a planned update of, for instance,
an automated production line, it may be required that the
obligations of the current specification be satisfied before
switching to the new specification. This scenario is referred
to as “guided adaptation” as the system satisfying the cur-
rent specification must be guided to fulfil its remaining obli-
gations without acquiring new ones. The paper, however,
does not discuss synthesis, i.e., the construction of strategies
that fulfil these updates. In our work we can not only auto-
matically produce strategies for the various update property
patterns of [11] but also allow for additional scenarios they
did not consider: a period in which neither the current
specification nor the new one hold, but instead a transitional
period in which an alternative temporary invariant must
hold.

Others (e.g., [36, 48, 52, 53]) have considered the need
for a transition period between specifications in which
neither specification may hold. However, we provide a
framework for formally specifying the requirements for the
transition period and a synthesis algorithm that guarantees
its preservation. For instance, Neamtiu et al. in [36] an
update pattern for C programs is considered in which first
the user sends a signal to the running program; after that,
when the running system reaches a safe update point the
initialization code begins; and finally, the initialization code
“glues” the patch into the running program. The transition

requirements here are implicit and the initialization code
must be provided manually. Makris and Ryu [53] also have
a phasing update structure similar to that of Nematiu et
al. and ours. However, as before, the automation of these
phases and guaranteed correctness of the construction is a
key difference.

Zhang and Cheng [12] study the problem of building
control update strategies. Their approach is semi-automatic,
necessitating manual construction of “adaptation models”
that can then be verified against requirements and used to
construct programs. Ramirez et al. [49] build on this semi-
automatic approach producing a tool capable of selecting
and applying the best adaptation safe path that balances
non-functional requirements, based on cost values. Our
work could be extended to consider non-functional require-
ments by using quantitative control synthesis techniques
such as [54] and [55].

As in [13, 14, 50, 51] we consider the use of synthesis
to update a controller in a reactive system. In contrast
to [13, 14] that have a fixed notion of correctness, we
support user specified criteria for transition requirements.
Furthermore, we propose a technique for dynamic update
that assures that the system will reach a safe state by auto-
matically computing the necessary strategy to take it to such
a state even when the environment is not cooperative, while
in [13, 14, 15] it is assumed that safe states will be reached.
In [51], in addition to these liveness assumptions, there are
also strong restriction on the kinds of update patterns that
will occur. First, the assumptions for the new operating
environment are required to be strictly stronger than those
of the old environment. Second, they do not allow different
transition semantics presented in [11], they only support
“one-point” transitions. The notion of assuring liveness (the
update eventually happens) is a key distinguishing feature
of our approach with respect to other work on synthesis of
update strategies. Note that in [11] liveness is recognized as
a relevant aspect of update, but to the best of our knowledge
this is the first technique that addresses this issue.

Perhaps, the closest work to that of this paper is [13]
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and [14]; for this reason we have compared our approach
to theirs in Section 6 via case studies. [13] and [14] adopt
a very natural and general correctness criteria which re-
lieves the engineer from specifying transition requirements
(in contrast to our approach) but at the cost of limiting
the kind of updates that can be supported. In [13], if the
system cannot return to its initial state and has not exhibited
behaviour compatible with the new specification since the
last initial state, then it is not possible to update. The update
correctness criteria in [13] can be expressed as a transition
requirement in this approach, but additionally, progress
towards update can be guaranteed in our approach. In [14],
weakened update criteria with respect to that of [13] are
introduced to allow updates in systems where the initial
state is not re-visited. However, there is no guarantee that
the original correctness criteria (being equivalent to an
offline update) holds. The lack of guarantees requires an
engineer to validate the resulting controller. In our work, we
involve the engineer upfront and support the provision of
a specification of the correctness criteria for the update (T )
which is then guaranteed by construction (e.g., see Power
Plant in Section 6).

The problem of dynamic controller update is referred
to by the discrete event systems (DES) community as re-
configuration (e.g., [2, 3, 4]). This community recognises
the need for explicit requirements describing the transition
from one configuration to the next. However, much of this
work in this area assumes that the updates to be executed
are known at design time, hence one controller is built in
which all the updates to new controllers are precomputed.
For example, in [3], the current DES has a special event
for each available new configuration that when triggered
starts the update. Both [2, 3] pre-compute reconfigurations
that guarantee safety properties that can be expressed in our
framework as part of T (see Definition 4.1)

In contrast, in this paper we do not assume that the
new specification for which an update is to be performed
is known at design time. One of the difficulties of dropping
this assumption is that a strategy that must be viable for any
current state of the running system must be synthesised, and
an appropriate hot-swap mechanism must be put in place.
These are novel aspects of the work presented in this paper.

A notable exception to assuming design time knowledge
of updates in the DES community is [4] which is developed
in a Petri net framework. However, they assume that while
they are computing the update controller the current system
is frozen. This is clearly unrealistic in certain scenarios and
is a restriction that we overcome by hot swapping to a
controller that in its first phase (see Figure 5) is capable
of emulating the current controller and has a strategy for
updating from any of its states.

The dynamic update of controllers is related to dynamic
reconfiguration of software architectures. In controller up-
date, one component (i.e., the controller) is replaced and the
focus is on the behaviour that the system has as a result
of the coordination that the controller provides. One of
the aspects that may be coordinated is that of architectural
reconfiguration. In our work, we abstract this issue to a
reconfigure command. However, this can be a complex
process that may require its own planning and enactment.
Dynamic reconfiguration of software architectures is an ac-

tive field of study (e.g., [23, 56, 57, 58, 59]) that complements
that of controller update.

Synthesis has been used extensively to guarantee code
that is correct by construction (e.g., [60]). The fully auto-
mated nature of synthesis naturally leads to its potential
application, not only at design-time, but also at runtime as
a means to evolve software systems. Such evolution is not
limited exclusively to adaptive systems. For instance in [61]
the problem of evolving component assemblies is addressed
by synthesising glue code (i.e. controllers). Although syn-
thesis is performed without stopping the system, the new
controller can only be put in place once the system has
become quiescent.

Synthesis requires some sort of specification from which,
through different reasoning techniques, to produce a solu-
tion. The result of synthesis is correct only to the extent
that the specification is valid. Thus, synthesis techniques
are, in principle, not resilient to errors in specifications or
environments that evolve and diverge from the specifica-
tion. The work described in this paper is also susceptible
to invalid specifications. In the domain of adaptive systems,
approaches that can detect and deal with such situations
have been studied (e.g., [62, 63]) including how to learn new
specifications at runtime (e.g., [64]). The approach described
herein can be combined with such techniques.

In many situations, an unannounced change in the envi-
ronment can occur and updating the controller to accommo-
date this change is desirable. For example, communication
between a UAV and its base may be lost and as a result
part of the interface that the UAV controller relies upon
may be disabled. In these cases, a controller update must be
realised immediately and it may be impossible to continue
to guarantee the current goals or new goals. In [62] we
present an approach for gracefully degrading the guarantees
provided by the controller in such cases. However, the
technique requires that the controller and specification of
the degraded level preserve a refinement relation with the
current controller and specification. Such a requirement can
be restrictive and is not needed in our work. Furthermore,
in [62] all degradation layers must be known, specified
and synthesised at design time. Here, at runtime, a new
unanticipated degradation step may be decided, specified
(without requiring a refinement relation between E′ and E),
synthesised and deployed.

The linear time complexity of the DCU control problem
when applied to deterministic environments provides an
analytical argument to scalability. However, experimental
validation remains to be done, and in particular to assess
the practical need of introducing non-determinism as this
can produce an exponential explosion.

Our work on dynamic controller update has the potential
to address various of the problems identified in [65, 66, 67],
working at a higher level of abstraction complementing ap-
proaches that achieve adaptation using continuous variable
control techniques such as [68, 69, 70, 71].

In this paper we have restricted our discussion to avoid
general liveness goals as part of the current and new speci-
fications. This simplifies the presentation and also supports
a linear resolution complexity for DCU control synthesis,
if the control environment is deterministic. However, it is
possible to allow further expressiveness in G, G′ and T



NAHABEDIAN ET AL.: DYNAMIC UPDATE OF DISCRETE EVENT CONTROLLERS 19

without incurring the full penalty of solving control prob-
lems (2EXPTIME-COMPLETE). It is possible, for instance to
reformulate Definition 4.1 to allow specifications G, G′ and
T to include subformulas of the form 23ϕ. Such a büchi ac-
ceptance criteria extends significantly expressiveness while
remaining in a polynomial time complexity.

As mentioned, this paper is an extension of [16]. Here,
we completely recast the dynamic update problem in terms
of LTS and FLTL. In [16], we defined it over labelled transi-
tion Kripke structures. The reason for this change is that [16]
required the new specification to subsume (in terms of the
universe of state propositions) that of the old specification.
This in turn means that as a system gets updated, the spec-
ifications get bloated. This restriction is no longer needed
in the current formulation. In addition, we now provide
a proof showing the completeness and the correctness of
the presented technique. Finally, this paper also discusses
five more case studies (Section 6), including a real workflow
system provided by an industrial partner (see Section 6.8).

8 CONCLUSIONS

In this paper we define the correctness criteria for dynamic
controller update. We present a solution to the problem of
dynamically updating a controller to satisfy these criteria
based on controller synthesis. The solution guarantees sat-
isfaction of the new specification and any given transition
requirements provided by the user. Moreover, by taking
control of the system under the old specification and guid-
ing it to a safe state in which the update can start, it ensures
that the update will eventually occur satisfying the new
specification.

As future work we plan to investigate how to increase
the expressiveness of goals to include liveness but without
having to pay the price of general synthesis. We also intend
to investigate integration with other approaches that pro-
vide high-level adaptation capabilities to complex software
systems, such as techniques for runtime learning of environ-
ment behaviour and adaptation for quantitative properties.
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