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SUMMARY

A robust linear parameter varying (LPV) identification/invalidation method is presented. Starting from a given initial model,
the proposed method modifies it and produces an LPV model consistent with the assumed uncertainty/noise bounds and the
experimental information. This procedure may complement existing nominal LPV identification algorithms, by adding the
uncertainty and noise bounds which produces a set of models consistent with the experimental evidence. Unlike standard
invalidation results, the proposed method allows the computation of the necessary changes to the initial model in order to
place it within the consistency set. Similar to previous LPV identification procedures, the initial parameter dependency is
fixed in advance, but here a methodology to modify this dependency is presented. In addition, all calculations are made on
state-space matrices which simplifies further controller design computations. The application of the proposed method to the
identification of nonlinear systems is also discussed. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the introduction of new and effective synthesis
techniques more than a decade ago, linear parameter
varying (LPV) systems have awoken great interest. It
fits numerous design and analysis methods used for
linear time invariant (LTI) models in robust control (see
[1] and references therein). Besides, LPV models are
commonly used for ‘covering’ the description of many
nonlinear systems. However, the application of these
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tools in practical cases requires methodologies capable
of finding LPV models from experimental data.

Early attempts to identify LPV models which are not
based on the knowledge of a nonlinear model use linear
regression algorithms, Gray Box LPV identification,
plain optimization or even orthonormal basis functions
[2–7]. To solve the multi-input–multi-output (MIMO)
problem, an important area of research in the last years
is the identification through subspace methods. These
methods have the clear advantage that direct state-
space matrices are identified by means of algebraic
computations; hence, no optimization or convergence
problems need to be addressed. These methodologies
have already been applied to LPV models in [8, 9],
but its application is limited by the dimension of the
data matrices involved. To overcome these difficulties,
alternatives have been proposed as the use of periodic
scheduling sequences [10], piecewise linear (PWL)
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models [11, 12] and more recently in [13]. Further-
more, in [12], the problem derived from composing
individual single-input–single-output models into an
MIMO one is also addressed. A very recent overview
of this area can be found in [14]. In all these works,
a nominal LPV model is obtained, but no uncertainty
description is computed nor a worst-case criteria have
been used.

Further steps have been taken to include model
uncertainty, stating the problem in the framework
of robust identification: a deterministic, worst-case,
set-membership approach. Identification through inter-
polation in this framework has been explored in [15]. It
produces an LPV model from experimental and a priori
information, but with very conservative uncertainty
bounds. A subsequent invalidation step is required in
order to find less conservative bounds, in terms of
uncertainty and external noise bounds [16].

The present paper follows the identification guide-
lines introduced in [15]. Basically, the idea is to propose
a general LPV model structure and to compute its
system matrices such that the model is consistent with
the experimental data and the assumed uncertainty and
noise bounds. The main difference with the previous
algorithm in [15] is that the nominal model and the
uncertainty and noise bounds are found in a single step,
using the invalidation procedures presented in [16, 17].
On the other hand, the proposed procedure provides
the model directly in state-space form avoiding subse-
quent conversions from input–output descriptions [12].
As in any identification method where a model struc-
ture needs to be proposed, the selection of a model
structure is crucial. Hence, we introduce a systematic
procedure to select the model structure in order to find
the most adequate LPV model. Another topic discussed
here is the application of the proposed method to fit a
nonlinear system in an LPV model. This is a topic of
great practical importance because of the common use
of LPV techniques in the control of nonlinear processes,
which is explained by means of an example.

The paper is organized as follows. Following
section presents a brief background on LPV invali-
dation. Section 3 introduces the problem formulation
and the main results of this work. Practical imple-
mentation issues for the basis selection are derived
to the Appendix. Two examples are presented in

Section 4: a simulated LPV system that illustrates in
detail this methodology, and a nonlinear system based
on a Hi-Fi (high fidelity) helicopter simulator devel-
oped in [18]. Final conclusions and future research
directions end this presentation in Section 5.

2. BACKGROUND MATERIAL

This material has been extracted from [16, 17].
Consider an LPV system

G(�) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1= A(�k)xk+B1(�k)wk

+B2(�k)uk

zk =C1(�k)xk+D11(�k)wk

+D12(�k)uk

yk =C2(�k)xk+D21(�k)wk

+D22(�k)uk

(1)

with xk ∈Rns , zk ∈Rnz , yk ∈Rny , wk ∈Rnw , uk ∈Rnu

and �k ∈Rn� . The system (1) can also be represented by
its convolution kernel {gk,i }. The latter can be truncated
up to time k=n : {g0,g1, . . . ,gn} and represented by its
associated Toeplitz matrix as follows:

T n
G =

⎡
⎢⎢⎢⎢⎢⎣

g0,1 0 . . . 0

g1,2 g0,2 . . . 0

...
...

. . .
...

gn−1,n gn−2,n . . . g0,n

⎤
⎥⎥⎥⎥⎥⎦ (2)

Similarly, for a given signal sequence {hk}∈�2, its
truncated version can also be represented by its asso-
ciated Toeplitz matrix:

T n
h =

⎡
⎢⎢⎢⎢⎢⎣

h0 0 . . . 0

h1 h0 . . . 0

...
...

. . .
...

hn−1 hn−2 . . . h0

⎤
⎥⎥⎥⎥⎥⎦ (3)

With the previous definitions, the uncertain LPV
models depicted in Figure 1 can be described in a matrix

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 20:301–312
DOI: 10.1002/rnc



ROBUST IDENTIFICATION/INVALIDATION IN AN LPV FRAMEWORK 303

Figure 1. Identification/invalidation setup.

form as follows (the superscript n will be dropped from
here to simplify the notation):

Tz = TG11Tw +TG12Tu

Ty = TG21Tw +TG22Tu+Td

Tw = T�Tz

(4)

The uncertainty and external signal a priori sets are
defined as follows:

D� {�∈H∞ :‖�‖∞���1} (5)

D� {d∈Rr :‖d‖2/m<dmax} (6)

where m is the number of samples in the perturbation
signal d . The following theorem allows us to verify if
the uncertain model (4), the uncertainty set (5) and the
noise set (6) are consistent with the experimental data.
Here, vectors d, y, u and w represent their truncated
versions as follows: x=[xTo . . . xTn−1]T.
Theorem 2.1
Given time-domain measurements of the input u, the
output y and the time-varying parameter �, the LPV
model G(�) is not invalidated by this experimental
information if and only if there exists a vector w, such
that [

Y (w) T T
w

Tw (�−2 I −T T
G11

TG11)
−1

]
> 0

[
d2max dT

d I

]
> 0

(7)

where
d= y−TG21w−TG22u

Y (w) = T T
u T T

G12
TG12Tu+T T

u T T
G12

TG11Tw

+T T
w T T

G11
TG12Tu

The previous result is used to compute the lowest
bounds on the uncertainty and noise, either fixing
one bound and minimizing the other, or minimizing a
weighted combination of both bounds simultaneously.

3. MAIN RESULTS

3.1. Problem statement

Consider the robust LPV control-oriented identification
setup sketched in Figure 1. The signal u represents the
test input, y the output corrupted by the measurement
noise d and � corresponds to the time-varying param-
eter.

Our attention will be centred on the most common
uncertainty descriptions, i.e. additive and multiplicative
representations. Therefore, G11=0 and, for simplicity,
G21= I and the matrices associated with the input w

in the model (1) become B1=0, D11=0 and D21=
I .‡ The a priori error sets (uncertainty and disturbance
noise) are the ones previously described by Equations
(5) and (6), with �∈H

nz×nz∞ and dk ∈Rny .
It will be assumed that the system matrices in (1)

can be expressed as⎡
⎢⎣

A(�) 0 B2(�)

C1(�) 0 D12(�)

C2(�) I D22(�)

⎤
⎥⎦= SI(�)+SC(�) (8)

where

SI(�) =
⎡
⎢⎣

A0(�) 0 B2,0(�)

C1,0(�) 0 D12,0(�)

C2,0(�) I D22,0(�)

⎤
⎥⎦ (9)

‡This simplification has been made without loss of generality, but
more general situations may also be handled, as the case where
uncertainty input and output weights are included, i.e. B1 �=0,
G21 �= I .
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SC(�) =
N∑
i=1

fi (�)

⎡
⎢⎣

Ai 0 B2,i

C1,i 0 D12,i

C2,i 0 D22,i

⎤
⎥⎦ (10)

Matrices Ai , B2,i and the set of nonlinear functions
FN ={ fi , i=1, . . . ,N } are fixed beforehand and C1,i ,
D12,i , C2,i , D22,i are matrices to be determined.

The term SI(�) represents an LPV model which
could have been obtained by means of available identi-
fication algorithms or according to some a priori infor-
mation based on mathematical expressions describing
the dynamic behavior of the physical process.§ On the
other hand, SC(�) is a term to be determined such
that the complete model is consistent with the a priori
assumptions on the uncertainty and noise bounds and
with the a posteriori experimental information.

That is, given an initial LPV model SI for which the
bounds on the modeling errors have not been stated
yet, the objective is to find the term SC(�) that makes
the model governed by Equation (8) consistent with the
a priori and a posteriori information:

u=

⎡
⎢⎢⎢⎣
u0

...

un

⎤
⎥⎥⎥⎦ , y=

⎡
⎢⎢⎢⎣
y0

...

yn

⎤
⎥⎥⎥⎦ , q=

⎡
⎢⎢⎢⎣

�0

...

�n

⎤
⎥⎥⎥⎦

This approach has two possible interpretations. On
the one hand, it is a robust LPV identification algorithm

§Here SI is defined as an LPV model for generality, but it can
also be described by an LTI model.

in the sense that an LPV model and uncertainty/noise
bounds are computed based on a priori and a posteriori
information. The main difference with previous robust
LPV identification results [16] is that the nominal
model and the uncertainty/noise bounds are computed
via invalidation in only one step. This provides a
less conservative set of models in general and avoids
subsequent verifications. In addition, the identification
is completely addressed in a state-space context, more
convenient for MIMO systems and controller design.
On the other hand, the approach can be regarded as
a tool that complements other available identification
algorithms. That is, once a model is found by means
of these algorithms, the proposed procedure computes
the uncertainty/noise bounds as well as the necessary
changes to achieve consistency.

3.2. Consistency and robust LPV model identification

Based on the invalidation Theorem 2.1 and the previous
model definition, the following theorem proposes an
LPV identification procedure based on an initial model.

Theorem 3.1
Given time-domain sequences of the input u, the output
y and the parameter �, an initial model SI, Ai , B2,i
and a basis of nonlinear functions FN , the LPV model
(1) is consistent with the experimental data if and only
if there exists a sequence w and matrices C1,i , D12,i ,
C2,i and D22,i , such that:

[
T T
u X (�,C1,i ,D12,i )Tu T T

w

Tw �2 I

]
> 0 (11)

⎡
⎢⎢⎣

d2max [y−TG22(�,C2,i ,D22,i )u−w]T

[y−TG22(�,C2,i ,D22,i )u−w] I

⎤
⎥⎥⎦ > 0 (12)

where

X (�,C1,i ,D12,i )

=T T
G12

(�,C1,i ,D12,i )TG12(�,C1,i ,D12,i ) (13)
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TG12(�,C1,i ,D12,i )

=TG12,0(�)+
N∑
i=1

TG12,i (�,C1,i ,D12,i ) (14)

TG22(�,C2,i ,D22,i )

=TG22,0(�)+
N∑
i=1

TG22,i (�,C2,i ,D22,i ) (15)

with TG21,i and TG22,i depending linearly on the
unknowns C1,i , D12,i and C2,i , D22,i , respectively.

Proof
Replacing the matrices (8) in the impulsive response,
the Toeplitz matrices TG12 and TG22 become (14)–(15).
Then, matrix inequalities (11)–(12) result from
applying Theorem 2.1 to model (1) and replacement
of the perturbation d as a function of the uncertainty
input w, according to Equation (4). �

Note that because of the term

T T
G12, j

(�,C1, j ,D12, j )TG12,i (�,C1,i ,D12,i ) (16)

in X (�,C1,i ,D12,i ), Equation (11) is a bilinear matrix
inequality. These optimization problems may result in
difficult to solve, but there are several available algo-
rithms which may work [19]. Alternatively, it is possible
to obtain a relaxed version of Theorem 3.1 by elimi-
nating the nonlinear term (16). In fact, if the problem
(11)–(12) with X (·) replaced by

N∑
i=1

[T T
G12,0

(�)TG12,i (�,C1,i ,D12,i )

+T T
G12,i

(�,C1,i ,D12,i )TG12,0(�)]
+T T

G12,0
(�)TG12,0(�)

is feasible then the original optimization problem will
also be feasible.

According to Theorem 3.1, the model obtained is
consistent with both, the a priori noise and uncertainty
sets and the experimental data. This implies that the
model is inside the consistency set, and therefore the
algorithmic identification procedure is known as inter-
polatory. It is a well-known fact that all interpolatory
algorithms have a worst-case identification error which

is bounded by the diameter of informationD(I ). Hence,
these are convergent in the sense that the worst-case
error vanishes as the data increases (n→∞) and the
measurement error vanishes (dmax→0) (see details [20,
Chapter 10]). A generalization of this concept to LPV
models can also be found in [16].

The results in this section require proposing an
initial model and a basis of nonlinear functions FN .
As mentioned previously, the initial model can be
obtained by means of the available identification algo-
rithms or the mathematical expressions describing the
physical phenomena. On the other hand, the basis of
functions can be selected based on physical insight
or following the procedure proposed in the Appendix.
In addition, this procedure can be used to ‘cover’ a
nonlinear system by an LPV representation in order to
design a gain scheduled controller, as illustrated in the
second example.

4. EXAMPLES

Here we apply the method to two different examples.
The first one illustrates the case of a pure LPV system.
The second example is a nonlinear system based on a
Hi-Fi helicopter simulator developed in [18].

4.1. Example 1

In this first example, the proposed methodology is illus-
trated with simulated data from the following two-input
two-output LPV system

xk+1 =
[

0 1

−(0.3+0.01�1,k) −(0.6+0.6�2,k)

]
xk

+
[
1 0

0 1

]
uk (17)

yk =
⎡
⎣�22,k 0

0 1

⎤
⎦ xk

The system has been excited with a pulse signal at
the input u and a decreasing time-varying parameter
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Figure 2. Parameter trajectory corresponding to Example 1.

trajectory (Figure 2) to record the ‘experimental data’.
The following initial LPV model has been proposed:

SI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 1 0

−0.3 −0.6 0 0 0 1

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−0.01 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�1,k

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 −0.6 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�2,k (18)

The uncertainty and noise sets are defined by
Equations (5)–(6), with W� =0.01 (i.e. 1% of

relative uncertainty). For a clearer result interpretation,
measurement noise has not been included in this stage.
In this circumstance, by adding enough nonlinear terms
in SC, the algorithm should find the matrices C1,i ,
D12,i , C2,i , D22,i that achieve a perfect fit with noise
and uncertain bounds close to zero.

In order to evaluate the effectiveness of the algo-
rithm, several basis of functions have been tested. The
results obtained in each case are summarized in Table I.
In the second and third columns, the uncertainty and
noise bounds are listed, respectively. These results
indicate that as more nonlinear terms are included in
the functions basis, the bounds decrease to zero and
thus the model responses become closer to the ‘exper-
imental data’. In particular, it can be observed that
when the basis of functions include all terms present
in the real model, the algorithm, in the case of absence
of noise, is capable of finding a model that perfectly
matches the real one. In fact, the computed nonlinear
terms are:

SC =
⎡
⎢⎣

0 0 0

C1,1 0 D12,1

C2,1 0 D22,1

⎤
⎥⎦�1,k�2,k

+
⎡
⎢⎣

0 0 0

C1,2 0 D12,2

C2,2 0 D22,2

⎤
⎥⎦�21,k

+
⎡
⎢⎣

0 0 0

C1,3 0 D12,3

C2,3 0 D22,3

⎤
⎥⎦�22,k (19)
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Table I. Uncertainty and noise bounds for several models in
Example 1 (in absence of noise).

Model � dmax

(i) Affine LPV 0.217 0.505
(ii) LPV with terms �1, �2, �1�2 0.238 0.472

(iii) LPV with terms �1, �2, �1�2, �21 0.217 0.468

(iv) LPV with terms �1, �2, �1�2, �21, �22 0.000 0.000

Figure 3. Step response of the several model in Table I.

with

C1,1 =C2,1=
[
0.0000 0.0001

0.0001 0.0001

]

D12,1 =D22,1=
[−0.0000 0.0000

−0.0009 −0.0041

]

C1,2 =C2,2=
[
0.0000 0.0001

0.0001 0.0001

]

D12,2 =D22,2=
[−0.0000 −0.0000

−0.0004 −0.0053

]

C1,3 =C2,3=
[
1.0000 0.0002

0.0001 0.0001

]

D12,3 =D22,3=
[−0.0000 −0.0000

−0.0005 0.0122

]

This shows that the algorithm has found a model really
close to the actual system. Similar conclusions can be
drawn from Figure 3, where the step responses of each
model subject to the parameter trajectory shown in
Figure 2 are displayed. It can be seen that the responses
of the system and model (iv) are coincident.

With the aim of checking the algorithm in a less
ideal case, the same ‘experiment’ was repeated with the
measurement output corrupted by white noise (0,0.1).
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Table II. Noise and uncertainty bounds for several models in Example 1 (with noise).

Model � dmax

(i) Affine LPV 0.308 0.627
(ii) LPV with terms �1, �2, �1�2 0.654 0.583

(iii) LPV with terms �1, �2, �1�2, �21 0.438 0.565

(iv) LPV with terms �1, �2, �1�2, �21, �22 0.437 0.308

The results obtained are listed in Table II. It can be
noted that although it is not possible to achieve a perfect
fit as previously, the results show a similar trend to the
values in Table I. In this case, model (iv) achieves the
lowest bounds and results in the best representation of
the dynamic behavior of the system.

4.2. Example 2

In the second example, we investigate the application
of Theorem 3.1 to nonlinear systems. With this aim,
consider a nonlinear system linearized around a trajec-
tory defined by an input u∗ and the corresponding
values of the states x∗. Assuming that x∗ is a one-
to-one function of u∗, we can model the nonlinear
system as

x̂k+1 = A(u∗
k)x̂k+B2(u

∗
k)ûk

zk = C1(u
∗
k)x̂k+D12(u

∗
k)ûk

yk = C2(u
∗
k)x̂k+wk+D22(u

∗
k)ûk+�(u∗

k)

(20)

where x̂= x−x∗ and û=u−u∗. Basically, model
(20) fits the LPV representation (1) except for the
term �(u∗

k). This shows the main difference between
LPV models and nonlinear ones, the latter having
equilibrium points different from the origin. Therefore,
the identification methodology presented previously
can be applied to nonlinear systems of the form
(20) which generalizes model (1), with a small
modification.

In this second example, a Hi-Fi simulation of
a 6-DOF model of an autonomous helicopter [18]
is analyzed. This system is described by complex
nonlinear expressions and presents an open-loop
unstable behavior. The model has 11 states: Euler

angles, angular velocities and accelerations, and the
angles describing the orientation of the main rotor.
In order to simplify the data recollection, an LQR
controller was included to stabilize the system. In this
circumstances, the system was excited by the reference
angles and only the Euler angles were measured.
Therefore, the resulting system has three inputs
and three outputs. The model in this case has been
parameterized by the input u∗. The nonlinear model
information was not used in any circumstance, only the
result of the simulated ‘experiments’ performed on the
simulation. As in the previous example, the simulated
output was corrupted by zero mean white noise and
variance 0.5.

The system was excited by u∗ with the signal shown
in Figure 4 plus a random signal û of zero mean value.
The initial model has been computed by means of
PWL identification [11]. In the first step, the system is
excited by a square wave, which forces the operation
to the limits of the parameter space, thus, identifying
LTI models to construct a first LPV model. The second
portion of u∗ allows the computation of the nonlinear
gain �(·), while the input of the LPV model is zero
(û≡0). Finally, the last section of u∗ is used to test the
proposed LPV model for invalidation.

Since the model is parameterized by u∗, the nonlinear
gain �(·) should also be determined before checking
the invalidation of any LPV model. This nonlinear gain
was computed by means of a polynomial fitting, which
results in the following functions:

�(u∗)=

⎡
⎢⎢⎣
0.167−0.881u∗

2u
∗
3

0.016−0.757u∗
3

0.010−0.940u∗
3

⎤
⎥⎥⎦
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Figure 4. Parameter sequence used to excite the system in Example 2.

Table III. Noise and uncertainty bounds for several models in Example 2.

Model � dmax

(i) Affine LPV 0.992 0.432
(ii) LPV with terms u∗

1, u
∗
2, u

∗
3, u

∗
1u

∗
2 0.214 0.370

(iii) LPV with terms u∗
1, u

∗
2, u

∗
3, u

∗
1u

∗
2, u

∗
1u

∗
3 0.214 0.370

(iv) LPV with terms u∗
1, u

∗
2, u

∗
1u

∗
2 0.221 0.392

In Table III, the uncertainty and noise bounds
obtained with several basis of functions are listed. As
in the previous example, Ai and B2,i have been set
to 0. These results indicate that the inclusion of the
multiaffine term u∗

1u
∗
2 in SC is useful to reduce the

uncertainty and noise bounds, specially the first one.
It can also be observed that the inclusion of additional
multiaffine terms does not improve the model fit. The
first test produces an affine LPV model, which is

more practical for further controller design. If a lower
disturbance bound is sought, the model (ii) is a better
option at the expense of a more complex model. On the
other hand, the results in the last row in Table III show
that the invalidation results are almost identical when
simplifying the model by eliminating the parameter u∗

3.
As a conclusion, the results indicate that an affine LPV
model is good enough to explain the data, depending
on the desired noise bound.
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Figure 5. Responses of the real model (black lines) and the model (ii) (gray lines) in Example 2.

Figure 5 shows the responses of the system and
the model (ii) to a series of consecutive doublet
signals in each Euler angle, a typical test signal in
aeronautics. Parameter trajectory u∗ is the same used
in the invalidation stage in Figure 4. In this case, the
response of the model does not perfectly match the
response of the system, but the observed differences
are within the computed uncertainty and noise bounds.
Note that the use of norm-2 criteria permits local devi-
ations and therefore a typical response convergence
like those observed in other identification methods is
rather unlikely.

Finally, it can be observed that the resulting model is
not invalidated only for trajectories as fast as the signal
in Figure 4, which therefore provides a consistent bound
on the parameter rate. This last issue can be useful for
further controller designs applied to this model that use
this type of information [21].

5. CONCLUSIONS

A robust LPV identification method has been presented,
based on invalidation concepts. The methodology
is able to compute a model consistent with the
uncertainty/noise bounds and a given model structure.
A procedure that gradually increase the complexity of
the model is discussed in order to help in the selection
of the model structure. For fixed uncertainty and
noise bounds and depending on the system under test,
the LPV model could have constant parameters, i.e.
LTI, affine parameter dependency, or more complex
parameter dependency, i.e. multilinear, quadratic,
etc., in order to make the model consistent with the
experiment. Otherwise, increasing the uncertainty
bound may simplify the parameter dependency of the
model in order to use simpler control design methods,
e.g. affine LPV models. Of course, the controller
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synthesis simplification has a cost: the resulting perfor-
mance of the closed-loop system will in general be
lower. The application to nonlinear systems with
the aim of designing gain scheduling controllers has
also been discussed.

APPENDIX A

A.1. Practical implementation issues: selection of the
basis of functions

A simple methodology to select the basis of functions
FN in those cases where the use of physical insight
is not possible is described next. Basically, the idea is
to apply Theorem 3.1 iteratively in order to find an
adequate basis of functions. Given the initial nominal
model as well as external noise and uncertainty sets,
we propose a basis of functions and check consistency
with Theorem 3.1. If the nominal LPV model obtained
by adding the term SC(�) is not consistent, then new
terms are added to the basis and again consistency is
tested. The procedure continues until a model that does
not invalidate the experimental information is obtained.
This iterative methodology allows to increase gradually
the complexity of the model only when necessary.

A natural choice is the gradual selection of compo-
nents from the basis of polynomial functions of �k =
[�1,k, . . . ,�n�,k]T∈Rn� . The iterative selection would
be as follows:

F1 = {1} (LTI)

F2 = {1,�1} (affine LPV)

... = ...

Fn�+1 = {1,�1, . . . ,�n�
} (affine LPV)

Fn�+2 = {1,�1, . . . ,�n�
,�1�2} (multilinear LPV)

... = ...

Fn�+n� = {1,�1, . . . ,�n�
,�1�2,�1�3, . . . ,

�1�n�
} (multilinear LPV)

... = ...

Finally, the methodology can be summarized in the
following algorithm.

Test the consistency of the initial model SI(�) against
the experimental measurements {u,y} and the assumed
uncertainty/noise sets using Theorem 2.1.

if the model is not invalidated then
The dynamic behavior of the system can be covered
by the initial model SI(�k) and the uncertainty/noise
bounds, and the procedure ends.

else
Set N =1 in (10), fix (A1, B2,1) and compute a new
LPV model according to Equation (8) with the use
of Theorem 3.1.
while the LPV model is not found do
Increase N and define new pairs (AN , B2,N ), and
apply Theorem 3.1 to find a new LPV model.

end while
The dynamic behavior of the system can be covered
by the model SI(�)+SC(�) and the uncertainty/
noise bounds, and the procedure ends.

endif

In order to investigate if there exists a simpler model
consistent with the experimental data, we can gradually
eliminate parameters in the resulting model and check
its consistency.
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