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A FREE BOUNDARY PROBLEM FOR THE p(x)- LAPLACIAN

JULIÁN FERNÁNDEZ BONDER, SANDRA MARTÍNEZ AND NOEMI WOLANSKI

Abstract. We consider the optimization problem of minimizing
R

Ω
|∇u|p(x) + λχ{u>0} dx in

the class of functions W 1,p(·)(Ω) with u − ϕ0 ∈ W
1,p(·)
0 (Ω), for a given ϕ0 ≥ 0 and bounded.

W 1,p(·)(Ω) is the class of weakly differentiable functions with
R

Ω
|∇u|p(x) dx < ∞. We prove

that every solution u is locally Lipschitz continuous, that it is a solution to a free boundary
problem and that the free boundary, Ω ∩ ∂{u > 0}, is a regular surface.

1. Introduction

In this paper we study a free boundary problem for the p(x)−Laplacian. The p(x)−Laplacian,
is defined as

(1.1) ∆p(x)u = div(|∇u(x)|p(x)−2∇u).

This operator extends the classical Laplacian (p(x) ≡ 2) and the so-called p−Laplacian (p(x) ≡ p
with 1 < p < ∞) and it has been recently used in image processing and in the modeling of
electrorheological fluids.

For instance, Chen, Levin and Rao [11] proposed the following model in image processing

E(u) =

∫

Ω

|∇u(x)|p(x)

p(x)
+ |u(x) − I(x)| dx→ min

where p(x) is a function varying between 1 and 2. It is chosen p(x) next to 1 where there is
likely to be edges and next to 2 where it is likely not to be edges.

Observe that the Euler-Lagrange equation associated to E is the p(x)−laplacian.

For the modeling of electrorheological fluids, see [31].

On the other hand, a free boundary problem associated to the p(x)−Laplacian, was studied in
[21] namely, the obstacle problem. In that paper, existence and Hölder continuity of minimizers
was proved. No further regularity was studied.

To our knowledge, no other free boundary problem associated to this operator has been
analyzed up to date.

This paper is devoted to the study of the so-called Bernoulli free boundary problem, that is

(1.2)

{
∆p(x)u = 0 in {u > 0}

u = 0, |∇u| = λ∗(x) on ∂{u > 0}.

where λ∗ is a given function away from zero and infinity.
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This free boundary problem, in the linear case p(x) ≡ 2, was first studied by A. Beurling in
[9] for N = 2.

Still in the linear setting and for N ≥ 2, this problem was analyzed by H. Alt and L. Caffarelli
in the seminal paper [4]. In that work, the authors prove existence of a weak solution by
minimizing the functional

u 7→

∫

Ω

|∇u|2

2
+

(
λ∗(x)

)2

2
χ{u>0} dx.

Then, they prove local Lipschitz regularity of weak solutions and, when λ∗ is Cα, they prove
the C1,α regularity of the free boundary up to some negligibly set of possible singularities.

Later, in [5], these results were extended to the quasilinear uniformly elliptic case.

Problem (1.2) with p(x) ≡ p was addressed in [12], where the same approach was applied to
obtain similar results in the p−Laplacian case. In that paper, the authors had to deal with the
problem of the degeneracy or singularity of the underlying equation.

Recently, the method was further extended in [29], where this free boundary problem for
operators with non-standard growth was treated in the setting of Orlicz spaces.

The Bernoulli free boundary problem, appears in many different applications, such as limits
of singular perturbation problems of interest in combustion theory (see for instance, [8, 25, 26])
fluid flow e.g. the problem of jets (see for instance [6, 7]) and some shape optimization problems
with a volume constrain (see for instance, [2, 3, 18, 19, 24, 28, 30]).

In this work, in order to analyze the Bernoulli free boundary problem (1.2), we follow the
same approach as in the previously mentioned works and prove optimal regularity of solutions
and C1,α regularity of their free boundaries.

So we consider the following minimization problem: For Ω a smooth bounded domain in R
N

and ϕ0 a nonnegative function with ϕ0 ∈ L∞(Ω) and
∫
Ω |∇ϕ0|

p(x) dx < ∞, we consider the
problem of minimizing the functional,

(1.3) J (u) =

∫

Ω

|∇u|p(x)

p(x)
+ λ(x)χ{u>0} dx

in the class of functions

K =
{
v ∈W 1,p(x)(Ω): v − ϕ0 ∈W

1,p(x)
0 (Ω)

}
.

For the definition of the variable exponent Sobolev spaces, see Appendix A.

In order to state the main results of the paper, we need to introduce some notation and
assumptions.

Assumptions on p(x). Throughout this work, we will assume that the function p(x) verifies

(1.4) 1 < pmin ≤ p(x) ≤ pmax <∞, x ∈ Ω

When we are restricted to a ball Br we use p− = p−(Br) and p+ = p+(Br) to denote the infimum
and the supremum of p(x) over Br.

We also assume that p(x) is continuous up to the boundary and that it has a modulus of
continuity ω : R → R, i.e. |p(x) − p(y)| ≤ ω(|x − y|) if |x − y| is small. At several stages it is
necessary to assume that p is log-Hölder continuous. This is, w(r) = C(log 1

r )−1.
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The precise assumptions on the modulus of continuity ω will be clearly stated in each section.

For our main result we need to assume further that p(x) is Lipschitz continuous in Ω. In that
case, we denote by L the Lipschitz constant of p(x), namely, ‖∇p‖L∞(Ω) ≤ L

Assumptions on λ(x). In the firsts sections we will only need λ(x) to be bounded away from
zero and infinity. We denote 0 < λ1 ≤ λ(x) ≤ λ2 <∞ for x ∈ Ω.

We will assume in the last part that λ(x) is Hölder continuous.

Main Results. Our first result gives the existence of a minimizer and, under the assumption
of Lipschitz continuity of p(x) and that p(x) ≥ 2, the Lipschitz regularity of minimizers.

Theorem 1.1. We prove

• Assume that p(x) is log-Hölder continuous. Then, there exists a minimizer of J in K.
Any such minimizer u is nonnegative, bounded and locally Hölder continuous.

• Under the same assumptions, any minimizer u is globally p(x)−subharmonic and

∆p(x)u = 0 in {u > 0}.

• If p ∈ C0,1(Ω) then, every minimizer is nondegenerate (see Corollary 4.2).

• If moreover p(x) ≥ 2 in Ω, then u belongs to C0,1
loc (Ω).

Our second result states that Lipschitz, nondegenerate minimizers of (1.3) are weak solutions
to (1.2).

Theorem 1.2. Assume that p(x) is Hölder continuous and that λ(x) is continuous.

Let u be a nondegenerate, locally Lipschitz continuous minimizer of (1.3). Then, {u > 0} has
finite perimeter locally in Ω and HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Moreover, for every x0 ∈ ∂red{u > 0}, (this is, for every x0 where there is an exterior unit
normal ν(x0) to ∂{u > 0} in the measure theoretic sense), u has the following asymptotic
development,

(1.5) u(x) = λ∗(x0)〈x− x0, ν(x0)〉
− + o(|x− x0|) as x→ x0

where λ∗(x) =
(

p(x)
p(x)−1 λ(x)

)1/p(x)
.

Finally, for every φ ∈ C∞
0 (Ω), there holds

−

∫

{u>0}
|∇u|p(x)−2∇u∇φdx =

∫

∂red{u>0}
(λ∗(x))p(x)−1φdHN−1.

That is, u is a weak solution to (1.2) in the sense of distributions.

Now, we arrive at the last result of the paper. Namely, the regularity of the free boundary
∂{u > 0} for Lipschitz minimizers of (1.3).

Theorem 1.3. Let p(x) be Lipschitz continuous, λ(x) be Hölder continuous, and u be a locally
Lipschitz continuous minimizer of (1.3). Then, for HN−1−almost every point in the free bound-
ary ∂{u > 0} there exists a neighborhood V such that V ∩ ∂{u > 0} is a C1,γ surface, for some
γ > 0.
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Technical comments. We finish this introduction with some comments on the technical dif-
ficulties that we have encountered when dealing with the p(x)−Laplacian, highlighting the dif-
ferences in the arguments with respect to the previous works on Bernoulli-type free boundary
problems.

• As mentioned in the Appendix A, the log-Hölder continuity is a key ingredient in order
to deal with variable exponent Sobolev spaces. For instance, up to date, this is the
minimum requirement in order to have that C∞ be dense in Lp(·). See [15].

• One fundamental tool in the analysis of this free boundary problem is the use of barriers.
In order to construct barriers one has to look at the operator in non-divergence form.
See [5, 12, 29], etc. In the p(x)−Laplacian case, in order to write the equation in non-
divergence form, one has to be able to compute the derivative of p(x). Therefore, the
assumption that p(x) be Lipschitz continuous becomes natural. See Remark B.3.

• Probably, the main technical difficulty that we have encountered is the fact that the
class of p(x)− harmonic functions is not invariant under the scaling u(x) 7→ u(tx)/k if
t 6= k. In [12, 29] this invariance was used in a crucial way in the proof of the Lipschitz
continuity of the solutions. See, for instance, the proof of Lemma 3.2 in [12].

In order to overcome this difficulty we went back to the ideas in [4], but we are left
with the additional technical assumption that p(x) ≥ 2 in order to get the Lipschitz
continuity of the minimizers.

• As for Harnack’s inequality in the case of p(x)−harmonic functions, the inequality that
holds is analogous to Harnack’s inequality for the nonhomogeneous Laplace equation.
Moreover, the constant in this inequality is not universal, but depends (in a nontrivial
manner) on the L∞ norm of the solution. Nevertheless, the constant in Harnack’s
inequality remains invariant under homogenous scalings of a solution, see Remark B.2.

• We are not aware of the validity of the strong minimum principle for p(x)−harmonic
functions (it does not come out of Harnack’s inequality). This property was used at
several stages in previous works. In our new arguments we use instead the nondegeneracy
of minimizers (see Lemma 4.3), which is valid for any p(x) > 1. With this property we
can prove, for instance, Corollary 4.3 which is a crucial step to obtain the Lipschitz
regularity of minimizers.

• We believe that the hypothesis p(x) ≥ 2 –that is needed in order to obtain the Lipschitz
regularity of minimizers– is purely technical. This assumption is only used in Lemma 4.2.
If one is able to prove this lemma for a general p(x), this assumption can be eliminated.

• There is another step where the hypothesis that p(x) be Lipschitz is crucial. Namely, in
order to obtain the result on the regularity of the free boundary one needs a differential
inequality for a function of the gradient. In this paper we prove that if u is p(x)-harmonic
and if v = |∇u| is far from zero and infinity, then v is a subsolution of an elliptic equation
with principal part in divergence form (see Lemma B.5). In order to prove this result
we need to differentiate the equation, and therefore we need p(x) to be Lipschitz.

• As in [4], the hypothesis λ(x) Hölder continuous is needed in the proof of the regularity of
the free boundary in Section 8. Note that this is a natural assumption if one expects the
C1,α regularity of the free boundary to imply the Cα continuity of ∇u up to ∂{u > 0}.

Outline of the paper. First, in Section 2, under the assumption of log-Hölder continuity of
p(x), by using standard variational arguments, we prove the existence of a minimizer for J in
the class K. Then, we show that every minimizer is p(x)−subharmonic and bounded.
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In Section 3, we analyze the regularity properties of minimizers and prove, under minimal
assumptions on p(x), that minimizers are Hölder continuous (Theorem 3.2). As a consequence,
we deduce that u is p(x)−harmonic in {u > 0}.

In Section 4, we further analyze the regularity of minimizers. This time, under the assumption
that p(x) is (locally) Lipschitz continuous, we first prove that u is nondegenerate near a free
boundary point (Corollary 4.1). Then, assuming further that p(x) ≥ 2, we prove that u is locally
Lipschitz continuous (Theorem 4.1). This completes the proof of Theorem 1.1.

In Sections 5, 6 and 7 we assume that u is a Lipschitz non-degenerate minimizer and that p
is locally Hölder continuous.

In Section 5, we begin the proof of Theorem 1.2 and show the positive density of {u > 0} and
{u = 0} at every free boundary point (Theorem 5.1).

In Section 6 we study the measure Λ = ∆p(x)u and prove that it is absolutely continuous with

respect to HN−1⌊∂{u > 0}. Then, we deduce that almost every point on the free boundary
belongs to the reduced free boundary (Lemma 6.2).

In Section 7, we finish the proof of Theorem 1.2 by proving the asymptotic development of u
near a free boundary point in the reduced boundary.

Finally, Section 8 is devoted to the proof of Theorem 1.3.

We finish this paper with a couple of appendices with some previous and some new results
about p(x)−harmonic and subharmonic functions, that can be of independent interest.

2. The minimization problem

In this section we look for minimizers of the functional J . We begin by discussing the existence
of extremals. Next, we prove that any minimizer is a subsolution to the equation Lu = 0 and
finally, we prove that 0 ≤ u ≤ supϕ0.

Theorem 2.1. Let p ∈ C(Ω) and 0 < λ1 ≤ λ(x) ≤ λ2 < ∞. If J (ϕ0) < ∞ there exists a
minimizer of J .

Proof. The proof of existence is similar to the one in [29]. Since we are dealing with the Sobolev
variable exponent, we write it down for the reader’s convenience.

Take a minimizing sequence (un) ⊂ K, then J (un) is bounded, so
∫
Ω |∇un|

p(x) and |{un > 0}|
are bounded. As un = ϕ0 in ∂Ω, we have by Remark A.1 that ‖∇un − ∇ϕ0‖p(x) ≤ C and
by Lemma A.1 we also have ‖un − ϕ0‖p(x) ≤ C. Therefore, by Theorem A.1 there exists a

subsequence (that we still call un) and a function u0 ∈W 1,p(·)(Ω) such that

un ⇀ u0 weakly in W 1,p(·)(Ω),

and by Theorem A.2

un ⇀ u0 weakly in W 1,pmin(Ω).

Now, by the compactness of the immersion W 1,pmin(Ω) →֒ Lpmin(Ω) we have that, for a subse-
quence that we still denote un,

un → u0 a.e. Ω.

As K is convex and closed, it is weakly closed, so u0 ∈ K.
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Moreover,

{u0 > 0} ⊂ lim inf
n→∞

{un > 0} so that

χ{u0>0} ≤ lim inf
n→∞

χ{un>0}.

On the other hand,
∫

Ω

|∇u0|
p(x)

p(x)
dx ≤ lim inf

n→∞

∫

Ω

|∇un|
p(x)

p(x)
dx.

In fact,

(2.6)

∫

Ω

|∇un|
p(x)

p(x)
dx ≥

∫

Ω

|∇u0|
p(x)

p(x)
dx+

∫

Ω
|∇u0|

p(x)−2∇u0 · (∇un −∇u0) dx.

Recall that ∇un converges weakly to ∇u0 in Lp(·)(Ω). Now, since |∇u0|
p(x)−1 ∈ Lp′(·)(Ω), by

Theorem A.1 and passing to the limit in (2.6) we get

lim inf
n→∞

∫

Ω

|∇un|
p(x)

p(x)
dx ≥

∫

Ω

|∇u0|
p(x)

p(x)
dx.

Hence

J (u0) ≤ lim inf
n→∞

J (un) = inf
v∈K

J (v).

Therefore, u0 is a minimizer of J in K. �

Lemma 2.1. Let 1 < p(x) < ∞ and 0 ≤ λ(x) < ∞. Let u be a local minimizer of J . Then, u
is p(x)−subharmonic.

Proof. Let ε > 0 and 0 ≤ ξ ∈ C∞
0 . Using the minimality of u we have

0 ≤
1

ε
(J (u− εξ) − J (u)) ≤

1

ε

∫

Ω

|∇u− ε∇ξ|p

p
−

|∇u|p

p
dx

≤ −

∫

Ω
|∇u− ε∇ξ|p−2∇(u− ε∇ξ)∇ξ dx

and if we take ε→ 0 we obtain

0 ≤ −

∫

Ω
|∇u|p−2∇u∇ξ dx

�

Lemma 2.2. Let p be log-Hölder continuous, 1 < p(x) <∞, 0 ≤ λ(x) <∞ and u a minimizer
of J in K. Then, 0 ≤ u ≤ sup

Ω
ϕ0.

Proof. The proof follows as in Lemma 1.5 in [5] once we show that the functions min(M − u, 0)

and min(u, 0) are in W
1,p(·)
0 (Ω), where M = supΩ ϕ0.

But this fact follows from Corollary 3.6 and Theorem 3.7 in [14]. �
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3. Holder continuity

In this section we study the regularity of the minimizers of J .

As a first step, we prove that minimizers are Hölder continuous provided the function p is
log–Hölder continuous. We use ideas from [1] and [12].

Theorem 3.1. Assume p has modulus of continuity ω(r) = C log(1r )−1. Then, for every 0 <
γ0 < 1, there exist r0(γ0, pmin) and ρ0 = ρ0(r0, γ0) such that, if u is a minimizer of J in
Br0 then, u ∈ Cγ0(Bρ0). Moreover, if M > 0 is such that ‖u‖L∞(Br0 )

≤ M there exists C =

C(N, pmin, pmax, ω(r), λ2,M, γ0) such that ‖u‖Cγ0 (Bρ0 )
≤ C.

Proof. We will prove that there exist r0 and ρ0 as in the statement such that, if ρ ≤ ρ0 and
‖u‖L∞(Br0 )

≤M then,

(3.7)
(

–

∫
–
Bρ

|∇u|p− dx
)1/p−

≤ Cργ0−1

where p− = p−(Br0).

In fact, let 0 < r ≤ r0 and v be the solution of

(3.8) ∆p(x)v = 0 in Br, v − u ∈W 1,p
0 (Br).

Let us(x) = su(x) + (1 − s)v(x). By using that v is a solution of (3.8) we get,

(3.9)

∫

Br

|∇u|p

p
−

|∇v|p

p
dx =

∫ 1

0

ds

s

∫

Br

(
|∇us|p−2∇us − |∇v|p−2∇v

)
· ∇(us − v) dx.

By a standard inequality (see Remark B.1 ) we have that,

(3.10)

∫

Br

|∇u|p

p
−

|∇v|p

p
dx ≥C

(∫

Br∩{p≥2}
|∇u−∇v|p dx

+

∫

Br∩{p<2}
|∇u−∇v|2

(
|∇u| + |∇v|

)p−2
dx

)
,

where C = C(pmin, pmax, N).

Therefore, by the minimality of u, we have (if A1 = Br ∩ {p < 2} and A2 = Br ∩ {p ≥ 2})
∫

A2

|∇u−∇v|p dx ≤ Cλ2r
N(3.11)

∫

A1

|∇u−∇v|2(|∇u| + |∇v|)p−2 dx ≤ Cλ2r
N(3.12)

Let ε > 0. Take ρ = r1+ε and suppose that rε ≤ 1/2. Take η to be chosen later. Then, by
Young inequality and the definition of A1 we obtain,

(3.13)

∫

A1∩Bρ

|∇u−∇v|p dx ≤
C

η

∫

A1∩Br

(|∇u| + |∇v|)p−2|∇u−∇v|2 dx

+ Cη

∫

Bρ∩A1

(|∇u| + |∇v|)p dx

≤
C

η
rN + Cη

∫

Bρ∩A1

(|∇u| + |∇v|)p dx.
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Therefore, by (3.11) and (3.13), we get,

(3.14)

∫

Bρ

|∇u−∇v|p dx ≤
C

η
rN + Cη

∫

Bρ∩A1

(|∇u| + |∇v|)p dx.

where C = C(λ2, N, pmin, pmax).

Since, |∇u|q ≤ C(|∇u − ∇v|q + |∇v|)q), for any q > 1, we have by (3.14), choosing η small
that

(3.15)

∫

Bρ

|∇u|p dx ≤ CrN + C

∫

Bρ

|∇v|p dx.

where C = C(λ2, N, pmin, pmax).

On the other hand, we have by Lemma B.1

(3.16)

∫

Br/2

|∇v|p dx ≤ C

∫

B3r/4

∣∣∣
v − {v}3r/4

r

∣∣∣
p
dx.

By the regularity of solutions, (see [1]) we have that for any 0 < γ < 1,

(3.17) |v − {v}3
4 r
| ≤ C(γ, ‖v‖L∞(Br), ω(r)) rγ

Therefore,

(3.18)

∫

Bρ

|∇u|p dx ≤ CrN + C(γ, ‖v‖L∞(Br), ω(r), pmin, pmax, N, λ2) rN−(1−γ)p+ .

Since v − u ∈ W
1,p(·)
0 (Br), the same proof as that of Lemma 2.2 shows that ‖v‖L∞(Br) ≤

‖u‖L∞(Br). On the other hand, since u is a subsolution, by comparison we have 0 ≤ u ≤ v and
then

(3.19) ‖v‖L∞(Br) = ‖u‖L∞(Br)

This means that the constant C depends on pmin, pmax, N, λ2, γ, ω(r) and ‖u‖L∞(Br).

Let 0 < γ0 < 1 and let ε > 0 and 0 < γ < 1 such that

N

pmin

ε

1 + ε
+ (1 − γ) = 1 − γ0.

Let r0 > 0 such that

p+(Br0)

p−(Br0)
≤ 1 + ε.

From now on we denote, p− = p−(Br0) and p+ = p+(Br0).

Then,

ρ
−(Nε+(1−γ)p+)

1+ε ≤ ρ
−Nε
1+ε

−(1−γ)p− .
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Then we have by (3.18), (3.19) and by our election of γ and ρ that,

–

∫
–
Bρ

|∇u|p− dx ≤ –

∫
–
Bρ

|∇u|p dx+
1

|Bρ|

∫

Bρ∩{|∇u|<1}
|∇u|p− dx

≤ –

∫
–
Bρ

|∇u|p dx+ 1

≤ 1 + C
(r
ρ

)N
+ Cr−(1−γ)p+

(r
ρ

)N

≤ 1 + Cr−εN + Cr−εN−(1−γ)p+ = 1 + Cρ
−Nε
1+ε + Cρ

−Nε−p+(1−γ)

1+ε

≤ Cρ
−Nε−p+(1−γ)

1+ε ≤ Cρ
−Nε
1+ε

−(1−γ)p−

where C(γ0, N,M,ω(r), λ2, pmin, pmax).

Let r0 as before for this choice of ε and small enough so that rε0 ≤ 1/2. Then, if ρ ≤ ρ0 =

r1+ε
0 ≤ 1,

(3.20) –

∫
–
Bρ

|∇u|p− dx ≤ Cρ
−[ Nε

(1+ε)p−
+(1−γ)]p−

≤ Cρ
−[ Nε

(1+ε)pmin
+(1−γ)]p− = Cρ−(1−γ0)p−

This is, if ρ ≤ ρ0 = r1+ε
0 (

–

∫
–
Bρ

|∇u|p− dx
)1/p−

≤ Cργ0−1.

Therefore (3.7) holds.

Applying Morrey’s Theorem, see e.g. [27], Theorem 1.53, we conclude that, u ∈ Cγ0(Bρ0)
and ‖u‖Cγ0 (Bρ0 )

≤ C with C(γ0,M,N, ω(r), λ2, pmin, pmax).

�

Thus, we have the following,

Theorem 3.2. Assume p has modulus of continuity ω(r) = C log(1r )−1. Then, for every 0 <
γ0 < 1, any minimizer u belongs to Cγ0(Ω). Moreover, let Ω′ ⊂⊂ Ω and M = ‖u‖L∞(Ω). There
exists, C = C(N,Ω′, pmin, pmax, ω(r), λ2,M, γ0) such that ‖u‖Cγ0 (Ω′) ≤ C

Then, we have that u is continuous. Therefore, {u > 0} is open. We can prove the following
property for minimizers.

Proposition 3.1. Assume p has modulus of continuity ω(r) = C log(1r )−1. Let u be a minimizer
of J in K. Then, u is p(x)–harmonic in {u > 0}.

Proof. Let B ⊂ {u > 0} be a ball and let v such that

∆p(x)v = 0 in B, v − u ∈W 1,p
0 (B).

Since u > 0 in B we get, proceeding as in (3.9) and (3.10),

0 ≥

∫

B

|∇u|p

p
−

|∇v|p

p
dx+ λ(x)χB∩{u>0} − λ(x)χB∩{v>0} ≥

∫

B

|∇u|p

p
−

|∇v|p

p
dx

≥ C
(∫

A1

(
|∇u| + |∇v|

)p−2
|∇u−∇v|2 dx+

∫

A2

|∇u−∇v|p dx.
)
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Therefore, ∫

A1

(
|∇u| + ∇v|

)p−2
|∇u−∇v|2 dx = 0.

Thus,
(
|∇u| + ∇v|

)p−2
|∇u − ∇v|2 = 0 in A1 and, by the definition of A1, we conclude that

|∇u−∇v| = 0 in this set.

On the other hand, we also have ∫

A2

|∇u−∇v|p dx = 0

so that |∇u−∇v| = 0 everywhere in B.

Hence, as u− v ∈W 1,p
0 (B) we have that u = v. Thus, ∆p(x)u = 0 in B.

�

4. Lipschitz continuity

In this section we prove the Lipschitz continuity and the non degeneracy of the minimizers.
We assume throughout this section that p(x) is Lipschitz continuous. We take ideas from [4].

Lemma 4.1. Let p be Lipschitz continuous. Let u be a minimizer in Br(x0) ⊂⊂ Ω and v a
solution to

∆pv = 0 in Br(x0), v − u ∈W 1,p
0 (Br(x0)).

Then, there exist r0 = r0(pmax, pmin, L, ‖u‖∞) and C = C(pmax, pmin, N) such that for every
ε > 0 there exists Mε = M(ε, pmax, pmin, L, ‖u‖∞) so that if M ≥Mε and r ≤ r0,∫

Br(x0)
|∇(u− v)|p(x) dx ≥ C|Br(x0) ∩ {u = 0}|M (1−ε)p− .

where

M =
1

r
sup
B 3

4 r

u.

Proof. First observe that if we take ur(x) = 1
ru(x0 + rx), vr(x) = 1

rv(x0 + rx) and pr(x) =
p(x0 + rx) then,

∫

B1

|∇(ur − vr)|
pr(x) dx = r−N

∫

Br(x0)
|∇(u− v)|p(x) dy,

|B1 ∩ {ur = 0}| = r−N |Br(x0) ∩ {u = 0}|,

sup
B3/4(0)

ur =
1

r
sup

B 3
4 r

(x0)
u,

and ‖∇pr(x)‖∞ = r‖∇p(x0 + rx)‖∞. Since ‖∇pr(x)‖ is small, if r is small, we will assume that
r = 1 and ‖∇p‖L∞(B1) ≤ δ with δ as small as needed (by taking r0 small enough).

So that, from now on we assume that x0 = 0 and r = 1.

For |z| ≤ 1
2 we consider the change of variables from B1 into itself such that z becomes the

new origin. We call uz(x) = u
(
(1−|x|)z+x

)
, vz(x) = v

(
(1−|x|)z+x

)
, pz(x) = p

(
(1−|x|)z+x

)
.

Observe that this change of variables leaves the boundary fixed. Define,

rξ = inf
{
r /

1

8
≤ r ≤ 1 and uz(rξ) = 0

}
,
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if this set is nonempty.

Now, for almost every ξ ∈ ∂B1 we have

(4.21) vz(rξξ) =

∫ 1

rξ

d

dr
(uz − vz)(rξ) dr ≤

∫ 1

rξ

|∇(uz − vz)(rξ)| dr.

Let us assume that the following inequality holds: There exist δ0 > 0 and Mε such that if
δ ≤ δ0 and M ≥Mε,

(4.22) vz(rξξ) ≥ (1 − rξ)M
1−ε

where M = supB3/4(0)
u.

Let B = M1−ε. Then, for any η > 0 we have,

(4.23) vz(rξξ) ≤

∫ 1

rξ

|∇(uz − vz)(rξ)|pz(rξ)

(ηB)pz(rξ)−1pz(rξ)
dr +

∫ 1

rξ

pz(rξ) − 1

pz(rξ)
Bη dr,

and using (4.22) and (4.23) with η small we have,

(4.24)

∫ 1

rξ

|∇(uz − vz)(rξ)|pz(rξ)

(B)pz(rξ)−1pz(rξ)
dr ≥ C(p+, p−)(1 − rξ)B.

Therefore,

(4.25)

∫ 1

rξ

|∇(uz − vz)(rξ)|pz(rξ) dr ≥ C(p+, p−)(1 − rξ)B
p−

Then, using (4.25), integrating first over ∂B1 and then over |z| ≤ 1/2 we obtain as in [4],
∫

B1

|∇(u− v)|p(x) dx ≥ C|B1 ∩ {u = 0}|Bp− .

So we have the desired result.

Therefore, we only have to prove (4.22). Observe that, since |z| ≤ 1/2, it is enough to prove
that v(x) ≥M1−ε(1 − |x|) if M is large enough.

If |x| ≤ 3/4, by Remark B.2 we have

v(x) ≥ C1( sup
B3/4(0)

v − 3/4) ≥ C1( sup
B3/4(0)

u− 3/4) = C1(M − 3/4) ≥
C1

2
M

if M ≥ 2, with C1 depending on pmin, pmax, L and ‖v‖∞ (the bound of v before rescaling, see
Remark B.2, that equals the bound of u before rescaling).

If |x| ≥ 3/4 we prove by a comparison argument that inequality (4.22) also holds. In fact, we
know

v ≥ C2M in B3/4.

Take w(x) = θM(e−µ|x|2 − e−µ), where θ is such that w ≤ v on ∂B3/4. Let µ0 and ε0 as in
Lemma B.4. Then if µ ≥ µ0 and δ ≤ ε0, there holds that




C(µ, θ,M, p)∆p(x)w ≥ C̄1(µ− C̄2‖∇p‖∞| log(θM)|) ≥ C̄1(µ− C̄2δ| log(θM)|) in B1 \B3/4,

w ≤ C2M on ∂B3/4,

w = 0 on ∂B1.
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Recall that θ =
C2

e−µ9/16 − e−µ
. Thus, if µ is large enough (depending on C2), there holds that

| log θ| ≤ 2µ.

Therefore,

C(µ, θ,M, p)∆p(x)wµ ≥ C̄1(µ− C̄22δµ − C̄2δ| logM |).

Let δ0 > 0. Assume further that δ ≤ δ0 <
1
4(C̄2)−1 and take µ = 2C̄2δ0| logM |. Then,





∆p(x)w ≥ 0 in B1 \B3/4,

w ≤ C2M on ∂B3/4,

w = 0 on ∂B1.

Thus, w ≤ v in B1 \B3/4. Now,

w ≥ θe−µµ(1 − |x|)M ≥ C2Me−7/16µµ(1 − |x|)

≥ C3M
1−Cδ0(1 − |x|)δ0 logM = C3M

1−Cδ0(1 − |x|) logM δ0

if M ≥ 1.

Given ε > 0, assume further that Cδ0 ≤ ε and then, that M is large enough (that is M ≥Mε)
so that C3 logM δ0 ≥ 1. Then,

w ≥M1−ε(1 − |x|) in B1 \B3/4,

so that

v ≥M1−ε(1 − |x|) in B1 \B3/4.

Recalling the estimate inside the ball B3/4 we get, as M ≥ 1,

v ≥ C2M ≥M1−ε(1 − |x|) in B3/4,

if M is large enough, and (4.22) is proved. �

Lemma 4.2. Let p ∈ Lip(Ω), p ≥ 2 in Ω, There exist r0 = r0(pmax, pmin, L, ‖u‖∞) and Cmax =
Cmax(pmax, pmin, L, λ2,M) such that if r ≤ r0, each local minimizer u with ‖u‖∞ ≤ M has the
following property: If B 3

4
r(x0) ⊂⊂ Ω,

1

r
sup

B 3
4 r

(x0)
u ≥ Cmax implies ∆p(x)u = 0 in Br(x0)

Proof. Take v as in the previous lemma. By a standard inequality we have if p(x) ≥ 2 (see [12]),

λ2|Br(x0) ∩ {u = 0}| ≥ λ2(|Br(x0) ∩ {v > 0}| − |Br(x0) ∩ {u > 0}|) ≥

≥

∫

Br(x0)

|∇u|p(x)

p
−

|∇v|p(x)

p
dx ≥ C

∫

Br(x0)
|∇u−∇v|p(x) dx.

If Cmax is large enough, by the previous lemma we get,

|{u = 0} ∩Br(x0)}| ≥ C|{u = 0} ∩Br(x0)}|
(1

r
sup

B3/4r(x0)
u
)p−(1−ε)

.
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Therefore, if Cmax is big enough we have that |{u = 0} ∩ Br}| = 0 and we obtain the desired
result since ∫

Br

|∇u−∇v|p(x) dx ≤ C|{u = 0} ∩Br}|

so that, u = v in Br. �

Lemma 4.3. Let p ∈ Lip(Ω). For any 0 < κ < 1 There exist r0, cκ > 0 such that if r ≤ r0 and
Br(x0) ⊂⊂ Ω,

1

r
sup

Br(x0)
u ≤ cκ implies u = 0 in Bκr(x0).

Here r0 depends on κ, pmin, pmax, L and N and cκ depends also on λ1.

Proof. We may suppose that r = 1 and that Br is centered at zero, (if not, we take the rescaled

function ũ = u(x0+rx)
r ). Moreover, by taking r ≤ r0 we may assume that ‖∇p‖L∞(B1) ≤ δ.

Let ε := supB√
κ
u. Choose v as

v =

{
ε
cµ

(e−µ|x|2 − e−µκ2
) in B√

κ \Bκ,

0 in Bκ,

where cµ = (e−µκ − e−µκ2
) < 0.

By Lemma B.4 we have if µ is large enough,

−cµ
εµ

eµ|x|
2
|∇v|2−p∆p(x)(−v) ≥ C1(µ− C2‖∇p‖∞

∣∣ log
ε

−cµ

∣∣)

≥ C1(µ− C2‖∇p‖∞| log (−cµ)| − C2‖∇p‖∞| log ε|).

If µ ≥ log 2
(κ(1−κ)) we have,

e−µκ ≤ e−µκ(e−µκ(κ−1) − 1) = e−µκ2
− e−µκ = −cµ ≤ e−µκ2

< 1.

Then, 0 > log(−cµ) ≥ −µκ. Therefore,

−cµ
εµ

eµ|x|
2
|∇v|2−p∆p(x)(−v) ≥ C1

(
(1 − C2κ‖∇p‖∞)µ− C2‖∇p‖∞| log ε|

)
.

If δ ≤ 1
2C2κ

we have,

−cµ
εµ

eµ|x|
2
|∇v|2−p∆p(x)(−v) ≥ C1

(µ
2
− C2δ| log ε|

)
≥ 0,

if we choose µ ≥ 2C2δ| log ε|.

Hence, if r ≤ r0 := 1
2LC2κ

so that ‖∇p‖∞ ≤ δ0 = 1
2C2κ

, and we take µ = 2C2δ0| log ε| =

κ−1| log ε|,

∆p(x)v < 0 in B√
κ \Bκ.

By construction v ≥ u on ∂B√
κ. Thus, if we take

w =

{
min(u, v) in B√

κ,

u in Ω \B√
κ,
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we find that w is an admissible function for the minimizing problem. Thus, using the convexity
we find that

∫

Bκ

|∇u|p(x)

p(x)
+ λχBκ∩{u>0} dx

= J (u) −

∫

Ω\Bκ

|∇u|p(x)

p(x)
dx+

∫

Ω
(λχBκ∩{u>0} − λχΩ∩{u>0}) dx

≤ J (w) −

∫

Ω\Bκ

|∇u|p(x)

p(x)
dx+

∫

Ω
(λχBκ∩{u>0} − λχΩ∩{u>0}) dx

≤

∫

B√
κ\Bκ

|∇w|p(x)

p(x)
dx−

∫

B√
κ\Bκ

|∇u|p(x)

p(x)
dx

≤

∫

B√
κ\Bκ

|∇w|p(x)−2∇w(∇w −∇u) dx = −

∫

B√
κ\Bκ

|∇w|p(x)−2∇w∇(u− v)+ dx

= −

∫

(B√
κ\Bκ)

|∇v|p(x)−2∇v∇(u− v)+ dx

and as v is a classical supersolution we have,
∫

Bκ

|∇u|p(x)

p(x)
+ λχBκ∩{u>0} dx ≤

∫

∂Bκ

|∇v|p(x)−1u dHN−1.

On the other hand, if µ ≥ log 2
κ(1−κ) , then 1 − e−µκ(1−κ) ≥ 1/2 and therefore, v satisfies

|∇v||x|=κ =
2κεµe−µκ2

e−µκ2 − e−µκ
=

2εκµ

1 − e−µκ(1−κ)
≤ 4κµε = 4ε| log ε|

Thus, ∫

Bκ

|∇u|p(x)

p(x)
+ λχBκ∩{u>0} dx ≤ C(p)(ε| log ε|)p−−1

∫

∂Bκ

u dHN−1.

By Sobolev’s trace inequality we have,
∫

∂Bκ

u ≤ C(N,κ)

∫

Bκ

|∇u| + u dx

≤ C(N, p, κ)
( ∫

Bκ

|∇u|p(x) + |Bκ ∩ {u > 0}| +

∫

Bκ

u dx
)

≤ C(N,κ, p, λ1)(1 + ε)
( ∫

Bκ

|∇u|p(x)

p(x)
+ λ1|{u > 0} ∩Bκ|

)

where in the last inequality we are using that
∫
Bκ
u dx ≤ ε|{u > 0} ∩Bκ|. Therefore,

∫

Bκ

|∇u|p(x)

p(x)
dx+ λ1|Bκ ∩ {u > 0}| ≤ C(ε| log ε|)p−−1

( ∫

Bκ

|∇u|p(x)

p(x)
dx+ λ1|Bκ ∩ {u > 0}|

)
,

where C = C(N,κ, p, λ1).

So that, if ε is small enough
∫

Bκ

|∇u|p(x)

p(x)
dx+ λ1|Bκ ∩ {u > 0}| = 0.
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In particular, u = 0 in Bκ and the result follows. �

As a corollary we have,

Corollary 4.1. Let p ∈ Lip(Ω). There exist r0, Cmin > 0 such that if r ≤ r0 and Br(x0) ⊂⊂ Ω,

1

r
sup

B 3
4 r

(x0)
u ≤ Cmin implies u = 0 in Br/2(x0).

Here r0 depends on pmin, pmax, L and N and Cmin depends also on λ1.

Corollary 4.1 states that, if p is Lipschitz, then any minimizer is non-degenerate, i.e,

Corollary 4.2. Let p ∈ Lip(Ω). Let D ⊂⊂ Ω, x0 ∈ D ∩ ∂{u > 0}. Then

sup
Br(x0)

u ≥ Cminr, if r ≤ r0

where Cmin is the constant in Corollary 4.1 and r0 depends also on D.

Corollary 4.3. Let p ∈ Lip(Ω) and p ≥ 2. Let D ⊂⊂ Ω, x0 ∈ D ∩ ∂{u > 0}. Then

sup
B 3

4 r
(x0)

u ≤ Cmaxr, if r ≤ r0

where Cmax is the constant in Lemma 4.2 and r0 depends also on D.

Proof. Assume by contradiction that the inequality is false. Then, by Lemma 4.2, ∆p(x)u = 0
in Br(x0). Therefore, by the regularity results in [1], ∇u ∈ Cα(Br(x0)) and, since u ≥ 0 and
u(x0) = 0, there holds that ∇u(x0) = 0. Thus, |∇u(x)| ≤ Cρα in Bρ if ρ ≤ 3r/4. From here we

have that u(x) ≤ Cρ1+α in Bρ if ρ ≤ 3r/4.

On the other hand, by Corollary 4.2, 4
3Cminρ ≤ supBρ(x0) u ≤ Cρ1+α if ρ is small, which is a

contradiction. �

Now we can prove the local Lipschitz continuity of minimizers of J when p ∈ Lip(Ω) and
p ≥ 2.

Theorem 4.1. Let p ∈ Lip(Ω) and p ≥ 2. Let u be a minimizer of J in K. Then, u is locally
Lipschitz continuous in Ω. Moreover, for any connected open subset D ⊂⊂ Ω containing free
boundary points, the Lipschitz constant of u in D is estimated by a constant C depending only
on N, pmaz , pmin, L, dist(D, ∂Ω), ‖u‖L∞(Ω), ‖|∇u|

p(x)‖L1(Ω), λ1 and λ2.

Proof. The proof follows as in [4], from Corollary 4.3 and the gradient estimate

|∇u(y)| ≤ C
(

1 +
1

r
sup
Br(y)

u
) p+(Br)

p−(Br)

that holds if ∆p(x)u = 0 in Br(y) (see Lemma B.3). �
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5. Linear growth – Positive density

Throughout this section we will assume that u is a locally Lipschitz, non-degenerate (i.e.
satisfying the conclusions of Corollary 4.2) minimizer, and we also assume that p is Hölder
continuous.

Theorem 5.1. Suppose that p is Hölder continuous, u is Lipschitz with constant CLip and non-
degenerate with constants c and r0. For any domain D ⊂⊂ Ω there exists a constant c̃, with
0 < c̃ < 1 depending on N,CLip, c,D and the Hölder modulus of continuity of p, such that, for
any minimizer u and for every Br ⊂ Ω, centered at the free boundary with r ≤ r0 we have,

c̃ ≤
|Br ∩ {u > 0}|

|Br|
≤ 1 − c̃

Proof. First, by the non-degeneracy we have that there exists y ∈ Br such that u(y) ≥ cr so
that,

sup
Bκr(y)

u ≥ u(y) ≥ cr.

Therefore,

1

κr
sup

Bκr(y)

u ≥
c

κ
.

Now, if κ is small enough, we have

1

κr
sup

Bκr(y)

u > CLip.

Using the fact that u is Lipschitz with constant CLip we find that u > 0 in Bκr, where
κ = κ(CLip, c). Thus,

|Br ∩ {u > 0}|

|Br|
≥

|Bκr|

|Br|
= κN .

In order to prove the other inequality, we may assume that r = 1 and the ball is centered at
the origin. Let us suppose by contradiction that there exists a sequence of minimizers uk in B1,
corresponding to powers pmin ≤ pk(x) ≤ pmax with the same Hölder modulus of continuity ω(r),
uk Lipschitz with constant CLip and non-degenerate with constant c such that, 0 ∈ ∂{uk > 0}

and |{uk = 0} ∩B1| = εk → 0. Let us take vk ∈W 1,pk(x)(B1/2) such that,

(5.26) ∆pk(x)vk = 0 in B1/2, vk − uk ∈W
1,pk(x)
0 (B1/2).

We have, by the arguments leading to (3.11), (3.12),

∫

{pk≥2}∩B1/2

|∇uk −∇vk|
pk(x) dx ≤ Cεk and

∫

{pk<2}∩B1/2

(
|∇uk| + |∇vk|

)pk(x)−2
|∇uk −∇vk|

2 dx ≤ Cεk.
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Now, since |∇uk| ≤ CLip for every k,
∫

{pk<2}∩B1/2

(
|∇uk| + |∇vk|

)pk(x)−2
|∇uk −∇vk|

2 dx ≥

∫

{pk<2}∩B1/2

(
2|∇uk| + |∇uk −∇vk|

)pk(x)−2
|∇uk −∇vk|

2 dx ≥

C

∫

{pk<2,|∇uk−∇vk|≤|∇uk|}∩B1/2

|∇uk −∇vk|
2 dx+

C

∫

{pk<2,|∇uk−∇vk|>|∇uk|}∩B1/2

|∇uk −∇vk|
pk(x) dx

On the other hand, using again that |∇uk| ≤ CLip for every k, assuming that p− < 2,
∫

{pk<2,|∇uk−∇vk|≤|∇uk|}∩B1/2

|∇uk −∇vk|
pk(x) dx ≤

C

∫

{pk<2,|∇uk−∇vk|≤|∇uk|}∩B1/2

|∇uk −∇vk|
p− dx ≤

C
(∫

{pk<2,|∇uk−∇vk|≤|∇uk|}∩B1/2

|∇uk −∇vk|
2 dx

)p−/2

If p− ≥ 2, ∫

{pk<2,|∇uk−∇vk|≤|∇uk|}∩B1/2

|∇uk −∇vk|
pk(x) dx ≤

C

∫

{pk<2,|∇uk−∇vk|≤|∇uk|}∩B1/2

|∇uk −∇vk|
2 dx ≤ Cεk.

Summing up we get,

(5.27)

∫

B1/2

|∇uk −∇vk|
pk(x) dx ≤ C max{εk, ε

p−/2
k }.

On the other hand, since ‖uk‖∞ ≤ CLip and ‖vk‖C1,α(Bρ) ≤ C(N, ρ, p+, p−, ω(r), ‖uk‖L∞(B1/2))

(see (3.19) for the bound of ‖vk‖L∞(B1/2) and [1] for the regularity of vk), there holds that, for

a subsequence, vk → v0 and ∇vk → ∇v0 uniformly on compact subsets of B1/2.

Finally, since ‖uk‖Lip(B1/2) ≤ CLip we have, for a subsequence, uk → u0 uniformly in B1/2.

Let wk = uk − vk. Then, wk → u0− v0 uniformly on compact subsets of B1/2. Let us see that
u0 = v0.

In fact, by (5.27) we have that ‖∇wk‖Lpk(x) → 0. Since wk ∈ W
1,pk(x)
0 (B1/2), by Poincaré

inequality we get that ‖wk‖Lpk(x)(B1/2)
→ 0. By Theorem A.2 there holds that wk → 0 in

Lp−(B1/2) and, for a subsequence, wk → 0 almost everywhere. Thus, u0 = v0.

Since, the pk’s are uniformly Hölder continuous and are uniformly bounded, there exists p0
such that (for a subsequence) pk → p0 uniformly in B1/2.

Now, recall that vk → u0 in C1(B1/2). Then, ∆p0(x)u0 = 0 in B1/2.
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As uk → u0 uniformly in B1/2 and are uniformly non-degenerate we get, supBs
u0 ≥ cs for s

small. But u0(0) = lim uk(0) = 0. By the same argument as that in Corollary 4.3 we arrive at
a contradiction. �

Remark 5.1. Theorem 5.1 implies that the free boundary has Lebesgue measure zero. In fact,
in order to prove this statement, it is enough to use the first inequality in Theorem 5.1, as this
estimate says that the set of Lebesgue points of χ{u>0} in ∂{u > 0} ∩D is empty. On the other
hand almost every point x0 ∈ ∂{u > 0} ∩D is a Lebesgue point, therefore |∂{u > 0} ∩D| = 0.

6. The measure Λ = ∆p(x)u

We still assume that u is a non-degenerate, locally Lipschitz minimizer.

In this section we assume that p is Hölder continuous. First, we prove that {u > 0} ∩ Ω
is locally of finite perimeter. Then, we study the measure Λ = ∆p(x)u and prove that it is

absolutely continuous with respect to the HN−1 measure restricted to the free boundary. This
result gives rise to a representation theorem for the measure Λ. Finally, we prove that almost
every point in the free boundary belongs to the reduced free boundary.

Theorem 6.1. For every ϕ ∈ C∞
0 (Ω) such that supp(ϕ) ⊂ {u > 0},

(6.28)

∫

Ω
|∇u|p(x)−2∇u∇ϕ = 0.

Moreover, the application

Λ(ϕ) := −

∫

Ω
|∇u|p(x)−2∇u∇ϕdx

from C∞
0 (Ω) into R defines a nonnegative Radon measure Λ = ∆p(x)u with support on Ω∩∂{u >

0}.

Proof. We know that u is p(x)−subharmonic. Then, by the Riesz Representation Theorem,
there exists a nonnegative Radon measure Λ, such that ∆p(x)u = Λ. And, as ∆p(x)u = 0 in
{u > 0}, for any ϕ ∈ C∞

0 (Ω \ ∂{u > 0}) there holds that Λ(ϕ) = 0 and the result follows. �

Now we want to prove that Ω ∩ ∂{u > 0}, has finite N − 1 dimensional Hausdorff measure.
First, we need the following lemma,

Lemma 6.1. Let uk be a sequence of minimizers in B1 corresponding to powers pk(x) and
coefficients λk(x) with 1 < pmin ≤ pk(x) ≤ pmax < ∞, 0 < λ1 ≤ λk(x) ≤ λ2 < ∞, and all the
pk’s with the same modulus of continuity ω(r). Assume uk → u0 uniformly in B1, |∇uk| ≤ CLip

in B1, and that the uk’s are non-degenerate in B1 with constants c0 and r0. Then,

(1) ∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

(2) χ{uk>0} → χ{u0>0} in L1(B1),

(3) If 0 ∈ ∂{uk > 0}, then 0 ∈ ∂{u0 > 0}.

Proof. The proof follows as in pp. 19–20 of [5]. �

Now, we prove the following theorem,
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Theorem 6.2. For any domain D ⊂⊂ Ω there exist constants c, C, depending on N,CLip, c0, r0,
pmin, pmax, λ1, λ2, ω(r) and D such that, for any minimizer u with |∇u| ≤ CLip, non-degenerate
with constants c0 and r0, and for every Br ⊂ Ω, centered on the free boundary with r ≤ r0, we
have

crN−1 ≤

∫

Br

dΛ ≤ CrN−1

Proof. The ideas are similar to the ones for the case p constant in [12], with modifications similar
to the ones in the proof of Theorem 5.1. �

Therefore, we have the following representation theorem

Theorem 6.3 (Representation Theorem). Let u be a non-degenerate, locally Lipschitz contin-
uous minimizer. Then,

(1) HN−1(D ∩ ∂{u > 0}) <∞ for every D ⊂⊂ Ω.
(2) There exists a Borel function qu such that

∆p(x)u = quH
N−1⌊∂{u > 0}.

i.e

−

∫

Ω
|∇u|p(x)−2∇u∇ϕdx =

∫

Ω∩∂{u>0}
quϕdH

N−1, ∀ ϕ ∈ C∞
0 (Ω).

(3) For D ⊂⊂ Ω there are constants 0 < c ≤ C < ∞ such that for Br(x) ⊂ D and
x ∈ ∂{u > 0},

c ≤ qu(x) ≤ C, c rN−1 ≤ HN−1(Br(x) ∩ ∂{u > 0}) ≤ C rN−1.

Proof. It follows as in Theorem 4.5 in [4]. �

Remark 6.1. As u satisfies the conclusions of Theorem 6.3, the set Ω ∩ {u > 0} has finite
perimeter locally in Ω (see [17] 4.5.11). That is, µu := −∇χ{u>0} is a Borel measure, and the
total variation |µu| is a Radon measure. We define the reduced boundary as in [17], 4.5.5. (see
also [16]) by, ∂red{u > 0} := {x ∈ Ω ∩ ∂{u > 0}/|νu(x)| = 1}, where νu(x) is a unit vector with

(6.29)

∫

Br(x)
|χ{u>0} − χ{y/〈y−x,νu(x)〉<0}| = o(rN )

for r → 0, if such a vector exists, and νu(x) = 0 otherwise. By the results in [17] Theorem 4.5.6
we have,

µu = νuH
N−1⌊∂red{u > 0}.

Lemma 6.2. HN−1(∂{u > 0} \ ∂red{u > 0}) = 0.

Proof. This is a consequence of the density property of Theorem 5.1 and Theorem 4.5.6 (3) of
[17]. �
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7. Asymptotic development and identification of the function qu

In this section we still assume that u is a non-degenerate, locally Lipschitz continuous mini-
mizer, p is Hölder continuous and, moreover we assume that λ is continuous.

We prove some properties of blow up sequences of minimizers and prove that any limit of a
blow up sequence is a minimizer. Then, we find an asymptotic development of minimizers near
points in their reduced free boundary. Finally, we identify the function qu for almost every point
in the reduced free boundary.

We first prove some properties of blow up sequences,

Definition 7.1. Let Bρk(xk) ⊂ D ⊂⊂ Ω be a sequence of balls with ρk → 0, xk → x0 ∈ Ω and
u(xk) = 0. Let

uk(x) :=
1

ρk
u(xk + ρkx).

We call uk a blow-up sequence with respect to Bρk(xk).

Since u is locally Lipschitz continuous, there exists a blow-up limit u0 : RN → R such that,
for a subsequence,

uk → u0 in Cα
loc(R

N ) for every 0 < α < 1,

∇uk → ∇u0 ∗ −weakly in L∞
loc(R

N ),

and u0 is Lipschitz in R
N with constant CLip.

Lemma 7.1. If u is a non-degenerate, locally Lipschitz continuous minimizer then,

(1) ∂{uk > 0} → ∂{u0 > 0} locally in Hausdorff distance,

(2) χ{uk>0} → χ{u0>0} in L1
loc(R

N ),

(3) ∇uk → ∇u0 uniformly in compact subsets of {u0 > 0},

(4) ∇uk → ∇u0 a.e in Ω,

(5) If xk ∈ ∂{u > 0}, then 0 ∈ ∂{u0 > 0}

(6) ∆p(x0)u0 = 0 in {u0 > 0}

(7) u0 is Lipschitz continuous and non-degenerate with the same constants CLip and c0 as
u.

Proof. (1), (2) and (5) follow from Lemma 6.1. For the proof of (3) and (4) we use that ∇uk
are uniformly Hölder continuous in compact subsets of {u0 > 0} and ideas similar to those
in pp. 19-20 in [5]. (6) follows from (3) and the fact that ∆Pk(x)uk = 0 in {uk > 0} with

pk(x) = p(x0 +ρkx) → p(x0) uniformly in compact sets of RN . (7) follows immediately from the
uniform convergence of uk and the fact that they are all non-degenerate with constant c0. �

Lemma 7.2. Let u be a non-degenerate, locally Lipschitz continuous minimizer with u(xm) = 0,
xm → x0 ∈ Ω. Then, any blow up limit u0 respect to Bρm(xm) is a minimizer of J corresponding
to p ≡ p(x0) and λ ≡ λ(x0) in any ball.

Proof. See [4]. �
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In the sequel we will call λ∗(x) =
(

p(x)
p(x)−1 λ(x)

)1/p(x)
.

We have,

Lemma 7.3. Let u be a non-degenerate, Lipschitz continuous, local minimizer in R
N corre-

sponding to p(x) ≡ p0 and λ(x) ≡ λ0, such that u = λ1〈x, ν0〉
− in BR, with R > 0, 0 < λ1 <∞

and ν0 a unit vector. Then, λ1 =
(

p0
p0−1 λ0

)1/p0
.

Proof. See [29]. �

Lemma 7.4. Let u be a locally Lipschitz, non-degenerate local minimizer in B1 with power p(x)
Hölder and coefficient λ(x) continuous. Let x0 ∈ ∂{u > 0} ∩B1 such that there exists a ball B
contained in B1 ∩ {u = 0} touching ∂{u > 0} at the point x0. Then,

lim sup
x→x0
u(x)>0

u(x)

dist(x,B)
= λ∗(x0).

Proof. See, for instance [29] for the idea of the proof. Here we use Lemmas 7.2 and 7.3. �

Lemma 7.5. Let u ∈ K be a minimizer. Then, for every x0 ∈ Ω ∩ ∂{u > 0}

lim sup
x→x0
u(x)>0

|∇u(x)| = λ∗(x0).(7.30)

Proof. For the idea of the proof see, for instance [29]. Here we use Lemmas 7.2 and 7.3. �

Theorem 7.1. Let u be a minimizer, then for HN−1−a.e x0 ∈ ∂{u > 0}, the following properties
hold,

qu(x0) = λ∗(x0)p(x0)−1

and

(7.31) u(x) = λ∗(x0)〈x− x0, νu(x0)〉− + o(|x− x0|)

Proof. In order to prove (7.31) we follow the ideas of [29] using Lemma 7.1 items (6) and (7)
and Lemmas 7.2, 7.3 and 7.5. �

8. Regularity of the free boundary

In this section we assume that λ is Hölder continuous and p Lipschitz with constant L, and
therefore the corresponding λ∗ will also be Hölder continuous. We denote by C∗ the constant
of Hölder continuity of λ∗ and by α∗ its Hölder exponent.

We prove the regularity of the free boundary of a minimizer u in a neighborhood of every
“flat” free boundary point. In particular, we prove the regularity in a neighborhood of every
point in ∂red{u > 0} where u has the asymptotic development (7.31). Then, if u is a minimizer,
∂red{u > 0} is smooth and the remainder of the free boundary has HN−1− measure zero.

First, we recall some definitions and then, we point out the only significant differences with
the proofs in [12] with p constant. The rest of the proof of the regularity then follows as sections
6, 7, 8 and 9 of [12].
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Remark 8.1. In [12], Sections 6, 7 and 8 the authors use the fact that when |∇u| ≥ c, u
satisfies a linear nondivergence uniformly elliptic equation, Tu = 0. In our case we have that
when |∇u| ≥ c, u is a solution of the equation defined in (B.7). As in those sections the authors
only use the fact that this operator is linear and uniformly elliptic, then the results of those
sections in [12] extend to our case without any change.

For the reader’s convenience, we sketch here the proof of the regularity of the free boundary
by a series of steps and we write down the proofs in those cases in which we have to make
modifications.

8.1. Flatness and nondegeneracy of the gradient.

Definition 8.1 (Flat free boundary points). Let 0 < σ+, σ− ≤ 1 and τ > 0. We say that u is
of class

F (σ+, σ−; τ) in Bρ = Bρ(0) with power p(x)

if u is a local minimizer of J in Bρ with power p(x),

(1) 0 ∈ ∂{u > 0} and

u = 0 for xN ≥ σ+ρ,
u(x) ≥ −λ∗(0)(xN + σ−ρ) for xN ≤ −σ−ρ.

(2) |∇u| ≤ λ∗(0)(1 + τ) in Bρ.

If the origin is replaced by x0 and the direction eN by the unit vector ν we say that u is of class
F (σ+, σ−; τ) in Bρ(x0) in direction ν.

Theorem 8.1. Let p be Lipschitz continuous, 1 < pmin ≤ p(x) ≤ pmax <∞, λ Hölder continu-
ous with 0 < λ1 ≤ λ(x) ≤ λ2 < ∞ and modulus of continuity ωλ(r) = C∗rα

∗
. Then, there exist

σ0 > 0 and C0 > 0 such that if C∗ρα
∗
≤ λ∗(0)σ and 0 < σ < σ0,

u ∈ F (σ, 1;σ) in B1 with power p(x) and |∇p| ≤ Cσ in Bρ implies

u ∈ F (2σ,C0σ;σ) in Bρ/2.

Proof. By rescaling, we may assume that ρ = 1 and oscB1λ
∗ ≤ C∗ρα

∗
.

Then, we proceed as in [12], Lemmas 6.5, 6.6 and Theorem 6.3. One of the differences in
our case is that λ∗ is not a constant. Moreover, we cannot assume that λ∗(0) = 1. First, we
construct, for κ > 0, a barrier v as a solution to





∆p(x)v = 0 in D \Br(ξ)

v = 0 on ∂D \B1

v = λ∗(0)(1 + σ)(σ − xN ) on ∂D ∩B1

v = −λ∗(0)(1 − κσ)xN on ∂Br(ξ)

Here the set D is constructed as in [12]. As in that paper, we want to prove that there exists
xξ ∈ ∂Br(ξ) such that v(xξ) ≥ u(xξ) if κ is large enough.

By contradiction, by Lemma 7.4, if v ≤ u on ∂Br(ξ) there holds that

|∇v(z)| ≥ λ∗(z)

where z ∈ ∂D ∩B1/2 ∩ ∂{u > 0}.
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Then,

|∇v(z)| ≥ λ∗(0)(1 − σ).

In order to get the contradiction we need the following estimate:

|∇v(z)| ≤ λ∗(0)(1 + Cσ − cκσ).

For that purpose, we proceed again as in [12] by constructing a barrier for v of the form v1−κσv2
where v1 and v2 are the same functions of [12], Claim 6.8. One can check, as in [12], that v1 is
a supersolution and v2 is a subsolution to an elliptic equation in nondivergence form in such a
way that ∆p(x)(v1 − κσv2) ≤ 0. The difference in our case is that this equation has first order

terms. But these terms are bounded by Lσ log 2 since by construction 1
2 ≤ |∇(v1 − κσv2)| ≤ 2.

In this way the results corresponding to Lemmas 6.5 and 6.6 in [12] are proved. In order to
finish the proof of the theorem we proceed as in [12], Theorem 6.3. We consider the function

w(x) = λ∗(0)(1 + σ)(σ − xN ) − u(x) ≥ 0 in B2r(ξ)

and prove that w(xξ) ≤ Cσ where xξ ∈ ∂Br(ξ) is such v(xξ) ≥ u(xξ). Finally, in order to apply
Harnack inequality to get w(x) ≤ Cσ in Br(ξ) we observe that w satisfies

| Lw| ≤ Cσ in B2r(ξ)

where  L is the linear operator given in (B.6) such that  Lu = 0 (observe that at this stage we
already know that |∇u| ≥ λ∗(0)/2 in B4r(ξ). �

Theorem 8.2. Let p be Lipschitz continuous, 1 < pmin ≤ p(x) ≤ pmax <∞, λ Hölder continu-
ous with 0 < λ1 ≤ λ(x) ≤ λ2 < ∞ and modulus of continuity ωλ(r) = C∗rα

∗
. For every δ > 0

there exist σδ > 0 and Cδ > 0 such that if C∗ρα
∗
≤ λ∗(0)σ, 0 < σ < σδ,

u ∈ F (σ, 1;σ) in Bρ with power p(x) and |∇p| ≤ Cσ implies

|∇u| ≥ λ∗(0)(1 − δ) in Bρ/2 ∩ {xN ≤ −Cδσ}.

Proof. The proof follows as Theorem 6.4 in [12]. �

8.2. Nonhomogeneous blow-up.

Lemma 8.1. Let uk ∈ F (σk, σk; τk) ∈ Bρk with power pk(x) and coefficient λk(x) such that
|∇pk| ≤ L, 1 < pmin ≤ pk(x) ≤ pmax < ∞, λ∗k Hölder with exponent α∗ and constant C∗,
0 < λ1 ≤ λk(x) ≤ λ2 < ∞. Assume σk → 0, τkσ

−2
k → 0 and ρα

∗
k ≤ ρ0τk with ρ0 > 0. For

y ∈ B′
1, set

f+k (y) = sup{h : (ρky, σkρkh) ∈ ∂{uk > 0}},

f−k (y) = inf{h : (ρky, σkρkh) ∈ ∂{uk > 0}}.

Then, for a subsequence,

(1) f(y) = lim sup z→y

k→∞
f+k (z) = lim inf z→y

k→∞
f−k (z) for all y ∈ B′

1.

Further, f+k → f , f−k → f uniformly, f(0) = 0, |f | ≤ 1 and f is continuous.

(2) f is subharmonic.
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Proof. (1) is the analogue of Lemma 5.3 in [5]. The proof is based on Theorem 6.3 and is
identical to the one of Lemma 7.3 in [4].

For the reader’s convenience, we write down the proof of (2) that is a little bit different from
the one in [4] since we do not have the homogeneity of the operator so that we need to keep
track of the coefficient λ∗k(0). Also, our assumption in this and the ongoing sections is that λ(x)
is Hölder continuous as compared to the assumption in [4].

We assume by taking ũk(x) = uk(ρkx)/ρk, p̃k(x) = pk(ρkx) and λ̃k(x) = λk(ρkx) that uk ∈

F (σk, σk; τk) in B1 with power p̃k and coefficient λ̃k. We drop the tildes but recall that now
|∇pk| ≤ Lρk and |λ∗k(x) − λ∗k(0)| ≤ C∗ρα

∗
k |x|α

∗
.

Observe that by the Hölder continuity of the original λ∗k we have that,

(8.32) λ∗k(x) ≥ λ∗k(0) − C∗ρα
∗

k = λ∗k(0)(1 − Cρα
∗

k )

Let us assume, by contradiction, that there is a ball B′
ρ(y0) ⊂ B1 and a harmonic function g

in a neighborhood of this ball, such that

g > f on ∂B′
ρ(y0) and f(y0) > g(y0).

Let,

Z+ = {x ∈ B1 /x = (y, h), y ∈ B′
ρ(y0), h > σkg(y)},

and similarly Z0 and Z−. As in Lemma 7.5 in [4], using the same test function and the Repre-
sentation Theorem 6.3 we arrive at,

(8.33)

∫

{uk>0}∩Z0

|∇uk|
pk−2∇uk · ν dH

N−1 =

∫

∂red{uk>0}∩Z+

quk
(x) dHN−1.

As uk ∈ F (σk, σk, τk) we have that |∇uk| ≤ λ∗k(0)(1 + τk) and, by Theorem 7.1, there holds that

quk
(x) = λ∗k(x)pk(x)−1 for HN−1 − a.e point in ∂red{uk > 0}. Therefore,

(8.34)

∫

{uk>0}∩Z0

|∇uk|
pk−2∇uk · ν dH

N−1 =

∫

∂red{uk>0}∩Z+

λ∗k
pk−1 dHN−1.

Applying the estimate (8.32) to (8.34) and, assuming for simplicity that λ∗k(0) ≥ 1 we have,

λ∗k(0)p
−
k −1 (1 − Cρα

∗
k )p

+
k −1 HN−1(∂red{uk > 0} ∩ Z+)

≤

∫

{uk>0}∩Z0

|∇uk|
pk−2∇uk · ν dH

N−1

≤ λ∗k(0)p
+
k −1(1 + τk)p

+
k −1HN−1({uk > 0} ∩ Z0)

Then we have,

(8.35) HN−1(∂red{uk > 0} ∩ Z+) ≤ λ∗k(0)p
+
k −pk−

( 1 + τk
1 − C∗ρα

∗
k

)p+k −1
HN−1({uk > 0} ∩ Z0).

On the other hand, by the excess area estimate in Lemma 7.5 in [4] we have that,

HN−1(∂redEk ∩ Z) ≥ HN−1(Z0) + cσ2k,

where Z = B′
ρ(y0) × R and Ek = {uk > 0} ∪ Z−.
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We also have,

HN−1(∂redEk ∩ Z) ≤ HN−1(Z+ ∩ ∂red{uk > 0}) + HN−1(Z0 ∩ {uk = 0}).

Using these two inequalities and the fact that HN−1(Z0 ∩ ∂{uk > 0}) = 0 (if this is not true we
replace g by g + c0 for a small constant c0) we have that,

(8.36) HN−1(∂red{uk > 0} ∩ Z+) ≥ HN−1(Z0 ∩ {uk > 0}) + cσ2k.

Finally by (8.35) and (8.36) we have that,

HN−1({uk > 0} ∩ Z0) + cσ2k ≤λ∗k(0)p
+
k −pk−

( 1 + τk
1 − C∗ρα

∗
k

)p+k −1
HN−1({uk > 0} ∩ Z0).

Therefore, since p+k − p−k ≤ Lρk,

cσ2k ≤
[
λ∗k(0)p

+
k −pk−

( 1 + τk
1 − C∗ρα

∗
k

)p+k −1
− 1

]
HN−1({uk > 0} ∩ Z0) ≤ C(τk + ρα

∗
k ).

Observe that if λ∗k(0) ≤ 1, we arrive at the same estimate.

Finally, since ρα
∗
≤ ρ0τk this contradicts the fact that τk

σ2
k
→ 0 as k → ∞. �

Lemma 8.2. There exists a positive constant C = C(N) such that, for any y ∈ B′
r/2,

∫ 1/4

0

1

r2

(
–

∫
–
∂B′

r(y)
f − f(y)

)
≤ C1.

Proof. It follows as Lemma 8.3 in [12], by Remark 8.1 and Theorem 8.2.

The only difference is that the functions wk = (uk(y, h) + h)/σk verify a second order elliptic
equation in non–divergence form with Hölder principal coefficients and bounded first order
coefficients.

As in the proof of Lemma 8.1, since |∇pk| → 0, these first order coefficients converge to 0 and
so, by the W 2,q regularity estimates of [20], Chapter 9, we can pass to the limit to discover that
wk → w and w satisfies a second order elliptic equation in non–divergence form with constant
coefficients with only principal part.

After that, the proof follows without any change as that of Lemma 8.3 in [12]. �

With these two lemmas we have by Lemma 7.7 and Lemma 7.8 in [4],

Lemma 8.3. (1) f is Lipschitz in B̄′
1/4 with Lipschitz constant depending on C1 and N .

(2) There exists a constant C = C(N) > 0 and for 0 < θ < 1, there exists cθ = c(θ,N) > 0,
such that we can find a ball B′

r and a vector l ∈ R
N−1 with

cθ ≤ r ≤ θ, |l| ≤ C, and f(y) ≤ l.y +
θ

2
r for |y| ≤ r.

And, as in Lemma 7.9 in [4] we have,

Lemma 8.4. Let θ, C, cθ as in Lemma 8.3. There exists a positive constants σθ, such that

(8.37) u ∈ F (σ, σ; τ) in Bρ in direction ν

with σ ≤ σθ, τ ≤ σθσ
2 and ρα

∗
≤ ρ0τ , implies

u ∈ F (θσ, 1; τ) in Bρ̄ in direction ν̄
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for some ρ̄ and ν̄ with cθρ ≤ ρ̄ ≤ θρ and |ν̄ − ν| ≤ Cσ, where σθ = σθ(θ,N).

Lemma 8.5. Given 0 < θ < 1, there exist positive constants σθ, cθ and C such that

(8.38) u ∈ F (σ, 1; τ) in Bρ in direction ν

with σ ≤ σθ, τ ≤ σθσ
2 and ρα

∗
≤ ρ0τ , then

u ∈ F (θσ, θσ; θ2τ) in Bρ̄ in direction ν̄

for some ρ̄ and ν̄ with cθρ ≤ ρ̄ ≤ 1
4ρ and |ν̄ − ν| ≤ Cσ, where cθ = cθ(θ,N), σθ = σθ(θ,N).

Proof. We obtain the improvement of the value τ inductively. If σθ is small enough, we can
apply Theorem 8.1 and obtain

u ∈ F (Cσ,Cσ; τ) in Bρ/2 in direction ν.

Then for 0 < θ1 ≤
1
2 we can apply Lemma 8.4, if again σθ is small, and we obtain

(8.39) u ∈ F (Cθ1σ,Cσ; τ) in Br1 in direction ν1

for some r1, ν1 with

cθ1ρ ≤ 2r1 ≤ θ1ρ, and |ν1 − ν| ≤ Cσ.

In order to improve τ , we consider the functions Uε =
(
|∇u| − λ∗(0) − ε

)+
and U0 =

(
|∇u| −

λ∗(0)
)+

in B2r1 . By Lemma 7.5, we know that Uε vanishes in a neighborhood of the free
boundary. Since Uε > 0 implies |∇u| > λ∗(0) + ε, the closure of {Uε > 0} is contained in
{|∇u| > λ∗(0) + ε/2}.

Since |∇u| is bounded from above in B2r1 , and from below in the set {|∇u| > λ∗(0) + ε/2}
the hypotheses of Lemma B.5 are satisfied, and we have that v = |∇u| satisfies,

−divD∇v +B∇v ≤ divH in {|∇u| > λ∗(0) + ε/2}

Hence Uε satisfies

−divD∇Uε +B∇Uε ≤ divH in {Uε > 0}

Extending the operator by a uniformly elliptic operator with principal part in divergence form
with ellipticity constant β and H by H̃ with ‖H̃‖∞ ≤ C‖H‖∞ we get,

{
−divD̃∇Uε + B̃∇Uε ≤ divH̃ in B2r1

Uε ≤ λ∗(0)τ on ∂B2r1

and r1 ≤ θ1ρ ≤ ρ/4. Then, Uε ≤ λ∗(0)τ + C(N,L, β)r1‖H‖∞. Let S = λ∗(0)τ + Cr1‖H‖∞.

Let W = S − Uε ≥ 0. Then

−divD̃∇W + B̃∇W ≥ divH̃ in B2r1 .

By the weak Harnack inequality (see [20] Theorem 8.18) we have that, if 1 < q < N−2
2 then,

1

r
N/q
1

‖W‖Lq(B2r1 )
≤ C1[inf

Br1

W + ‖H‖L∞(B2r1 )
r1].

In {u = 0}, W = S. Moreover u = 0 in Br1/4(34r1ν̄) since θ1 ≤ 1/4. Therefore,

S ≤ C2[S − sup
Br1

Uε + ‖H‖L∞(B2r1 )
r1].
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Then,

sup
Br1

Uε ≤
(

1 −
1

C2

)
S + C3r1 ≤ δλ∗(0)τ + C4r1

with 0 < δ < 1. And we have,

sup
Br1

|∇u| ≤ λ∗(0)(1 + δτ) + C4r1

with C4 = C4(N,λ
∗(0), L, β).

Since r1 ≤ θ1ρ and ρ ≤ ρα
∗
≤ ρ0τ , we have

sup
Br1

|∇u| ≤ λ∗(0)(1 + δτ) + C4r1 ≤ λ∗(0)(1 + δτ + Cθ1ρ) ≤ λ∗(0)(1 + τ(δ + Cθ1ρ0)).

Let us choose θ1 such that Cρ0θ1 + δ < 1. Take θ0 = max{θ
α∗/2
1 , (δ + Cρ0θ1)

1/2}.

We have

u ∈ F (θ0σ, 1; θ20τ) in Br1 in direction ν1.

Moreover, rα
∗

1 ≤ θα
∗

1 ρα
∗
≤ θ20ρ

α∗
≤ ρ0θ

2
0τ . We also have, θ0σ ≤ θ0σθ1 ≤ σθ1 and θ20τ ≤

θ20σθ1σ
2 = σθ1(θ0σ)2.

Then, we can repeat this argument a finite number of times, and we obtain

u ∈ F (θm0 σ, 1; θ2m0 τ) in Br1...rm in direction νm,

with

cθj ≤ 2rj ≤ θj, and |νm − ν| ≤
C

1 − θ
σ.

Finally we choose m large enough such that θm0 ≤ θ, we have that

u ∈ F (θσ, 1; θ2τ) in Br1...rm in direction νm,

and using Theorem 8.1 we have if σ ≤ σθ1,ρ0 , τ ≤ σθ1,ρ0σ
2 and ρα

∗
≤ ρ0τ the desired result. �

8.3. Smoothness of the free boundary.

Theorem 8.3. Suppose that u is a minimizer of J in K and D ⊂⊂ Ω. Assume p is Lipschitz
and λ is Hölder. Then, there exist positive constants σ̄0, C and γ such that if

u ∈ F (σ, 1;∞) in Bρ(x0) ⊂ D in direction ν

with σ ≤ σ̄0, ρ ≤ ρ̄0(σ̄0, σ), then

Bρ/4(x0) ∩ ∂{u > 0} is a C1,γ surface.

More precisely, a graph in direction ν of a C1,γ function and, for any x1, x2 on this surface

|ν(x1) − ν(x2)| ≤ Cσ
∣∣∣
x1 − x2

ρ

∣∣∣
γ

Proof. See Theorem 9.3 in [29]. �

Remark 8.2. By the nondegeneracy (Corollary 4.1) and by (7.31), we have that for x0 ∈
∂red{u > 0} we have that u ∈ F (σρ, 1;∞) in Bρ(x0) in direction νu(x0), with σρ → 0 as ρ→ 0.
Hence, applying Theorem 8.3 we have,
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Theorem 8.4. Let u be a local minimizer of J in K with power p ∈ Lip and coefficient λ ∈ Cα.
Then, for any x0 ∈ ∂red{u > 0} there exist r > 0 and 0 < γ < 1 such that Br(x0) ∩ ∂{u > 0} is
a C1,γ surface. Thus, for every D ⊂⊂ Ω there exists 0 < γ < 1 such that D ∩ ∂red{u > 0} is a
C1,γ surface and moreover, HN−1(∂{u > 0} \ ∂red{u > 0} = 0.

Appendix A. The spaces Lp(·)(Ω) and W 1,p(·)(Ω)

Let p : Ω → [1,∞) be a measurable bounded function, called a variable exponent on Ω
and denote pmax = esssup p(x) and pmin = essinf p(x). We define the variable exponent

Lebesgue space Lp(·)(Ω) to consist of all measurable functions u : Ω → R for which the modular

̺p(·)(u) =
∫
Ω |u(x)|p(x) dx is finite. We define the Luxemburg norm on this space by

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf{λ > 0 : ̺p(·)(u/λ) ≤ 1}.

This norm makes Lp(·)(Ω) a Banach space.

One central property of these spaces (since p is bounded) is that ̺p(·)(ui) → 0 if and only
‖ui‖p(·) → 0, so that the norm and modular topologies coincide.

Remark A.1. Observe that we have the following estimate,

‖u‖Lp(·)(Ω) ≤ max
{(∫

Ω
|u|p(x)) dx

)1/pmin

,
( ∫

Ω
|u|p(x) dx

)1/pmax
}

In fact. If

∫

Ω
|u|p(x) dx = 0 then u = 0 a.e and the result follows. If

∫
Ω |u|p(x) dx 6= 0, take

k = max
{( ∫

Ω |u|p(x)) dx
)1/pmin

,
( ∫

Ω |u|p(x) dx
)1/pmax

}
. Then we have,

∫

Ω

( |u|
k

)p(x)
dx ≤ max

{ 1

kpmin
,

1

kpmax

}∫

Ω
|u|p(x) dx ≤ 1

therefore ‖u‖Lp(·)(Ω) ≤ k and the result follows.

Let W 1,p(·)(Ω) denote the space of measurable functions u such that u and the distributional

derivative ∇u are in Lp(·)(Ω). The norm

‖u‖1,p(·) := ‖u‖p(·) + ‖|∇u|‖p(·)

makes W 1,p(·) a Banach space.

Theorem A.1. Let p′(x) such that,

1

p(x)
+

1

p′(x)
= 1.

Then Lp′(·)(Ω) is the dual of Lp(·)(Ω). Moreover, if pmin > 1, Lp(·)(Ω) and W 1,p(·)(Ω) are
reflexive.

Theorem A.2. Let q(x) ≤ p(x), then Lp(·)(Ω) →֒ Lq(·)(Ω) continuously.

We define the space W
1,p(·)
0 (Ω) as the closure of the C∞

0 (Ω) in W 1,p(·)(Ω). Then we have the
following version of Poincare’s inequity,
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Lemma A.1. If p(x) is continuous in Ω, there exists a constant C such that for every u ∈

W
1,p(·)
0 (Ω),

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω)

For the proof of these results, and more about these spaces see [23].

In order to have better properties of these spaces, we need more hypotheses on the regularity
of p(x).

We say that p is log-Hölder continuous if there exists a constant C such that

|p(x) − p(y)| ≤
C∣∣ log |x− y|

∣∣

if |x− y| < 1/2.

It was proved in [32], Theorem 3 that if one assumes that p is log-Hölder continuous then,

C∞ is dense in W 1,p(·)(Ω) (see also [10] and [13]). See [15] for more references on this topic.

Appendix B. Results on p(x)−harmonic and subharmonic functions

In this section we will give some of the properties of p(x)−harmonic and subharmonic func-
tions. Some of them are known results and others are new. For the reader’s convenience we
will list all the results, and give the reference when it corresponds. Here ω(r) is the modulus of
continuity of p(x). We will state which is the type of ω that we are considering for each result.

Remark B.1. For any x fixed we have the following inequalities

|η − ξ|p(x) ≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) ≥ 2,

|η − ξ|2
(
|η| + |ξ|

)p(x)−2
≤ C(|η|p(x)−2η − |ξ|p(x)−2ξ)(η − ξ) if p(x) < 2,

These inequalities say that the function A(x, q) = |q|p(x)−2q is strictly monotone. Then, the
comparison principle holds since it follows from the monotonicity of A(x, q).

The following result, a Cacciopoli type inequality, is included in the proof of Lemma 6 in [21],

Lemma B.1. Assume p(x) is bounded and let u ∈ W 1,p(·)(Ω) be a nonnegative subsolution of
the problem

(B.1) ∆p(x)u = 0 in Ω.

Then, for any Br ⊂ Ω ∫

Br/2

|∇u|p(x) dx ≤ C

∫

Br

(u
r

)p(x)
dx,

where C = C(pmin, pmax).

Proof. See inequality (5) in the proof of Lemma 6 of [21]. �
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Lemma B.2. Assume ω(r) = C(log 1r )−1 and let u be a nonnegative solution of the problem

(B.2) ∆p(x)u = 0 in Ω.

Then, there exists a constant C such that

sup
Br(x0)

u ≤ C( inf
Br(x0)

u+ r)

for any r with B10r(x0) ⊂ Ω. The constant depends on N,ω(.), pmin and the L1(Br)-norm of
|u|p(·).

Proof. See Corollary 5.13 in [22]. �

Remark B.2. Assume u is a nonnegative solution of the problem

(B.3) ∆p(x)u = 0 in Ω.

Let R, ȳ such that B10R(ȳ) ⊂ Ω, x0 ∈ Ω and r > 0. Let x̄ = ȳ−x0

r and ū(x) = u(x0+rx)
r . Then,

for any ρ < R/r we have,

sup
Bρ(x̄)

ū ≤ C( inf
Bρ(x̄)

ū+ ρ),

where C is the constant of the previous Lemma. In particular, C may be taken independent of
r (it depends on the L1(Ω)−norm of |u|p(·)).

Proof. Let |x− x̄| < ρ and y = x0 + rx then |y − ȳ| = r|x− x̄| < rρ < R. Since,

sup
Bρr(ȳ)

u ≤ C( inf
Bρr(ȳ)

u+ ρr)

there holds that

sup
Bρr(ȳ)

u

r
≤ C( inf

Bρr(ȳ)

u

r
+ ρ).

Then,

sup
Bρ(x̄)

ū ≤ C( inf
Bρ(x̄)

ū+ ρ).

�

The following result was proved in Theorem 2.2 in [1],

Theorem B.1. Assume ω(r) = C0r
α0 for some 0 < α < 1, and let u be a solution of the

problem

(B.4) ∆p(x)u = 0 in Ω.

Then, for any Ω′ ⊂⊂ Ω there exists a constant C depending on ‖|u|p(x)‖L1(Ω), ‖|∇u|
p(x)‖L1(Ω),

pmin, pmax, ω(r) and Ω′ such that

‖u‖C1,α(Ω′) ≤ C.

The following is a consequence of the C1,α regularity of the solutions and the Cacciopoli
inequality
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Lemma B.3. Assume ω(r) = C0r
α0 . Let u be a solution of the problem

(B.5) ∆p(x)u = 0 in BR(y).

Then, there exists a constant C depending on ‖|u|p(x)‖L1(BR(y)), ‖|∇u|
p(x)‖L1(BR(y)), pmin, pmax

and ω(r) such that if R ≤ 1 we have,

|∇u(y)| ≤ C
(

1 +
1

R
sup
BR(y)

u
)p+/p−

where p+ = supBR(y) p, p− = infBR(y) p.

Proof. By Theorem B.1, we have for x ∈ BR/2(y),

|∇u(x) −∇u(y)| ≤ C|x− y|α,

for some constants C > 0 and 0 < α < 1. Therefore, if x ∈ BR/2(y)

|∇u(y)| ≤ |∇u(x)| + CRα.

If |∇u(y)| ≥ 1, p− = p−(BR(y)),p+ = p+(BR(y)), recalling that R ≤ 1 we get,

|∇u(y)|p− ≤ |∇u(y)|p(x) ≤ C|∇u(x)|p(x) + C.

Integrating for x ∈ BR/2(y),

|∇u(y)|p− ≤ C
(

1 + –

∫
–
BR/2(y)

|∇u(x)|p(x)
)
.

Applying Cacciopoli inequality we have, since R ≤ 1,

|∇u(y)|p− ≤ C1

(
1 + –

∫
–
BR(y)

( |u(x)|

R

)p(x))

≤ C1

(
2 + –

∫
–
BR(y)

( |u(x)|

R

)p+)

≤ C
(

1 +
( 1

R
sup
BR(y)

u(x)
)p+)

.

We obtain the desired result. �

Remark B.3. In some of the proofs we need to look at the p(x)−Laplacian as an operator in
non-divergence form. In those cases we have to assume p(x) Lipschitz so that we can differentiate
the function,

A(x, q) = |q|p(x)−2q.

If we take a function u, with c1 ≤ |∇u| ≤ c2 differentiating we obtain,

aij(x,∇u) =
∂Ai

∂qj
(x,∇u) = |∇u|p−2

(
δij +

(p− 2)

|∇u|2
uxiuxj

)

∂Ai

∂xk
(x,∇u) = |∇u|p−2 log |∇u| pxk

uxi .

Then, we have a the following non-divergence form for the p(x)−Laplacian,

∆p(x)u =  Lu

where

(B.6)  Lw := aij(x,∇u)wxixj + |∇u|p−2 log |∇u| pxiwxi .
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Observe that aij = |∇u|p(x)−2bij and bij is uniformly elliptic with constant of ellipticity β,
independent of the gradient of u. We call

(B.7) Tw := bij(x,∇u)wxixj + log |∇u|pxiwxi .

The following Lemma is the construction of barriers required in several proofs.

Lemma B.4. Suppose that p(x) is Lipschitz continuous. Let wµ = Me−µ|x|2 , for M > 0 and
r1 ≥ |x| ≥ r2 > 0. Then, there exist µ0, ε0 > 0 such that, if µ > µ0 and ‖∇p‖∞ ≤ ε0,

µ−1eµ|x|
2
M−1|∇w|2−p∆p(x)wµ ≥ C1(µ− C2‖∇p‖∞| logM |) in Br1 \Br2 .

Here C1, C2 depend only on r2, r1, p+, p−, µ0 = µ0(p+, p−, N, ‖∇p‖∞, r2, r1) and
ε0 = ε0(p+, p−, r1, r2).

Proof. First note that by Remark B.3

∆p(x)w = |∇w|p−2
{(p− 2)

|∇w|2

∑

i,j

wxiwxjwxixj + △w + 〈∇w,∇p〉 log |∇w|
}
.

Computing, we have

wxi = −2µMxi, e
−µ|x|2 , wxixj = M(4µ2xixj − 2µδij)e

−µ|x|2 , |∇w| = 2Mµ|x|e−µ|x|2 .(B.8)

Therefore using (B.8) we obtain,

eµ|x|
2
(2Mµ)−1|∇w|2−p∆p(x)w

= (p − 2)(2µ|x|2 − 1) + (2µ|x|2 −N) − 〈x,∇p〉(log(M) + log(|x|2) + log µ) + µ〈x,∇p〉|x|2

= (p − 1)2µ|x|2 + µ〈x,∇p〉|x|2 − (p− 2 +N) − 〈x,∇p〉(logM + log µ+ log(2|x|))

≥ (2(p− − 1)r22 − r31‖∇p‖∞)µ − r1‖∇p‖∞| log µ| − (p+ − 2 +N) − r1‖∇p‖∞(logM + Cr1,r2))

≥ (2(p− − 1)r22 − r1‖∇p‖∞(r21 + 1)µ − (p+ − 2 +N) − r1‖∇p‖∞(logM + Cr1,r2).

In the last inequality we have used that log µ
µ ≤ 1 if µ ≥ 1.

Let ε0 > 0 such that

2(p− − 1)r22 − r1(r
2
1 + 1)ε0 ≥

3

2
(p− − 1)r22 .

If ‖∇p‖∞ ≤ ε0 we obtain

eµ|x|
2
(2Mµ)−1|∇w|2−p∆p(x)w ≥

3

2
(p− − 1)r22µ− (p+ − 2 +N) − r1‖∇p‖∞(logM + Cr1,r2).

Now, if we take µ ≥ µ0 = µ0(p+, p−, N, r2, r1, ‖∇p‖L∞) we obtain that

eµ|x|
2
(2Mµ)−1|∇w|2−p∆p(x)w ≥ C1(µ− C2‖∇p‖∞| logM |)).

with C1, C2 depending only on p−, r1, r2.

�
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Lemma B.5. Assume p(x) is Lipschitz. Let u be a solution of the problem

(B.9) ∆p(x)u = 0 in Ω.

with 0 < c1 ≤ |∇u| ≤ c2. Then v = |∇u| satisfies,

−div D∇v +B∇v ≤ div H in Ω

where,

Dij(x,∇u) = |∇u|p−1
(
δij +

(p − 2)

|∇u|2
uxiuxj

)
,

H(x,∇u) = |∇u|p−2 log |∇u|〈∇u,∇p〉∇u,

B(x,∇u) = |∇u|p−1 log |∇u| ∇p.

Proof. Let η ∈ C∞
0 (Ω). Then, for each k we have after integration by parts,

0 =

∫

Ω
A(x,∇u)∇ηxk

dx = −

∫

Ω

∂A

∂xk
(x,∇u)∇η dx−

∫

Ω
aij(x,∇u)uxjxk

ηxi dx.

Observe that, by approximation, we get that the right hand side vanishes for η ∈W 1,p(·)(Ω).

Taking η = uxk
ψ with ψ ∈ C∞

0 (Ω) we have, by using the ellipticity of aij (see Remark B.3),

0 = −

∫

Ω

∂A

∂xk
(x,∇u)uxk

∇ψ dx−

∫

Ω

∂A

∂xk
(x,∇u)∇uxk

ψ dx

−

∫

Ω
aij(x,∇u)uxjxk

uxkxiψ dx−

∫

Ω
aij(x,∇u)uxjxk

uxk
ψxi dx

≤−

∫

Ω

∂A

∂xk
(x,∇u)uxk

∇ψ dx−

∫

Ω

∂A

∂xk
(x,∇u)∇uxk

ψ dx−

∫

Ω
aij(x,∇u)uxjxk

uxk
ψxi dx.

Observe that vxj =
∇u

|∇u|
∇uxj =

uxk

|∇u|
uxkxj . Taking the sum over k in the last inequality,

using Remark B.3 and replacing by v, we have

−

∫

Ω
aij(x,∇u)|∇u|vxjψxi dx ≥

∫

Ω

∂A

∂xk
(x,∇u)uxk

∇ψ dx+

∫

Ω

∂A

∂xk
(x,∇u)∇uxk

ψ dx

=

∫

Ω
|∇u|p−2 log |∇u|pxk

uxiuxk
ψxi dx+

∫

Ω
|∇u|p−2 log |∇u|pxk

uxiuxkxiψ dx

=

∫

Ω
|∇u|p−2 log |∇u|〈∇u,∇p〉〈∇u,∇ψ〉 dx +

∫

Ω
|∇u|p−2 log |∇u||∇u|vxk

pxk
ψ dx

=

∫

Ω
|∇u|p−2 log |∇u|〈∇u,∇p〉〈∇u,∇ψ〉 dx +

∫

Ω
|∇u|p−2 log |∇u||∇u|〈∇p,∇v〉ψ dx.

By our election of D,B and H we have,

−

∫

Ω
Dij(x,∇u)vxjψxi dx ≥

∫

Ω
H∇ψ dx+

∫

Ω
B∇vψ dx.

�
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