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Abstract

We study the effect of intense magnetic fields on the phase diagram of cold, strongly interacting

matter within an extended version of the Nambu-Jona-Lasinio model that includes flavor mixing

effects and vector interactions. Different values of the relevant model parameters in acceptable

ranges are considered. Charge neutrality and beta equilibrium effects, which are specially relevant

to the study of compact stars, are also taken into account. In this case the behavior of leptons is

discussed.
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I. INTRODUCTION

The influence of intense magnetic fields on the properties of strongly interacting matter

has become an issue of increasing interest in recent years [1]. This is mostly motivated by

the realization that in some relevant physical situations, like high energy non-central heavy

ion collisions [2] and compact stellar objects called magnetars [3], very strong magnetic

fields may be produced. Since in these systems extreme temperatures and/or densities may

be found, it is interesting to investigate which modifications are induced by the presence of

strong magnetic fields on the whole QCD phase diagram. Unfortunately, even in the absence

of those fields, the present knowledge of such phase diagram is only schematic due to the

well-known difficulty given by the so-called sign problem which affects lattice calculations

at finite chemical potential [4]. Of course, the presence of strong magnetic fields makes the

situation even more complex. Thus, most of our present knowledge of their effect comes from

investigations performed in the framework of effective models (see e.g. [5] and refs. therein).

In this contribution we present some results of a study of the phase diagram of cold quark

matter subject to intense magnetic fields in the framework of a generalized Nambu-Jona-

Lasinio (NJL) model. The NJL-type models are effective relativistic quark models for non

perturbative QCD, where gluon degrees of freedom are integrated out and interactions are

modelled through point like interactions. In its simplest version [6] it only includes scalar

and pseudo scalar interactions that describe chiral symmetry breaking effectively. As well

known, however, a more detailed description of the low-energy quark dynamics requires that

other channels like flavor mixing and vector meson interactions are taken into account [7].

In fact, some aspects of the effect of those interactions on the magnetized quark matter have

already been investigated [8, 9]. The purpose of the present work is to extend those analyzes

by performing a detailed study of the resulting cold matter phase diagrams, including their

dependence on the parameters that regulate the strength of these interactions. Moreover,

the behavior of cold magnetized quark matter under conditions relevant for the physics of

compact stars will also be considered. One of the phenomena to be discussed in detail

is that related to the so-called inverse magnetic catalysis (IMC) expected to exist at low

temperature and moderate values of the chemical potentials [10]. It is important to mention

that, despite bearing a similar name, this phenomenon is different from the inverse magnetic

catalysis at finite temperature found in lattice QCD (LQCD). Concerning the latter one, we

2



recall that most effective models foresee that at zero chemical potential a crossover transition

is obtained at a pseudo critical temperature Tc that increases with an increasing magnetic

field, a behavior which is contrary to the one found in LQCD calculations [11]. In fact,

recently there have been significant efforts to modify the models such that they incorporate

a mechanism that could lead to inverse magnetic catalysis around Tc (see Ref. [12] for a

recent review on this issue). We should stress, however, that this is not expected to affect

the low temperature behavior discussed in this work.

This paper is organized as follows. In Sec. II we provide some details of the model and

its parametrizations as well as the way to deal with an external constant magnetic field. In

Sec. III we present and discuss our results for symmetric quark matter. The situation for

stellar matter is analyzed in Sec. IV. Finally, our conclusions are given in Sec. V.

II. FORMALISM

We consider a generalized NJL-type SU(2) Lagrangian density which includes a scalar-

pseudoscalar interaction, vector-axial vector and the t´Hooft determinant interaction [7]. In

the presence of an external magnetic field and chemical potential it reads:

L = ψ̄
(

i /D −mc + µ̂ γ0
)

ψ + Lint (1)

where

Lint = G1

3
∑

a=0

[

(

ψ̄τaψ
)2

+
(

ψ̄iγ5τaψ
)2
]

+G2

3
∑

a=0

[

(

ψ̄γµτaψ
)2

+
(

ψ̄γµγ5τaψ
)2
]

+G3

[

(

ψ̄γµψ
)2

+
(

ψ̄γµγ5ψ
)2
]

+G4

[

(

ψ̄γµψ
)2

−
(

ψ̄γµγ5ψ
)2
]

+ 2GD (d+ + d−) (2)

Here, Gi with i = 1, 4 and GD are coupling constants, ψ = (u, d)T represents a quark field

with two flavors, d± = det
[

ψ̄ (1± γ5)ψ
]

, µ̂ = diag (µu, µd) the quark chemical potentials,

mc is the (current) mass matrix that we take to be the same for both flavors, τ0 = I, where

I is the unit matrix in the two flavor space, and τa, 0 < a ≤ 3 denote the Pauli matrices.

The coupling of the quarks to the electromagnetic field Aµ is implemented through the

covariant derivative Dµ = ∂µ − iq̂Aµ where q̂ represents the quark electric charge matrix

q̂ = diag (qu, qd) where qu/2 = −qd = e/3. In the present work we consider a static and

constant magnetic field in the 3-direction, Aµ = δµ2x1B. In the mean-field approximation
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the associated grand-canonical thermodynamical potential for cold and dense quark matter

reads

ΩMFA = −
∑

f=u,d

θf + Ωpot (3)

where θf gives the contribution from the gas of quasi-particles of each flavor f = u, d and

can be written as the sum of 3 contributions [13]

θvacf =
Nc

8π2







Λ
(

2Λ2 +M2
f

)

√

Λ2 +M2
f −M4

f ln





(Λ +
√

Λ2 +M2
f )

Mf











,

θmag
f =

Nc

2π2
(|qf |B)2

[

ζ (1,0)(−1, xf )−
1

2
(x2f − xf ) lnxf +

x2f
4

]

,

θmed
f =

Nc

4π2
|qf |B

νmax
f
∑

ν=0

αν

[

µ̃f

√

µ̃2
f − sf(ν, B)2

−sf(ν, B)2 ln





µ̃f +
√

µ̃2
f − sf(ν, B)2

sf(ν, B)







 , (4)

where Mf = mc + σf and µ̃f = µf − ωf , with σf and ωf being the mean field values of the

scalar and vector meson fields, respectively. Λ represents a non covariant ultraviolet cutoff

and ζ (1,0)(−1, xf) = dζ(z, xf)/dz|z=−1 where ζ(z, xf ) is the Riemann-Hurwitz zeta function.

In addition, sf (ν, B) =
√

M2
f + 2|qf |Bν while xf = M2

f /(2|qf |B). In θmed
f , the sum is over

the Landau levels (LLs), represented by ν, while αν = 2 − δν0 is a degeneracy factor and

νmax
f is the largest integer that satisfies νmax

f ≤ (µ̃2
f −M2

f )/(2|qf |B).

The Ωpot contribution reads

Ωpot =
(1− cs)(σ

2
u + σ2

d)− 2cs σu σd
8gs(1− 2cs)

−
(1− 2cv)(ω

2
u + ω2

d) + cv ωu ωd

8gv(1− 2cv)
(5)

where we have introduced a convenient parametrization of the coupling constants in terms

of the quantities gs, cs, gv and cv given by

gs = G1 +GD ; gv = G2 +G3 +G4

cs =
GD

G1 +GD

; cv =
G3 +G4

2(G2 +G3 +G4)
(6)

The relevant gap equations are given by

∂ΩMFA(σu, σd, ωu, ωd)

∂(σu, σd, ωu, ωd)
= 0 . (7)
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The solutions to the gap equations minimize the thermodynamic potential with respect

to the quark masses Mf , but the ωf derivatives amount to a consistency condition and

the potential is actually a maximum with respect to these variables. Several solutions will

generally exist, corresponding to different possible phases, and the most stable solution is

that which minimizes the thermodynamic potential with respect to Mf .

In our calculations we will consider first the simpler case of symmetric matter where

both quarks carry the same chemical potential µ. Afterwards, we will analyze the case of

stellar matter in which leptons are also present and β-equilibrium and charge neutrality are

imposed. In this case the chemical potential for each quark, µf , is a function of quark number

chemical potential µ and the lepton chemical potentials which have to be self-consistently

determined.

In order to analyze the dependence of the results on the model parameters, we will

consider two SU(2) NJL model parameterizations. Set 1 corresponds to that leading to

M0 = 340 MeV while Set 2 to that leading to M0 = 400 MeV. Here, M0 represents the

vacuum quark effective mass in the absence of external magnetic fields. The corresponding

model parameters are listed in Table I.

TABLE I. Parameter sets for the NJL SU(2) model.

Parameter set M0 m gsΛ
2 Λ − < uū >1/3

MeV MeV MeV MeV

Set 1 340 5.595 2.212 620.9 244.3

Set 2 400 5.833 2.440 587.9 240.9

The presence of the t’Hooft determinant interaction is very important since it reflects

the UA(1)−anomaly of QCD. Its strength, and consequently the amount of flavor mixing

induced by this term, is controlled by the parameter cs. An estimate for its value can be

obtained from the η − η′ mass splitting within the 3−flavor NJL model [14]. This leads

to cs ≃ 0.2 [15]. In any case, to obtain a full understanding of the effects of flavor mixing

we will vary the value of cs in a range going from 0, which corresponds to a situation in

which the two flavors are completely decoupled, to 0.5, being this the case of maximum

flavor mixing described for example in Ref. [16]. Regarding the vector coupling term it is
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important to recall that one can obtain naturally the terms proportional to G2 if one starts

from a QCD-inspired color current-current interaction and then performs a Fierz transform

into color-singlet channels, and that in this case the relation between coupling strengths is

G2 = G1/2 [7]. Yet, the value of gv cannot be accurately determined from experiments nor

from lattice QCD simulations and this is why it has been taken as a free parameter in most

works. In the present work we take 0 < gv/gs < 0.5. It is worth mentioning that due to the

mixing of pseudoscalar and longitudinal axial vector interaction terms, pseudoscalar meson

properties depend on G2. Thus, strictly speaking the parameters given in Table 1 only lead

to the empirical values of fπ and mπ when G2 = 0. However, as shown in Ref. [17], mπ

and fπ only change by ∼ 10% when G2/G1 increases from 0 to 1. Thus, for simplicity, we

will keep the model parameter values fixed when varying gv. A last comment regarding cv,

i.e. the parameter that regulates the ratio between the singlet and octet vector-axial vector

interaction strengths: we will take it as a free parameter in the range 0 ≤ cv ≤ 1/2. Note

that for cv = 1/2 only singlet vector-axial interactions are present and, thus, there is no

mixing between the pseudoscalar and longitudinal axial vector channels.

We end this section by describing the way in which the different phases of the magnetized

quark matter will be denoted as well as the procedure used to identify the boundaries between

them. For the phases we adopt the notation of Refs. [16, 18]. Thus, the vacuum (i.e. fully

chirally broken) phase is denoted by B, the massive phases in which Mf depends on the

chemical potential by Cα and, finally, the chirally restored phases by Aα. Here, α is a set

of two numbers indicating the highest LL populated for each flavor. To obtain the critical

chemical potentials at a given eB we proceed as follows. In the case of first order phase

transitions we calculate the thermodynamical potential for each of the neighboring phases

(that is, the global minimum with respect toMf ) and then search for the chemical potential

values at which they become degenerate. In the case of crossover transitions the critical

value is identified by the peak of the chiral susceptibility corresponding to each quark flavor,

defined as ∂< ψψ >/∂mf .

III. RESULTS FOR SYMMETRIC MATTER

In this section we present the results obtained for the case of symmetric matter. These

results were obtained solving the set of coupled “gap equations” (14) for different values of
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magnetic field and chemical potential.

A. Effect of the flavor mixing interactions

To neglect vector interactions implies taking G2 = G3 = G4 = 0 in Eq. (2), while G1 6= 0

and GD 6= 0. Therefore, Eqs. (7), will become a set of two coupled equations that must

be solved for the independent variables Mu and Md. The parameter cs acts as a coupling

between both flavors and we study how the phase transitions are modified as we vary this

parameter in the range 0 < cs < 0.5. The case cs = 0.5 corresponds to ordinary NJL where

flavor mixing is maximum and, thus, both flavors have identical behavior. In fact, the first

term in Eq. (5) will tend to infinity as cs goes to 0.5 unless Mu = Md, which leaves only

one equation to be solved. But if cs < 0.5, then both masses will be independent variables,

and transitions for each flavor might occur simultaneously or not in different regions of the

phase diagrams.

The phase diagrams for both parameter sets and several values of flavor mixing can be

seen in Fig. 1. We will start by commenting some general features which are common to all

phase diagrams discussed in this work. It is seen that chiral symmetry is completely broken

for chemical potentials well below M0 and that restoration occurs for high enough chemical

potentials, usually accompanied by a large drop in the dressed mass. The inclusion of a

constant magnetic field modifies the quark dispersion relation, introducing Landau levels

(LL’s) into its spectrum. A consequence of this is that chiral symmetry restoration might

occur in several steps as chemical potential is increased, each of which is a transition where

quark population appears on previously unoccupied LL’s. The restored chiral symmetry

region consists of several phases with different number of LL’s occupied, which are separated

by the so-called Van Alphen De Haas transitions, whose form is in the absence of vector

mesons approximately µc =
√

2k|qf |B (being this condition exact for the chiral case). As

a result of the different quark electric charges, one up transitions is found every two down

transitions when a phase diagram is traversed in the magnetic field direction at high enough

fixed µ. In all phase diagrams, a “main transition” is found, which separates the vacuum

phase from the phases with populated LL’s and at fixed eB it is the one with the lowest

possible chemical potential (e.g.: lower black line in bottom left diagram in Fig. 1). In some

cases, another main transition within the populated phase exists. It connects phases with
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partially restored symmetry and low LL population to the fully restored symmetry phases,

where the Van-Alphen De Haas transitions are present and LL level population may be much

higher. All of this gives rise to a potentially complex phase diagram, whose precise form

depends on the parameter set and magnetic field (The B = 0 case is simple yet depending on

the parameter set there can be a few differences). The lower main transition usually shows,

for moderate magnetic fields, a decrease of µc when eB increases that is sometimes called

magnetic anticatalysis [10] (even though the name is more generally used to refer to the

decrease of the quark condensates as eB increases). For higher values of the magnetic field

this tendency is reverted, and this gives rise to a characteristic curve in the main transition

line to which we will refer as the “IMC well”. It is also worth noting that some of the other

transitions in the phase diagrams also exhibit an IMC-like behavior.

Now we will discuss how the phase diagrams are modified as the parameter cs is varied.

The upper two panels correspond to the cs = 0 case (no flavor mixing), which was previously

studied in Ref. [16]. In a sense, each flavor will have its own independent phase diagram

because the gap equations are decoupled. Here, each line corresponds to a transition where

LL population of a single quark flavor occurs (red lines for down quarks, blue lines for

up quarks). Both flavors will coincide for eB = 0 where SU(2) symmetry is recovered

and behave differently as eB increases, due to their different electric charges. Since this is

the only difference between the equations for both flavors and since it only appears in the

product qfB, the down flavor phase diagram may be obtained from the other one through the

replacement quB = (2qd)B = qd(2B) which amounts to a stretching of the up flavor phase

diagram along the eB axis. In other words, since the down quark has a smaller coupling

to the field than the up quark, it will require a magnetic field twice as large to replicate

the effect on an up quark. As a consequence of this, the IMC wells are shifted with respect

to each other, so there will be a large well-distinguished region where up quarks exist in

the lowest LL (LLL) while down quarks are in vacuum (0B), and another region where the

opposite occurs (B0).

For finite cs (second row onwards in Fig. 1), the coupling between flavors creates a complex

pattern, where transitions move closer together to the point of coalescing in some regions,

that is, the LL population changes simultaneously for both flavors (these are represented by

black lines). We can see that already for cs = 0.03, the transitions in both parameter sets

occur together for low magnetic fields, and then separate for eB = 0.02 GeV2 in Set 1 and
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eB = 0.1 GeV2 in Set 2. Note that for cs = 0, the transitions for both flavors cross around

eB = 0.12 GeV2 (for both sets). When flavor mixing is introduced, this crossing point

transforms into a line, that is, both transitions occur together once again in an interval of

magnetic field values. When cs = 0.03, they separate at eB = 0.4 GeV2, which is intuitive

since a higher magnetic field will further break SU(2) flavor symmetry. For cs = 0.2 this

separation is no longer seen in the diagrams but it can be guessed that it does occur beyond

eB = 1 GeV2, and that for any value of cs < 0.5 there will always be a large enough magnetic

field that will cause the u and d main transitions to separate.

For a better understanding of the physical meaning of the transition lines, we present

in Fig. 2 the dressed masses for both flavors for Set 2, cs = 0.03, for eB = 0.11 GeV2.

When the first discontinuity is encountered, at µ = 370 MeV, Mu jumps to half its value

and its LLL becomes populated. On the other hand, the down flavor remains in vacuum.

Actually, its mass presents a small discontinuity caused by the weak coupling to the up

quark which is not to be interpreted as a down transition. The down quark LLL is occupied

at µ = 374 MeV. This is precisely the kind of behavior that generates a rich phase diagram

for low cs values. The difference in masses is understood in terms of the effect of magnetic

catalysis. Since the flavors have different charges, they couple with different intensities to

the magnetic field, so the up quark will have a larger mass in the vacuum phase and a lower

one in the populated phases, which is consistent with the fact that mass increases with

magnetic field in the vacuum phase and decreases in the populated phase.

The behavior of the crossovers as cs is varied from 0 to 0.5 is interesting to note. For

cs = 0, in Set 1, there is one crossover for each flavor. When cs is increased, the up crossover

is slightly shifted to the left when crossing from the 00 to the 01 phase, acquiring a small

discontinuity. In turn, a down crossover starts to appear from the left in the latter phase.

As cs is increased, these two crossovers move towards each other, while the up crossover in

00 shifts to the right, also moving towards the down crossover originally existing in that

same phase. The cs = 0.5 limit, in which down and up crossovers have joined, is achieved

very slowly, being the crossovers still separated for cs ≃ 0.4995.

The first order transitions for both flavors already occur together in the whole studied

region for cs = 0.2, so the qualitative behavior is very similar to the full flavor mixing case

cs = 0.5. In fact, the model tends to full mixing quite quickly and only for cs < 0.1 are

relevant mixture effects (or more precisely, the absence of it) actually seen. VA-dH lines are
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brought together for a particularly small amount of mixing, already coinciding for cs = 0.03,

while crossover transitions, on the other hand, tend much more slowly to the cs = 0.5

behavior.

B. Effect of the vector interactions

In this section we analyze the effect of vector interaction terms. As discussed in the

previous section, for cs & 0.1 the phase diagrams do not present qualitative variations.

Here, therefore, we consider cs = 0.2 which also is in the range of realistic values suggested

in Ref. [15]. Although the results to be shown below correspond to cv = 0, our studies show

that only small quantitative differences occur when varying this parameter from 0 to 1/2.

In Fig. 3 we present a series of phase diagrams obtained for different values of the ratio

gv/gs. For Set 1 we observe that as gv/gs increases the two main transitions separate and

several new transitions appear in between, in the low eB region of the diagram. These are

partially restored symmetry regions, where quark mass acquires an intermediate value. For

Set 2 there is a unique main transition for gv = 0, but already for gv/gs ≃ 0.1 it will split

into two, leaving a 00 phase in between which was not present before. For larger values of

gv/gs the behavior is similar to that of Set 1. The existence of new transitions at low eB as

gv/gs increases can also be appreciated in the left panel of Fig. 4, where we show d quark

density normalized to nuclear matter density (ρ0 = 0.17 fm−3) as a function of chemical

potential for eB = 0.016 GeV in Set 1. In the absence of vector interaction, the density

jumps from close to 0 to 3 times nuclear matter density, while quark population jumps from

00 to a phase where several LL’s are occupied. As gv increases, the amount of transitions

increases too. In fact, increasing the vector interaction coupling has the same effect as going

to a parameter set that reproduces a lower value of current mass M0, described in Ref. [16].

Notice that the phase diagram for Set 2 and gv/gs = 0.3 is in this sense very similar to Set 1

and gv/gs = 0.

It is interesting to analyze the effect of the vector interactions on the so-called inverse

magnetic catalysis (IMC) mentioned in the Introduction. We recall that the IMC is usually

related to a decrease of the critical chemical potential at intermediate values of the magnetic

fields, a phenomenon that can be clearly observed in all the phase diagrams plotted in Figs. 1

and 3. However, while from Fig. 1 we see that the variation of the strength of flavor mixing
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interactions has basically no effect on the IMC effect, the situation is different for the vector

interactions. In fact, from Fig. 3 we note that if we measure the depth of the IMC well as

the difference in µ between the lowest critical chemical potential at vanishing magnetic field

and the lowest possible one in the whole diagram, we find that this difference is reduced

by an 84% for Set 1 and by a 67% for Set 2 when going from gv = 0 to gv/gs = 0.5. To

explain this feature we recall that the IMC effect can be understood in terms of the extra

cost in free energy to form a fermion-antifermion condensate at finite µ, Ωext [10]. In the

absence of vector interactions this extra cost basically originates in the LLL contribution to

the medium term. Considering the chiral limit for simplicity, this contribution can be shown

to be proportional to Bµ2 for symmetric matter, and it tends to decrease the difference in

free energy between the vacuum phase and the finite density phase. As it is clear from

Eqs. (4, 5) the presence of the vector interactions introduces some modifications in Ωext. In

the case of the medium term, they imply the replacement µf → µ̃f = µf − ωf . Moreover,

there is a new contribution coming from Ωpot. Thus, assuming as above that there is LLL

dominance and that quarks are massless in the chirally restored phase, the extra cost for

symmetric matter is

Ωext =
NcB

4π2

∑

f

|qf |(µ− ω)2 +
ω2

4gv
(8)

where, for simplicity, we have assumed cv = 1/2. The generalization for arbitrary values

of cv is straightforward and, in addition, the numerical dependence on cv of the estimates

to be given below turns out to be negligible. Of course, ω should satisfy the associated

gap equation which follows from Eq. (14) in the Appendix. Within the above mentioned

approximations, the solution of this equation is

ω =

[

1 +
π2

Ncgv
∑

f |qf |B

]−1

µ (9)

Replacing in Eq. (8) we get that Ωext can be expressed in a form similar to that ob-

tained in the absence of vector interactions, but where µ has to multiplied by a factor

1/
√

1 +NcgveB/π2. Note that the actual values of the u− and d−quark charge have been

already used to obtain this factor. Thus, in the region eB ∼ 0.2 GeV2 around which this

expression is approximately valid we expect

µc(gv)

µc(0)
≃

√

1 +
Nc

π2
eB gv (10)
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For example, for Set 2 we obtain that the lowest critical chemical potential (which occurs

at about eB = 0.24 GeV2) increases by about 10 % when going from gv = 0 to gv/gs = 0.5.

Together with the fact that the lowest µc at vanishing magnetic field stays basically constant

for values of gv/gs & 0.1 this explains the strong reduction of the IMC well.

Another aspect of the reduction of the IMC phenomenon induced by the presence of

the vector interactions can be observed in the right panel of Fig. 4. There, we plot the

current quark mass for d quarks as a function of the magnetic field for Set 1, µ = 345 MeV

and several gv/gs values, where the system is in the 00 phase at eB = 0. As discussed in

Ref. [16] in this case an actual decrease of the mass as eB increases is expected to exist. As

we see, however, such a decrease is slower for larger values of gv. It should be noticed that

discontinuities appearing for gv/gs = 0 corresponds to the d quark transition from the phase

00 to 0̄1̄ and back.

IV. RESULTS FOR STELLAR MATTER

We now turn our attention to stellar matter, that is, matter where β-equilibrium and

charge neutrality are imposed. In this case, electrons and muons are introduced into the

system so that the thermodynamical potential receives an extra contribution [13]

Ωlep =
∑

l=e,µ

νmax
l
∑

ν=0

|ql|B αν

4π2

[

µl

√

µ2 − sl(ν, B)2 − sl(ν, B)2 ln

(

µl +
√

µ2
l − sl(ν, B)2

sl(ν, B)

)]

(11)

where νmax
l = Int[(µ2

l − m2
l )/(2|ql|B)] and sl(ν, B) =

√

m2
l + 2|ql|Bν. We take me =

0.511 MeV and mµ = 105.66 MeV.

The β-equilibrium and charge neutrality conditions read

µd = µu + µe , µe = µµ (12)

and

ρe + ρµ =
1

3
(2ρu − ρd) , (13)

respectively. The lepton densities appearing in the last equation can be easily obtained from

the derivatives of the total thermodynamical potential with respect to the corresponding

chemical potentials.
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Following the discussions in the previous section only results for cs = 0.2 will be presented.

If charge neutrality is imposed on our system, there will be a fixed relation between the

densities of the up and down quarks, which will be necessarily different unless they are

both zero. So, even though the value of cs = 0.2 was close enough to the full mixing case

according to what was established in previous sections, charge neutrality will cause the

flavors to behave differently among themselves.

The phase diagrams in the µ−B plane for both parameter sets and for increasing values

of gv are plotted in Fig. 5. The chemical potential µ on the horizontal axis is now the

quark number chemical potential, in terms of which the flavor chemical potentials read

µf = µ− qfµe when Eqs.(12) are used. The introduction of stellar matter conditions has a

few effects similar to those of vector interaction, in the sense that diagrams become similar

to the ones corresponding to lower M0 sets: main transitions separate for low eB and

several transitions appear in the region between them. The magnetic anticatalysis effect

is reduced also: The depth of the anticatalysis well, as defined in the previous section,

is reduced from 35 MeV to 9 MeV in Set 1 and from 43 MeV to 22 MeV in Set 2. As

discussed in Ref. [19] this can be understood by generalizing to stellar matter the discussion

given in Sec.IIIb. We see that again the minimum critical chemical potential occurs at

eB ∼ 0.2 GeV2. Around that value, and in the absence of vector interactions, the extra

cost in free energy to form a fermion-antifermion pair at finite µ is in this case proportional

to Bµ̄2 with µ̄2 =
∑

f |qf |µ
2
f + µ2

e/3. Here, a generally small muonic contribution has been

neglected. Using the relations obtained from the β equilibrium conditions, µf = µ−qfµe, we

get µ̄ = µ(1−2x/3+2x2/3)1/2, where x = µe/µ. Note that the minus sign in the (dominant)

linear term follows from the fact that |qu| = 2|qd|. The relevant value of x follows from the

neutrality condition Eq. (13). Assuming as before that in the chirally restored phase we are

dealing with massless quarks one obtains x ≃ 0.38 for µ ≃ 350 MeV. Using this result we

get µ̄ ≃ 0.92 µ. This implies that the extra cost in free energy is smaller than that required

in the symmetric matter case for the same value of eB and µ. Consequently, for a given eB,

one needs a larger value of the chemical potential to induce the phase transition. In fact, we

have µst
c /µ

sym
c ≃ 1.09 a value which is in good agreement with our full numerical results. In

principle to determine the change in the IMC well we should also estimate the modification

of µc at eB = 0. As shown in Ref. [19] this value also increases when stellar conditions are

imposed. However, such an increase is several times smaller than the one at eB ∼ 0.2 GeV2
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leading to a quenching of the IMC effect. As discussed in Sec.IIIb, the introduction of vector

interaction will further enhance these effects. Consequently we observe that anticatalysis

has completely disappeared for gv = 0.5.

The VA-dH transitions for different flavors also acquire relatively independent behaviors

when charge neutrality is introduced. In particular, some down and up transitions occur

simultaneously as we follow them upwards along the phase diagram and then separate visibly

at a given chemical potential. This is most clearly seen at intermediate eB (≃ 0.1 GeV2) for

the transitions separating the 02, 12 and 13 phases. The relationship for critical chemical

potentials µc =
√

2k|qf |B, which occurred for symmetric matter now holds for each flavor

chemical potential separately, where these two are different between themselves and related

through Eq. (12). As a result of this, we see that in Fig. 5, which is instead plotted in terms

of quark chemical potential, we roughly have one up transition every four down transitions,

whereas in symmetric matter there was one up transition every two down transitions. In

particular, for high gv, the transitions have a tendency to clump up in groups of three (two

down transitions and one up) with an intermediate down transition which is well separated

from this group.

The transitions corresponding to the population of lepton Landau Levels are also included

in Fig. 5. In all cases, it was seen that electron’s transition from vacuum to LLL occurs in

the lower main transition, that is, quarks and electrons occupy their LLL simultaneously.

This is understandable in that electrons have a very small, almost negligible mass, hence

they will populate their LLL as soon as the associated chemical potential becomes finite.

On the other hand, muon behavior is more complex. Since they have a larger mass than

electrons it is expected that they will require a larger chemical potential to acquire a finite

population. This is what actually happens in all our diagrams for low magnetic fields,

where values larger than 430 MeV are needed for this, hence not appearing in the plotted

region. However, at intermediate values magnetic field values (0.1 < eB < 0.2 GeV2),

this transition drops suddenly until it joins the lower main transition of the quarks. This

happens because µe increases with magnetic field, allowing for muon population at lower

quark chemical potential. For higher eB values, all leptons and quark transitions occur

together. The occupation of the first Landau Level of either lepton species requires much

higher chemical potentials. This happens because leptons have a larger charge than quarks,

leading to Landau Levels with larger energy, and because µe is only a slowly increasing
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function of µ. The value needed for the first electron LL to be occupied, which is around

250 MeV, is therefore only achieved near µ = 900 MeV. In some phase diagrams, the muon

transition is seen to affect the behavior of the crossovers. This occurs because the µe is

coupled to the order parameters, so a muon transition, with its corresponding jump in µe,

will affect the values of the quark masses and its associated susceptibilities. For gv/gs = 0.5

in Set 1, for example, the down crossover separating the 00 and 0̄0̄ phases is smeared out near

the muon transition. In other diagrams, like the one for gv/gs = 0.3, the muon transition

has completely absorbed the quark crossover.

In Fig. 6 we plot the normalized lepton densities together with those of the quarks as

functions of the quark number chemical potential, for eB = 0.02 GeV2, gv/gs = 0.3 and pa-

rameters of Set 1. All three densities become non zero simultaneously at µ = 340 MeV, where

they all occupy their corresponding LLL. However, while quark density grows monotonously

after the first transition, it is seen that when the next quark transition is encountered ρe

decreases, and jumps to an even lower value in the transition that follows. Recalling that

these correspond to transitions of d quarks and that the charge neutrality condition imposed

is ρe+ ρµ = (2ρu− ρd)/3, it can be understood that the electron density decreases whenever

there is a d-transition and subsequent growth of ρd (recall that ρµ = 0 in this range of chem-

ical potential), without relevant changes in ρu. This is the case of this range of chemical

potential and this value of magnetic field.

In Fig. 7 we show quark and lepton densities as functions of the magnetic field for µ =

0.36 GeV, for different strengths of the vector coupling. Results correspond again to Set 1.

At low magnetic field, discontinuities in the quark densities, associated with the VA-dH

transitions, are always encountered. For the cases with gv = 0 and 0.3 a region is found in

which ρd changes its monotony within a C-type phase. This is because quarks can be found

in this phase for magnetic fields high enough so the mass has started to increase with eB,

and is associated to the region of the phase diagram above the IMC well. This behavior is

not observed for gv/gs = 0.5 where the IMC effect has disappeared. For eB ∼ 0.2 GeV2, d

quarks are already in a phase with a low k and u quarks with k = 0, all densities increase

and it is interesting to notice how slopes change whenever a d transition is encountered.

When d quarks finally reach the 0 phase all densities increase until they drop to zero when

the last transition to vacuum is encountered.
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V. CONCLUSIONS

We have investigated how the phase diagram of cold strongly interacting matter is mod-

ified in the presence of intense magnetic fields in the context of NJL-type models which

include flavor mixing and vector interaction. The whole range of possible flavor mixing

values was swept through, going from the situation in which the two flavors are completely

decoupled, to the one in which they are fully mixed. For low mixing values, a complex phase

diagram is generated, but already for cs ≃ 0.1, phase diagrams display a behavior that is

qualitatively very similar to the full mixing case. Since SU(3) estimates suggest a value of

cs ≃ 0.2, it can be concluded that the realistic flavor mixing range is similar in behavior to

the full mixing case. In what followed, vector interactions and stellar matter conditions were

introduced. The most notable effect observed is that they attenuate the Inverse Magnetic

Catalysis phenomenon, to the point that it completely disappears when both effects are

jointly taken into account. It was also found that introducing vector interaction causes the

two main transitions to separate and additional phases to appear between these two, effects

that are similar to those occurring when changing to a parameter set that fits to a smaller

dressed mass. In the stellar matter case, the behavior of the leptons was also studied. It was

found that while electron LLL becomes populated simultaneously with quarks, the muon

transition presents a more complicated dependence with the magnetic field. Namely, muon

LLL requires a very high chemical potential to become populated at low eB, however, it

joins the main quark transition together with electrons for high enough magnetic field.
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APPENDIX

The explicit form of the gap equations is

φu +
(1− cs)σu − csσd

4gs(1− 2cs)
= 0 ; ρu −

(1− 2cv)ωu − cvωd

4gv(1− 2cv)
= 0

φd +
(1− cs)σd − csσu

4gs(1− 2cs)
= 0 ; ρd −

(1− 2cv)ωd − cvωu

4gv(1− 2cv)
= 0 (14)

where ρf in the quark density for each flavor

ρf =
Nc

2π2
|qf |B

νmax
f
∑

ν=0

αν

√

µ̃2
f − sf(ν, B)2 (15)

and φf can be written as the sum of three terms

φvac
f = −

NcMf

2π2



Λ
√

Λ2 +M2
f −M2

f ln





Λ+
√

Λ2 +M2
f

Mf







 ,

φmag
f = −

NcMf |qf |B

2π2

[

ln Γ(xf )−
1

2
ln(2π) + xf −

1

2
(2xf − 1) ln(xf)

]

,

φmed
f = −

Nc

2π2
Mf |qf |B

νmax
f
∑

ν=0

αν ln





µ̃f +
√

µ̃2
f − sf(ν, B)2

sf(ν, B)



 , (16)
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FIG. 1. (Color online) Phase diagrams in the eB − µ plane for different values of flavor-mixing

parameter cs. To simplify the figure we have introduced a compact notation to indicate the phases.

The pair of integers mn corresponds to the Cmn phase and the pair m̄n̄ to the Amn phase. The

case in which one quark is in a C-type phase and the other in the A-type phase is indicated by

putting a bar on top of the integer associated with the A-type phase.
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FIG. 2. (Color online) Dressed masses for both flavors for Set 2, cs = 0.03, for eB = 0.11 GeV2.
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FIG. 3. (Color Online) Phase diagrams in the eB − µ plane for different values of gv/gs. Different

phases are denoted as in Fig. 1
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0.345 GeV (right) for different values of gv/gs. Results correspond to d flavor and were obtained

with parameter Set 1.
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FIG. 5. (Color online) Phase diagrams in the eB−µ plane for stellar matter and different values of

gv/gs. Different phases are denoted as in Fig. 1. The pink dotted line represents muon transition

from vacuum to LLL.

23



 0

 2

 4

0.34 0.35 0.36 0.37 0.38 0.39 0.4

ρ/
ρ 0

µ [GeV]

ρu
ρd

50 ρe

FIG. 6. (Color online) Quark and electronic densities over nuclear matter density as functions of

the chemical potential for eB = 0.02 GeV2. Results were obtained with gv/gs = 0.3 and parameter

Set 1.
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Set 1.
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