
August 20, 2015 13:47 WSPC/S0218-3390 129-JBS 1540003

Journal of Biological Systems, Vol. 23, Supp. 1 (2015) S33–S41
c© World Scientific Publishing Company
DOI: 10.1142/S0218339015400033

A SIMPLE MODEL FOR CONTROL OF TUMOR CELLS

D. H. MARGARIT∗

Instituto de Ciencias, Universidad Nacional de General Sarmiento
J. M. Gutierrez 1150, 1613 Los Polvorines, Buenos Aires, Argentina

dmargari@ungs.edu.ar

L. ROMANELLI

Instituto de Ciencias, Universidad Nacional de General Sarmiento
J. M. Gutierrez 1150, 1613 Los Polvorines, Buenos Aires, Argentina

Comisión Nacional de Investigaciones Cient́ıficas y Técnicas
Buenos Aires, Argentina

lili@ungs.edu.ar

Published 13 August 2015

The Kirschner-Panetta model describes the poblational competition between effector
cells and tumor cells. We analize external changes in the parameters and mechanisms to
obtain the decreasing of tumor cells. These variations were performed by three different
ways: Oscillations, spikes with the natural frequency of the system, and spikes with
Normal Distribution. It was observed that the amount of tumor cells decreases to zero
if we change simultaneously the parameters properly.
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1. Introduction

Cancer is the leading cause of death worldwide. In the body, depending on the organ
or tissue, the cells duplicate having a expected time of death; this process maintains
a balance of the cell number. Cancer occurs when cells lose the ability to die after
a given number of duplications resulting in their uncontrolled proliferation. In this
case, these cells form accumulations that can affect significantly the normal func-
tioning of the organs, to spreading to other organs and eventually leading to death.1

Immunotherapy is the process by which the immune system is stimulated to
fight against cancer. Unlike other therapies, it offers smaller and lighter side effects
than chemiotherapy, radiotherapy and surgery.2 One alternative of this therapy is
to introduce antigens in the tumor, allowing immune cells,3 such as lymphocytes
(which are involved in cell-mediated immunity), to recognize cancer cells enhancing
the immune response.

Currently, the relation between mathematical models and the response of the
immune system is making big strides trying to help and give alternative treatments.

∗Corresponding author.

S33

http://dx.doi.org/10.1142/S0218339015400033


August 20, 2015 13:47 WSPC/S0218-3390 129-JBS 1540003

S34 Margarit & Romanelli

From Kutnesov4 in 1994, who applied the Lotka-Volterra model for modeling the
interaction between tumor cells and effector cells from immune system, Kirschner
and Panetta5 (here after call KP) introducing effector molecules used extensively
in intercellular communication by the immune system, up to Arciero6 (2004) and
Tsygvintsev7 (2013) who based in the KP model have obtained values for the
parameters from experimental data. In their work they affirm that some of model
parameters have temporal dependence, leaving a new point of view to introduce
new experiments and tests to control tumors growth.

In this work, we propose new ways to control the growing of tumor cells based
in KP model by using experimental data given by Arciero6 and following Tsygv-
intsev’s7 observations, from temporal variation of some parameters which can be
modified externally as a therapy.6 This paper is organized as follows, In Sec. 2 we
introduce the model and the parameters which are relevant to the problem. The
dynamics of the model is shown in Sec. 3. Secion 4 is devoted to the analysis of
simultaneous variations in parameters. Finally, Sec. 5 summarize some conclusions.

2. Methodology

The KP model is a competition model between effector cells from immune system
and tumor cells (T ). T-cells are generally homogeneous with logistic growth and
(E) represent those cells that have been stimulated and are ready to respond to the
foreign matter (See Refs. 5, 6 and 7 for more details), the equations that describe
the dynamics are given by:

Ė = cT − µE + p
E

E + f
+ s. (2.1)

Ṫ = rT (1 − bT ) − a
ET

T + g
. (2.2)

The meaning of the parameters involved in this model, and the values from
experimental data,6 are depicted in Table 1.

Considering that all biological systems have intrinsic noise,8,9 we introduced it
in Eqs. (2.1) and (2.2). Therefore KP model in baseline is modified as:
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where ζi, i = a, b, c, d, e and f are random variables with Normal Distribution σ = 1,
µ = 0 then N(0, 1).
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Table 1. Parameter values for the model (Eqs. (2.1) and (2.2)).

Name Definition Baseline (Units) Range

µ Mortality rate of effector cells E 0.03 (1/day) 0.03
p Proliferation rate of E 0.1245 (1/day) 0.1245
f Half-sat for E proliferation term 10−3 (cells) [10−5, 1]
s Immunotherapy term 1 (cells/day) [10−2, 102]
c Cancer antigenicity 0.05 (1/day) [10−3, 0.5]
r Cancer growth rate 0.18 (1/day) [0.1, 2]
b Cancer cell capacity(logistic growth) 10−9 (1/cells) 10−9

a Cancer clearence term 1 (1/day) [10−2, 102]
g Half-saturation, for cancer clearance 105 (cells) 105

Fig. 1. Time series for tumor cells. When T (0) = 105 cells, the stochastic model tends to deter-
ministic behavior.

If the number of tumor cells is bigger than ∼105, the stochastic simulation
(by Monte Carlo’s method) tends to deterministic behavior. The system, for these
number of tumor cells, is robust under the effect of intrinsic noise. So, for sake of
clarity in what follow, we work with the deterministic system with amount of tumor
cells bigger than 105.

Besides, by computed tomography, a solid tumor can be detected from about
2 mm of diameter, by using a mean value for individual tumor cell (which is smaller
than normal cell), we are in the order of 5 ·105 tumor cells before the begining with
our immunotherapeutic model. Then, the simulations were made with the initial
conditions T (0) = 5.105 cells and E(0) = 103 cells (it is assumed that there is
always a number of effector cells that fight the tumor), we found the solutions of
the system as shown in Fig. 2.

In order to quantify the relation between initial and final amount of tumor cells,
we define

J =
Mean value of the total tumor cells

Initial amount of tumor cells
=

Jfinal

J0
. (2.5)

J is in the steady state (For baseline parameters, J = 12.09).
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(a) (b)

Fig. 2. Time series for tumor cells (Eq. (2.2)) and power spectrum of the same time series, with
the natural frequency system is ωsystem = 0.01016/Days, therefore the Tsystem = 98.42 Days.

The results of tumor cells temporal evolution and its power spectrum can be
observed in Figs. 2a and 2b. The cells reaches a plateau in the time series and a
characteristic frequency in the power spectrum (ωsystem = 0.01016/Days).

We analyze the system behavior by using three different time dependence on the
parameters as pointed by Ref. 7 (Immunotherapy term (s), Cancer antigenicity (c),
Cancer clearance term (a)). We considered the time dependence as the following
functions F (t):

(a) Periodic oscillations of each parameter (c(t), a(t) and s(t)) with the system
natural frequency

F (t) = (Fmax − Fmin) · sin(ωsystemt)2 + Fmin. (2.6)

(b) Train of spikes of each parameter (c(t), a(t) and s(t)) with the system natural
frequency

F (t) =

{
Fmax for t = Tsystem · K with K = 1, 2, 3 . . .

Fmin for t �= Tsystem · K.
(2.7)

(c) Random train spikes on each parameter (c(t), a(t) and s(t)).
If x is a random variable with Normal Distribution σ = 1, µ = 0

F (t) =

{
Fmax for x ≤ 0

Fmin for x > 0.
(2.8)

F (t) is a positive function always, the Normal Distribution is only in order to
give the same probability of occurrence for Fmax or Fmin.
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3. System Dynamic with Time Dependence Parameters

We analize the evolution of the system by changing one parameter at a time while
the others remain constant. We start considering c(t), after s(t), and a(t) succes-
sively. To associate the value J with the different time dependence, we define:

JO for changes given by Eq. (2.6) (Oscillations).
JP for changes given by Eq. (2.7) (Periodic spikes).
JR for changes given by Eq. (2.8) (Random spikes).

• Variation of parameter c (Antigenic term).
This parameter is associated to the recognition of tumor cells and stimulates

the duplication the effector cells to defeat the tumor. Its range is between [10−3,
0.5](1/Days).

As we can see in the Fig. 3, if the temporal variation of c(t) is given by
Eq. (2.6), we have J = 0.9419, meaning that the amount of the tumor cells
decrease. However, if c(t) is given by 2.8 and Eq. (2.7) J > 1, meaning that the
amount of the tumor cells increase.

The system where c(t) is those given by Eq. (2.6) is oscillatory, but when c(t)
is those given by Eq. (2.7) or Eq. (2.8) the system tend to stabilize in a fixed point.
As an observation can be said, that with periodic spikes, the system behavior is
very similar to baseline conditions, although the final number of tumor cells is
bigger.

• Variation of parameter s (Immunotherapy term).
It is related with the stimulation of the immune system. For example, by the

entry of Cytokine-stimulated cells near to the tumor location. The range is [10−2,
102] (cells/Days units).

Changing this parameters given by Eqs. (2.8), (2.7) and (2.6), we observed
that the response of the system is always oscillatory (Fig. 4), there JO = JP =

Fig. 3. Time series for tumor cells for different variations of c :JO =0.9419, JP = 12.03,
JR =1.9893.
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Fig. 4. Time series for tumor cells for different variations of s : JO = 0.9403, JP = 0.9403 where
both lines are superposed, JR = 0.8610.

Fig. 5. Time series for tumor cells for different variations of a : JO = 0.9409, JP = 0.2705,
JR = 0.2705.

0.9403, JR = 0.8610. That behavior shows a high maximum value of tumor cells
and a minimum value near to zero.

• Variation of parameter a (clearance term).
This is clearance term of cells tumor by interaction with effector cells.

[10−2,102](1/Days units).
In Fig. 5 we observed, that if a(t) is given by Eqs. (2.6) and (2.7), the system

has an oscillatory behavior. JO = 0.9409 but with high value of tumor cells,
instead, JP = 0.2705 and JR = 0, which is our expected value.

4. Simultaneous Variation of the Parameters

This section is devoted to analize the dynamic when three parameters (a(t), c(t) and
s(t)) have the same time dependence, using the same parameters range as previous
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(a) (b)

(c)

Fig. 6. Simultaneous variation for the parameters a(t), c(t) and s(t): (a) JO = 0, suppression of
tumor cells; (b) parameters in spikes modes JP = 3.0384 with a the tumor growth; and (c) param-
eters in random spikes JR = 0.3892, meaning a decrement of the tumor.

section. This implies that all the parameters will have the same temporal behavior
between the minimum and maximum value of range expressed in Table 1.

Firstly, a(t), c(t) and s(t) are given by Eq. (2.6); Secondly, a(t), c(t) and s(t) are
given by Eq. (2.7); and finally, a(t), c(t) and s(t) are those given by Eq. (2.8).

As we can see in Fig. 6a, with a simultaneous oscillation of the parameters by
Eq. (2.6), the tumor cells decay to zero. If the temporal variation of the parameters
are given by Eq. (2.8), we have JR < 1, which is according with our expectations
although quite difficult to perform externally (Fig. 6c). If the parameters are given
by Eq. (2.7) (Fig. 6b), we have JP = 3.0384, this does not avoid the growth of
the tumor. Additionally, in the case the variation is given by Eq. (2.6), we have to
remark JO = 0.

Since, the clearance term (a) is quite difficult to be modified externally, we think
it is wise to kept it constant (in baseline value).
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(a) (b)

Fig. 7. (a) Dependence on the number of tumor cells with time (measure in periods) for the
simultaneously variation of the parameters given by Eq. (2.6), where the period t = 2π/ωsystem

and (b) Time evolution of tumor cell.

Therefore we performed the calculations with this value. No difference was found
with the results previously discussed.

Bearing in mind that the best result is when J = 0, which is obtained by 2.6 with
the two parameters (c(t) and s(t)) are involved, we analyse the system behavior
when the external entries varies with the frequency.

If we considered the external frequency less or greater than the natural one, we
obtain the results shown in Fig. 7a and the system behaves as 7b. Notice that a
initial increase of the tumoral cells decreases as the frequency (period) increases
(diminish).

5. Conclusions

In order to search new ways to control of tumor cells, we can see that the KP model
can be used in cases when tumor cells are present in the body, since otherwise the
antigens would not recognize the tumor.

We also have shown if the parameters c(t), s(t) and a(t) are given by Eq. (2.6) we
have J < 1 (meaning the decrease of tumor cells). When a(t) is given by Eqs. (2.7)
and (2.8) we have obtained the lowest values de J .

If we wish to implement a random input in the parameters, we face with very
complex experimental processes.

The best result is obtained when the temporal variation of the parameters is
oscillatory (by Eq. (2.6)), where J = 0 and the period of external input decreases.
Currently, there are therapies where the antigen is introduced through vaccines in
the tumor itself and in neighboring zones for stimulate the immune system.10–13

According with recent biological and medical researches, where explain how with
periodic oscillations of antigen and effector cells (c and s in our case) by the use of
vaccines, the tumor can decreases until disappear.14,15
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