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1: CONICET
2: Universidad Nacional de la Patagonia Austral. Ruta 3, acceso norte.
Caleta Olivia, (9013). Santa Cruz, Argentina.abrunini@yahoo.com.ar
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Abstract

We present a semi analytic model to evaluate the delivery of water

to the habitable zone around a solar type star carried by icy planetes-

imals born beyond the snow line. The model includes sublimation of

ice, gas drag and scattering by an outer giant planet located near the

snow line. The sublimation model is general and could be applicable

to planetary synthesis models or N-Body simulations of the formation

of planetary systems.

We perform a short series of simulations to asses the potential

relevance of sublimation of volatiles in the process of delivery of water

to the inner regions of a planetary system during early stages of its

formation.

We could anticipate that erosion by sublimation would prevent the

arrival of much water to the habitable zone of protoplanetary disks in

the form of icy planetesimals. Close encounters with a massive planet

orbiting near the outer edge of the snow line could make possible

for planetesimals to reach the habitable zone somewhat less eroded.

However, only large planetesimals could provide appreciable amounts

of water. Massive disks and sharp gas surface density profiles favor

icy planetesimals to reach inner regions of a protoplanetary disk.

Keywords: Planetary systems - Formation.
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1 Introduction

The possible existence of habitable axoplanets is attracting a growing at-
tention of the scientific community. There are more and more instruments
dedicated to this task. Considerable effort has been devoted to developing
semi analytic models and numerical simulations trying to predict the fre-
quency of habitable planets in our Galaxy. One of the main ingredients for
the rise of life on a planet is the existence of liquid water on its surface.
Although different processes such as the presence of a planetary magnetic
field, plate tectonics, and a planet massive enough to ensure the perma-
nence of a stable atmosphere are decisive for the generation of life, so is the
position of the planet with respect to the host star. The Habitable Zone
(HZ) is defined as the circumstellar region within which a planet with sim-
ilar characteristics to the Earth can permanently hold water in liquid state
(Kasting et al. 1993, Kopparapu 2013; Selsis et al. 2007). The origin of
water on planets harboring the habitable zone is a matter of debate. The
firsts attempts trying to explain the origin of the Earthś water were based on
the cometary delivery from beyond the giant planets region (Wetherill 1975;
Chyba 1987; Ip & Fernández 1988; Delsemme 1992; Owen & Bar-Nun 2000).
These studies were the base to models of the water delivery to terrestrial
planets during terrestrial planet formation stages (Morbidelli et al. 2000;
Chambers & Cassen 2002; Lunine et al 2003; Raymond, Quinn, & Lunine
2004; O’Brien, Morbidelli, & Levison 2006; Izidoro, Morbidelli, & Raymond
2014; Ciesla et al 2015; Dugaro et al. 2017). Alternatively, other models
propose that water was delivered by planetesimals from Jupiter-Saturn re-
gion that were scattered onto high-eccentricity orbits by Jupiter, and thus
crossing the terrestrial planet orbits (Walsh et al 2011; O’Brien et al 2014;
Raymond & Izidoro 2017). At the same time, other models propose that icy
pebbles may be the major contributors to the water on terrestrial planets
(Sato, Okuzumi & Ida 2016).

Water-rich planetesimals come from beyond the distance to the central
star known as the snow line, where the temperature is so low that water
freezes. Once crossing inwards the snow line, water ice starts to sublimate.

Some accretion models included mass loss by sublimation, but only for the
case of icy grains and small pebbles (Ciesla et al. 2015, Ida & Gillot 2016).
In these models, grains and pebbles completely evaporates at the snow line, a
situation which is not valid for larger objects such as km sized planetesimals.
A fact well documented for comets in the solar system (Fernández 2005) is
that the rate of sublimation is fast, but usually they spend thousands of years
sublimating before complete disintegration.

For the case of solar system comets, the physical models of the dynamic
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behavior of the volatiles were studied by Jorda, Crovisier & Green (1992)
and applied by Tancredi, Rickman, & Greenberg (1994) and also by Tan-
credi (2006) to the Jupiter Family Comets. However, these models cannot
be used directly to planetary accretion models, because they are developed
for a particular case (the Sun is the central star, the comets have a particular
kind of orbit and the snow line is fixed and located at a particular distance
to the Sun). Sublimation models must be properly generalized to arbitrary
planetesimal orbits and to the distribution of temperature in a generic pro-
toplanetary disk, that in addition could vary during the disk evolution.

Although icy objects sublimates water from their surface when crossing
inwards the snow line, accretion models including sublimation of icy planetes-
imals have not yet been developed. Therefore, the accretion of water by large
planetesimals or planetary embryos forming in the HZ of a protoplanetary
disk from planetesimals was not yet properly addressed.

One of the aims of this paper is to develop a simple model of the dynamical
and physical behavior of icy planetesimals, appropriate to incorporate in
planetary synthesis models (Ida, Lin & Nagasawa 2013, Miguel, Guilera &
Brunini 2011), semi analytic models (Chambers 2016, Thommes, Duncan &
Levison 2003, Brunini & Benvenuto 2008).

In addition, we will perform a small set of numerical simulations to asses
if the sublimation of planetesimals would deserve to be included in further
planetary accretion simulations.

In the next section we will describe the structure of the protoplanetary
disk considered in our model and the physical effects included. Section 3
presents the results of our simulations and the last section is devoted to
some conclusions.

2 The model

In this section we will present our basic disk model, and the different effects
affecting the orbital and physical evolution of the planetesimals.

In all our simulations, planetesimals are perfectly spherical icy bodies,
with bulk density ρp = 1 g cm−3. Their initial radii rp can be of 1, 10, or 100
km. Large planetesimals are included because recent models of planetesimal
formation by gravitational instability tend to produce big planetesimals (Jo-
hansen et al 2015; Simon et al 2016, 2017; Schäfer, Yang, & Johansen et al
2017)
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2.1 Central star and disk structure

We will adopt a M⋆ = 1M⊙ as the central star in all our simulations. For
the disk model we will rely on the Minimum Mass Solar Nebula (MMSN)
model of Hayashi (1981). The properties of the disk are summarized in the
following set of equations. The gas surface density follow a power law of the
form

Σg(R) = Σ0

( R

1AU

)−α

g/cm2, (1)

where Σ0 is the surface density at 1 AU. For the MMSN, Σ0 = 1700 g
cm−2, α = 3/2 (Hayashi 1981).

In this conditions

ρg(R) = 1.4 fg × 10−9
( R

1AU

)−(α+5/4)

g cm−3. (2)

Recent observations show that circumstellar disks around solar type stars
have masses covering a wide range (Williams & Cieza 2011), spanning from
∼ 0.1 to 10 MMSN. In our numerical simulations, following some previous
works about planetary formation (Fortier, Benvenuto & Brunini 2007), we
will adopt two different disk masses of 3 and 6 MMSN. The factor fg in
equation (2) is included for this purpose. Our standard disk model is the
canonical MMSN given by Hayashi (1981), where the gas surface density
index is α = 3/2. Nevertheless, observations of circumstellar disks around
young stellar objects support a wide range of power indexes with values of α
in the range 0 – 1 (Williams & Cieza 2011). Therefore, we have also explored
cases with α = 1 and α = 1/2. For each value of α, we have normalized the
disk in such a way that the total mass inside 30 AU (a rather arbitrary outer
limit, not affecting our results) is the same for disks with the same fg.

One important parameter for our simulations is the lifetime of the disk.
The inner disk fraction observed around stars in young stellar clusters and
in the population of premain sequence stars in star-forming regions, point to
a median disk lifetimes of between 2 and 3 Myr (Haisch, Lada, & Lada 2001;
Hernández et al. 2008; Mamajek 2009; Fedele et al. 2010; Bell et al. 2013;
Ribas et al. 2014; Richert et al. 2018) As it is usual in semianalytical models
such as ours, we model the disk dispersal by an exponential decay

ρg(t) = ρg(0)e
−t/τ , (3)

where τ is the characteristic time scale of dissipation. In our case we will
adopt τ = 3My for all our simulations.
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The temperature profile in the disk is given by

T (R) = T (1AU)
( R

1AU

)−β

K, (4)

where β = 1/2 (Hayashi 1981). T (1AU) is the temperature at 1AU for a
given stellar mass, which in turn is related to the stellar luminosity through
the Mass-Luminosity relation, and to the stellar radius. The Mass-Luminosoty
relation is complex (see for example Eker et al. 2015). For stellar masses
between 0.38 and 32 M⊙ in the HR main sequence, the Mass-Luminosity
relation is well fitted by single expressions of the form L ∝ M δ. Eker et al.
(2015) showed that this simple relation is preferable than other more complex
expressions but the exponent δ changes at 1.05, 2, and 7 M⊙. The effective
temperature of main sequence stars can be obtained with an accuracy of ∼
6%, as long their radii and mass can be obtained from observations with high
accuracy (1% and 6% of relative error respectively). In the range of 0.5-3M⊙

a good single fit for the stellar effective temperature may be obtained from
the calibration sample formed by main-sequence stars with accurate masses,
radii and effective temperatures taken from Eker et al. (2014)

T∗
T (1M⊙)

= ψ

(

M∗

M⊙

)κ

, (5)

where ψ = 0.933± 0.008 and κ = 0.62± 0.016. The temperature in the disk
is important for the location of the snow line which is the distance to the
central star where water ice starts to sublimate. Taking into account eq (5),
the position of the snow line for a solar type star is given by

aice = aice(1M⊙)

(

M∗

M⊙

)1.24

, (6)

where aice(1M⊙) is the position of the snow line for a star of 1M⊙. The
location of the snow line may evolve with time, and depends strongly on the
dust size in the disk. For dust sizes like the ones of the interstellar medium
(ISM), the snow line location range from 2 to 5 au for solar type stars, but for
larger dust particles the snow line could be closer to the star (Oka, Nakamoto,
& Ida 2011; Mulders et al. 2015), although in most theoretical models about
the location of the snow line, grains of the size of ISM grains were considered,
it is probable that larger grains were present in a protoplanetary disk. The
position of the snow line also depends on the gas accretion rate onto the
central star, which is far from being uniform for all solar type stars. In
addition there is the question that a considerable amount of cosmochemical
evidence in the solar system is arguing in favor of a fossilized snow line that
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never was closer to the sun than 3 AU. A lot of work is still necessary to
solve the inconsistency between the models of the evolution of the snow line
location and the composition of the inner solar system (Oka, Nakamoto, &
Ida 2011). Recent spectroscopic observations of protoplanetary disks (Blevins
et al. 2016) show that the surface water abundance decreases by at least
5 orders of magnitude in the range of 3-11 AU for all the observed solar
type stars. ALMA images also support this view (Banzatti et al. 2015).
Therefore, given the complexity of the snow line location problem, we fix the
snow line in our simulations. At present, the snow line in the solar system
is located at ∼ 2.5 AU (Fernández 2005), where the temperature is around
182 K (Lodders 2003) and comets become active. For the simulations in this
paper we adopt aice = 2.7 AU as the distance of the snow line for a 1M⊙

star, for the sake of consistency with the distance adopted in traditional semi
analytic models of planet formation (Ida, Lin & Nagasawa 2013; Brunini &
Benvenuto 2008, Chambers 2016). Our model, however, is general and a
snow line moving with time could be incorporated for massive population
synthesis simulations.

Another important concept we will use is the Habitable Zone (HZ) defined
as the region where it would be possible for a planet to harbor life. The
location of the HZ in a planetary system depends mainly on the distance to
the central star and the stellar luminosity, but it also depends on the mass of
the planet and the type of its atmosphere. A conservative inner limit is the
distance from the central star where a runaway greenhouse effect vaporizes
the water on the planet surface. The outer boundary is where the surface
temperature of the planet is below the freezing point of water (Lammer et
al. 2009, Kasting et al. 1993). For simplicity, we will use the definition given
by Kopparapu et al. (2013) for a solar mass star

1AU ≤ aHZ ≤ 1.7AU. (7)

2.2 Gas drag

The nebular gas interacts with the planetesimals, causing damping of their
orbital eccentricities and inclinations, and the decay of their orbits toward
the central star. Eventually, they could reach the snow line and start to
sublimate material and loss mass. Due to the pressure support in the nebula,
the gas velocity is slower than keplerian by a small amount

η =
vk − vg
vk

=
16

π
(α + β)

( cs
vk

)2

, (8)
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where vk and vg are the keplerian and the gas velocity at a given distance to
the central star respectively. cs is the sound speed in the disk

cs =
√

kT/µg, (9)

where k is the Boltzmann constant, and mg is the the mean molecular weight
of the gas disk (we adopt µg = 1.15µH2

, with µH2
the weight of the Hydrogen

molecule). A typical value of η is of the order of 10−3.
In addition, if the orbit of the planetesimal is not circular, the plan-

etesimal have a mean relative velocity respect to the gas given by (Adachi,
Hayashi & Nakazawa; 1976)

vrel = vk

√

η2 +
5

8
e2 +

1

2
i2, (10)

which is only valid for small e and i, the orbital eccentricity and inclination
of the planetesimal.

Following Rafikov (2004), we consider several drag regimes, according to
the size of the planetesimal r and the turbulence of the disk

• Epstein regime if r < λH2
,

• Stokes regime if r > λH2
and Re < 20,

• Quadratic regime if r > λH2
and Re > 20,

where λH2
is the mean free path of the molecular Hydrogen (Adachi 1976)

λH2
=

µH2√
2ρgdH2

, (11)

where dH2
is the size of the Hydrogen molecule.

The different drag regimes can be characterized by the stopping time,
given by

tstop =















ρr
ρgcs

Epstein regime
2ρr2

3ρgcs
Stokes regime

6ρr
ρgvrel

Quadratic regime,

(12)

where ρ is the bulk density of the planetesimals.
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In our simulations tstop >> Porb. In this condition, the secular change in
the planetesimal orbit due to gas drag is given by

de2

dt
= −

2e2

tstop
,

di2

dt
= −

2i2

tstop
,

da

dt
= −

2aη

tstop
.

(13)

The previous expressions are not accurate for an orbit with high eccentric-
ity. In this case, Kobayashi (2015) proposed some corrections to the secular
variations computed with (13). These corrections are remarkably simple

de2

dt
=

(de2

dt

)

low
(1− e2)−α+β−3/2,

di2

dt
=

(di2

dt

)

low
(1− e2)−α+β−1/2,

da

dt
=

(da

dt

)

low
(1− e2)−α+β−1/2,

(14)

where the quantities denoted with the sub index low are the ones computed
with the set of equations (13). We implemented these expressions to compute
the effect of gas drag on the planetesimals in all our numerical experiments.

2.3 The sublimation of ice

Once icy planetesimals enter into the warm regions of the disk, they may start
to sublimate ice from their surface. It is well known that this process occurs
in the comets of the solar system. In the context of planetary formation, some
previous works considered the process of sublimation of small dust grains,
but to our knowledge, no previous attempts to model sublimation of ices in
planetary formation stages where large planetesimals and planetary embryos
coexist were done.

The sublimation rate per unit surface of an icy object is usually assumed
to be a function of its surface temperature only (Delsemme 1984), and may
be written in the form

dm

dt
=

a1√
T
e−a2/T , (15)

where T is here the temperature on the planetesimal surface, and a1, a2
are constants. The temperature of the planetesimal surface depends on the
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balance between the input solar radiation, and the the losses of energy by
thermal infrared radiation, sublimation of ices, and heat conduction into the
planetesimal interior (Fernández 2005). This balance depends on several
complex and not completely known factors such as the infrared albedo and
thermal conductivity of the planetesimal. Moreover, the temperature of the
surface could be not exactly the equilibrium black body temperature, since
the sublimated ice carries away much of the heat as latent heat of sublimation.
In addition, the solar radiation does not reach the surface because of the
radiation extinction due to the possible formation of a coma around the
planetesimal nucleus. All these factors difficult the building of an accurate
model of the sublimation of ices on the planetesimal surface.

Based on estimations of the lifetimes of Short-Period Comets, Di Sisto,
Fernández & Brunini (2010) have given an empirical expression for the sub-
limation rate in the region inside the snow line

∆m = 1074.99− 4170.89q + 8296.96q2 − 8791.78q3+

4988.9q4 − 1431.4q5 + 162.975q6,
(16)

where q is the perihelion distance of the object in AU, ∆m is the mass loss per
orbital period and per unit surface of the object in g cm−2. This expression
is valid for Short Period Comets, whose orbits are dynamically dominated
by Jupiter. In what concern to the sublimation rate, the most important
fact is the time an object spends at a given distance r < aice from the
central star, because the temperature on the surface will be a function of it
through equation (4). Most Jupiter Family Comets have orbits with aphelion
distances near the semi major axis of Jupiter (70 per cent of the known
Jupiter Family Comets have aphelia between aJupiter ± 0.5 AU). However,
we need a sublimation model valid for any orbit. In order to accomplish
this task, we used the expression (15) to model the sublimation rate of ice,
fitting the coefficients a1 and a2 to match the behavior of comets given by
equation (16). We defined a population of objects, all with aphelion distance
Q = 5.2AU and different perihelion distances in the range 0.5 ≤ q ≤ 2.7 AU.
For each one of them, we have performed an integration of the sublimation
rate along one orbital revolution as

∆m =

∫ t1

t0

a1√
T
e−a2/Tdt, (17)

where t0 and t1 are the times where the object enters and comes out from the
region r ≤ 2.7AU . a1 and a2 where left as free parameters to be determined
in order to get the best fit to the values given by equation (16). The final
values of the parameters are a1 = 0.12 and a2 = 1865 to get ∆m in g cm−2
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per orbital revolution. We then used these set of coefficients together with
equation (17) as the sublimation model in our simulations.

At each excursion inside the snow line, the radius of a perfectly spherical
planetesimal is reduced by an amount

∆r

r
=

∆m

3m
. (18)
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Figure 1: Sublimation rate of spherical icy objects per surface unit

and per orbital revolution, as a function of the pericentric dis-

tance.

The comparison between this approximation and the results given by
equation (16) is shown in Figure 1 for our sample of objects. For icy objects,
the volatile material is mixed with dust particles of different sizes. In the
case of periodic comets, as a result of the sublimation of its ices once entering
the inner planetary region, a dust mantle may develop. There is a maximum
size from which the gas can no longer drag the dust particles from the comet
surface. For a solar type star, this size is of the order of the cm at 1 AU
(if the dust particles are smaller than this critical size, there is no chance
to form a dust mantle). Larger particles stay on the surface (Rickman et al
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1990). However, to consolidate a permanent crust, an increase of the perihe-
lion distance is necessary, in order to stop the sublimation process (Kuehrt
& Keller 1994, Möhlmann 1995). When a comet approaches the Sun in the
next passage through the inner planetary region, the dust particles will be
removed as the heat wave reaches the underlying ices, so the dust mantle
may be partially or entirely removed (Fernández 2005). In fact, the buildup
and complete remotion of a dust mantle may be cyclic, as the comet ap-
proaches and recedes from the Sun. If the dust mantle is consolidated and
thick enough, the heat wave may increase the internal pressure in the comet,
causing its fracture and further splitting. For a migrating planetesimal on
a nearly circular orbit, the surface temperature always grows as it spiral to-
wards the Sun. In this case it is difficult to anticipate if a permanent dust
mantle could form, or if the sublimation could proceed up to the complete
disintegration. In our model we considered that the sublimation process does
not stop until the planetesimal is entirely disintegrated. We have also ne-
glected splittings and other disruptive mechanisms that seem to be common
in cometary behavior. Given the uncertainties in the sublimation model, the
sublimation rate given by equation (15) was multiplied by a factor f ≤ 1.

2.4 some preliminary results

In this section we will show the evolution of planetesimals evolving from
outside the snow line. We run cases with 1 MMSN, and 6 MMSN with
power index α = 1, around a 1M⊙ star. The planetesimal radius is r = 100
km and f , the factor of sublimation, was set equal to 0.5. In Figure (2) we
show the evolution of the planetesimal radius vs. the pericentric distance.
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Figure 2: The fate of a 100 km planetesimal for two different neb-

ular masses. The competition between orbital decay by gas drag

and surface erosion by sublimation of ice makes the planetesimal

to reach innermost regions of the disk for more massive nebulae.

In both cases the planetesimal was launched on a circular orbit at 2.7 AU.
A competition between the inwards migration by gas drag, and erosion by
sublimation of ice becomes evident. The planetesimal reaches more internal
regions of the disk when the nebula is more massive. In neither case is water
deposited in the habitable zone. In this model, where planetesimals reach
the snow line already on circular orbit, no much water is to be expected to
reach the HZ.

2.5 Scattering by a protoplanet

When a planetesimal approaches a protoplanet at a small distance, its orbit
changes due to the gravitational interaction between them. If the protoplanet
is massive enough, the orbital change may be very strong. In the context of
the problem we are investigating, it would be possible that the interaction
with a planet that orbits near the snow line excites the orbit of the planetes-
imals, sending them directly inside the habitable zone without suffering too
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much loss of mass by sublimation. This is the case of some models of water
delivery to the primitive Earth, in which there is a population of planetes-
imals scattered by Jupiter/Saturn onto high-eccentricity orbits which cross
the terrestrial planets (Walsh et al. 2011; O’Brien et al. 2014; Matsumura,
Brasser, & Ida 2016; Raymond & Izidoro 2017). To address this possibility,
we have to model this interaction, but in a very simple way, so as not to lose
the speed of calculation allowing the code to be able to perform massive sim-
ulations for a planetary synteshis approach. N-Body numerical integration
is not appropriate for this task.

In what follows we will consider the planet on circular orbit of radius ap.
We will also consider that the encounter takes place at a distance r = ap
from the central star. At each orbital period of the planetesimal, we evaluate
if an approach to the planet at a distance less than the Planet Hills distance
RH , defined as

RH = ap

( mp

3M⋆

)(1/3)

, (19)

would be possible (e.g. if the point of minimum distance between both orbits
is less than this distance). If the answer is positive, we compute the prob-
ability that this close approach actually happens. The computation of the
probability of a close encounter between two orbiting objects must be made
taking into account different encounter geometries. If the orbits of the two
objects intersects, we can use the classical formulation due to Öpik (1951)
for the probability of encounters at a distance less than a given radius D.
Per orbital period of the planetesimal it is given by

Penc =
4πapDU

v sin θ
, (20)

where v is the planetesimal velocity in units of the planet orbital velocity. U
the relative velocity of the encounter in units of the planet orbital velocity and
θ is the angle between the velocity vectors of the planet and the planetsimal
during the closest approach. It results evident that this expression becomes
singular for the case of tangential orbits, as the two velocity vectors becomes
aligned. As θ approaches 0 there is a transition to the “tangential regime”
where the probability of a close approach to a distance less than D must be
computed in a different way (JeongAhn & Malhotra, 2017)

Penc =







1
TP

√

8(1−v)D
(1+v)g sinα

Intersecting orbits

1.7
Tp

√

(1−v)D
(1+v)g sinα

Non intersecting orbits,
(21)

where Tp is the orbital period of the planet and g is the gravitational accel-
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eration due to the central star in the vicinity of the encounter. We have

sinα =
a(1− e2)

ap
√

2(1− e2) + e2 − 1
. (22)

The transition from intersecting to non intersecting orbits occurs approxi-
mately at (JeongAhn & Malhotra, 2017)

θc ≃

√

(1− v2)Dg sinα

v2vp
. (23)

Once computed the probability Penc, the mean time interval between close
encounters is given by

∆Tenc = P−1
enc. (24)

The way to generate N = Ttot/∆Tenc times of occurrence of close encoun-
ters during a time interval Ttot, is through the generation of random numbers
ti; i = 1, 2...N with uniform distribution in the interval [0, Ttot], and sorting
them in an increasing sequence. In our case, the orbit of the planetesimal is
changing at each orbital period, and therefore also changes Tenc. To compute
the encounters, we repeat the random generation and sorting at each time
step. If t1, the smaller time in the sequence, is less than the orbital period
of the planetesimal, which we adopted as the step size of the simulation,
then we assume that a close encounter actually happens, and we proceed to
its computation. This is done by means of a numerical integration of the
star-planet-planetesimal Restricted Three Body Problem. We have checked
that this procedure gives random times with uniform distribution and correct
mean and r.m.s. for the case of not changing orbits. As initial conditions
to start the numerical integration, the planetesimal is placed at random on
the Hills sphere of the planet, and the relative velocity vector is directed to
the interior of the Hills sphere following Henon’s recipe (Henon, 1972). The
relative velocity is given by

U =
√

3− Tiss, (25)

where Tiss is the Tisserand parameter, that may be written in terms of the
perihelion distance q, the aphelion distance Q and the relative inclination of
the planetesimal with respect to the orbital plane of the planet, as

Tiss =
2

q +Q
+ 2

√

2qQ/(q +Q) cos i. (26)
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In this expression, q and Q are measured in units of ap. The integration is
carried out with a Bullirsch-Stöer high precision routine. The routine and
precision is the same than the one used in the N-Body integration package
EVORB (Fernández, Gallardo, & Brunini 2002). During close encounters,
the effect of gas drag was not included. For this preliminary investigation, the
possible presence of an extended atmosphere of the planet is not considered.

3 Results

We have run simulations varying several parameters:

• The planetesimal radius (1 km, 10 km and 100 Km).

• The density of the nebula (3 and 6 MMSN).

• The power index α of the gas surface density (α = 3/2, α = 1 and
α = 1/2).

• The mass of the planet responsible for the scattering of planetesimals
(mp = 1MJupiter, 100M⊕ and 10M⊕.

• The location of the planet (ap = 3 AU and ap = 4 AU).

• The factor of sublimation rate f = 1 and f = 0.5.

We have run 1000 planetesimal for each one of these set of parameters. In
total we have analyzed the behavior of 15,000 initial conditions.
The end states reached in the simulations are:

1. The planetesimal evolves with r > 100 m up to the end of the simulation
( The total time spam is Ttot = 107 y. 100 m is the size we consider for
the planetesimal to be completely evaporated.

2. The planetesimal radius reduces by sublimation up to r < 100m. In
this situation the simulation stops. We consider that the planetesimal
evaporates completely.

3. During a close encounter, the planetesimal collides onto the giant planet.

4. After a close encounter, the planetesimal is ejected from the planetary
system on hyperbolic orbit.
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If the planetesimal radii becomes r < 100 m, we stop the simulation.
Regarding the initial conditions for the planetesimal orbits we set them in
order to guarantee starting on planet crossing orbits. The pericentric distance
is set to q = ap − RH and the apocentric distance to Q = ap + 3RH . These
values were chosen in order to have planetesimals not too inside the inner
region of the disk so to artificially favor the delivery of water to the habitable
zone. We have made a huge quantity of preliminary runs. We found that for
larger values of Q the fast circularization of the obit due to gas drag makes q
to increase, and close encounters with the giant planet are quickly prevented.
These cases are not of interest for our study. The orbital inclination of the
planetesimals was set to i = 5◦. If not explicitly stated, all the results
correspond to simulations with α = 3/2, f = 1 and fg = 6.

This scenario is one of the assumed by most planetary synthesis forma-
tion codes (Ida & Lin 2004a, 2004b, 2005, 2008a, 2008b, 2010); Ida, Lin &
Nagasawa 2013; Chambers 2008, 2013, 2014, 2016; Miguel & Brunini 2008,
2009, 2010). Giant planets form when the disk is already plenty of gas. If
the core instability hypothesis (Mizuno, 1980) is the formation mechanism
of giant planets, solid cores of several Earth masses form before the nebular
gas dissipates. For most disk around solar type stars, the gas disk lifetime
is of the order of few My, as adopted in our model. Therefore, when the gas
is already present and abundant in the disk, 1-100 km planetesimals should
exist (the cores of the giant planets form through accretion of planetesimals)
together with one or several cores of giant planets, because they should form
before the complete remotion of the gas. Therefore, we consider that our
scenario is completely consistent with what is expected for the first 10 My
of evolution of a planetary systems.

In the Figure (3) we show two typical evolution of a 100 km planetesimal
with a 1 MJupiter planet. In the upper panels we show the orbital evolu-
tion (left) and the radius of the planetesimal (right). During successive close
encounters with the giant planet, the planetesimal enters into the HZ. The
sublimation during the excursions inside the temperate regions of the disc
reduces the diameter of the planetesimal in a few km. But a last close en-
counter pulls the apocentric distance to ∼ 4.5 AU. The orbit circularizes at a
given rate given by the corresponding stopping time. If it is longer than the
mean time between collisions, the pericentric distance becomes larger than
ap + RH . In this situation, close encounters are no longer possible, and the
orbit of the planetesimal slowly becomes more and more circular. The semi-
major axis decreases slowly by gas drag, but as the nebular gas dissipates, the
planetesimal ends up in an outer orbit never being eroded by sublimation.
In ∼ 50 per cent of the cases where ejection from the system or a collision
onto the planet do not occurs, the planetesimal evolution is like this one.
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The evolution in the other half of the cases is as shown in the lower panels.
Close encounters reduce the pericentric distance well below the planetary
orbit, where circularization prevents further close encounters, in a mecha-
nism similar to the one described for the previous case. The circularization
proccedd faster than orbital decay by one order of magnitude. Orbital decay
starts to be slow, but the size of the planetesimal is strongly reduced by sub-
limation, reinforcing the effect of gas drag. The semimajor axis decays and
the planetesimal quickly evaporates completely. In this particular case, the
planetesimal does not reach the HZ before its complete evaporation, although
this is not what always happens.
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Figure 3: Typical orbital and physical evolution of a 100 km plan-

etesimal. A fraction of them evolve outwards, ending up beyond

the planetary orbit. An important fraction migrate inwards. Or-

bital circularization is fast, and the planetesimals migrates to re-

gions were the sublimation of ice is effective. The shaded region

is the corresponding to ap ± RH.

As we are interested in the quantity of water that enters into the HZ
from planetesimals formed outside the snow line, we will show our result as
the cumulative distributions. To do this, at each time step we sum the total
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mass that is in bins of 0.05 AU wide in the range 0 - 2.7 AU. In Figure 4
we show the effect produced by the the distance of the giant planet to the
outer edge of the snow line. The result is not surprising. If the planet is at
4 AU, planetesimals enter into the sublimation region already with a rather
circularized orbit due to gas drag, and the behavior is similar to the one
shown in Figure 3.
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Figure 4: The fraction of water within the snow line delivered from

beyond it for the cases of a 10M⊕ planet at 3 and 4 AU.

In the case of ap = 3 AU, an accumulation of mass at q > 2.3 AU is
observed. The minimum perihelion distance a planetesimal can reach after
a close encounter with a planet is given by (Fernández 1984)

qmin = ap(1− U)2/(1 + 2U − U2), (27)

For our numerical experiments, considering q = (ap − RH)/ap and Q =
(ap + 3RH)/ap, the qmin obtained for different planetary masses and ap = 3
AU are shown in Table 1.

In Figure 4 we can observe that the value of q is a bit smaller than the
one reported in Table 1 but this is because the planetesimals arrive there
after several close encounters and not just one.

20



Mp qmin (AU)
10 M⊕ 2.57
100 M⊕ 2.18
1 MJupiter 1.90

Table 1: Minimum pericentric distance a planetesimal can reach

after a close encounter.

In Figure 5 we show the evolution of the planetesimals of different radii
for planets of 10 M⊕, 100 M⊕ and 1 MJupiter.
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Figure 5: The fraction of water within the snow line delivered from

beyond it for different planetary masses. In all the cases, ap = 3
AU.The mass fraction is normalize to the case of r = 100 km.

Only massive planets and/or large planetesimals, can guarantee some de-
livery of water into the HZ. In general, planetesimals of 1-10 km do not
reach efficiently the HZ as to provide enough water to terrestrial planets in
the HZ. For the case of r = 100 km and r = 1 km, equivalent quantity of
mass cross the snow line, because in spite of being less massive, the smaller
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planetesimals suffer a faster decay due to gas drag. However, sublimation
of ice eroded them quickly. In the case of smaller planetesimals, the mass
entering into the sublimation region is very small. To compute the total con-
tribution by each class of planetesimal we should know the size distribution
of the population. This is out of the scope of the present paper, but as a
matter of speculation, if the distribution of mass is of the form dn/dm ∝ mq,
for q < −2 small planetesimals dominate the distribution and we would not
expect much water from planetesimals in terrestrial planets.

The behavior of the planetesimals for different disk profiles is shown in
Figure 6. It
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Figure 6: The fraction of water within the snow line delivered from

beyond it for different profiles of the surface density of gas.

The total mass of the disk is always 6 MMSN. Therefore, larger α means
that more mass is beyond the snow line, and decay by gas drag is faster than
for lower values of α. Sharp disk profiles favor the arrival of icy planetariums
to the HZ.
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If the rate of sublimation is reduced to a half, the mass of ice entering to
the HZ increases by a factor of ∼ 20.

4 Conclusions

We have presented here a first attempt to model the problem of the ac-
cretion by potentially habitable planets of primordial water carried by icy
planetesimals born beyond the snow line.

Zain et al. (2018) claims that in planetary systems with small mass
perturbers, the amount of water deposited by planetesimals coming from
beyond the snow line is relevant. This is in contrast with our results, but not
a surprise: They did not included in their model the sublimation of volatiles.
Nevertheless their scenario have some differences with ours: In particular,
they consider small stellar masses.

Our results show that the sublimation rate is a key parameter to address
the amount of water entering to the HZ. Therefore, build up better models
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of sublimation of ice would be mandatory. The possibility of a formation of a
dust crust arouond icy objects on circular orbits is also a problem that need
to be investigated.

Under the hypothesis of our model, icy planetesimals can only attain the
HZ around solar type stars under certain conditions. They may be summa-
rized as follows

1. The presence of a massive planet near the snow line seems to be an
important factor. Without the planet-planetesimal dynamical inter-
action, outer planetesimals arrive to the snow line on circular orbits.
Therefore, the sublimation rate is fast, acting on the whole orbit, and
eroding planetesimal surface before reaching the HZ. Close encounters
with a massive planet makes possible that planetesimals reach the HZ
somewhat less eroded.

2. Only large planetesimals can reach the HZ.

3. Massive disks favor planetesimal ice to reach the HZ, because sublima-
tion depends on the star radiation, but speed of migration by gas drag
depends on the mass disk.

4. For a given disk mass, sharp density profiles are better to allow plan-
etesimals to reach the HZ, because there is more mass of gas concen-
trated within the snow line.

Nevertheless, it seems that the contribution to the delivery of water by icy
planetesimals during the early accretion phase would not be of fundamental
relevance.

However, our calculations are limited in several aspects as to draw defini-
tive answers. The presence of more than one massive planet, the interaction
with existing terrestrial planets in the HZ and more importantly, some dy-
namical effects such a mean motion and/or secular resonances where the
planetesimals can remain trapped by long times, or to be expelled to orbits
of high eccentricity, could affect the amount of mass entering to the HZ in
each particular case.

The snow line is not fixed at a given distance during all the accretionary
phase. This is also an effect that can change the whole picture.
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