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Abstract. We construct and study the Google matrix of Bitcoin transactions during the time period from
the very beginning in 2009 till April 2013. The Bitcoin network has up to a few millions of bitcoin users
and we present its main characteristics including the PageRank and CheiRank probability distributions,
the spectrum of eigenvalues of Google matrix and related eigenvectors. We find that the spectrum has an
unusual circle-type structure which we attribute to existing hidden communities of nodes linked between
their members. We show that the Gini coefficient of the transactions for the whole period is close to unity
showing that the main part of wealth of the network is captured by a small fraction of users. In global
the Google matrix analysis of bitcoin network gives a new understanding of the bitcoin transactions with
PageRank and CheiRank characterization of sellers and buyers which are dominant not simply due to the
sold/bought volume but also by taking into account if bitcoins are sold to (bought by) other important
sellers (buyers).

1 Introduction

The bitcoin crypto currency was introduced by Satoshi
Nakamoto in 2009 [1] and became at present an impor-
tant source of direct financial exchange between private
users [2]. At present this new cryptographic manner of
financial exchange attracts a significant interest of soci-
ety, computer scientists, economists and politicians (see
e.g. [3–7]). The amazing feature of bitcoin transactions is
that all of them are open to public at [8] that is drastically
different from usual bank transactions deeply hidden from
the public eye.

Since the data of bitcoin transaction network are open
to public it is rather interesting to analyze the statistical
properties of this Bitcoin network (BCN). Among the first
studies of BCN we quote [9] and [10,11] where the statis-
tical properties of BCN have been studied including the
distribution of ingoing and outgoing transactions (links).
Thus it was shown that a distribution of links is character-
ized by a power law [10,11] which is typical for complex
scale-free networks [12]. Due to this it is clear that the
methods of complex networks, such as the World Wide
Web (WWW) and Wikipedia, should find useful applica-
tions for the BCN analysis. In particular, one can mention
in this context the important PageRank algorithm [13]
which is at the foundation of the Google search engine
[14]. Applications of this and related algorithms to various
directed networks and related Google matrix are discussed
in [15]. Previous studies of the world trade network [16,17]
showed that for financial transactions or related trade of
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commodities it is useful to consider also the CheiRank
probabilities for a network with inverted links [18] and we
will use this approach also here. In addition we analyze the
spectrum of the Google matrix of BCN using the powerful
numerical approach of the Arnoldi algorithm as described
in [19–21]. We note that a possibility to use the PageRank
probabilities for BCN was briefly noted in [22].

In our studies we use the bitcoin transaction data col-
lected by Ivan Brugere from the public block chain site
[8] with all bitcoin transactions from the bitcoin birth in
January 11th 2009 till April 2013 [23].

The paper is composed as follows: In Section 2 we
describe the main properties of BCN, the Google matrix
is constructed in Section 3, the numerical methods of its
analysis are described in Section 4, the spectrum and
eigenvectors of G matrix are analyzed in Sections 2 and 6,
the Gini coefficient of BCN is determined in Section 7
and the discussion is given in Section 8. We note that
Sections 4 and 5 describes advanced numerical methods
with allow to obtain high precision results for eigenvalues
of the Google matrices of BCN at various time intervals.
Those readers who are not interested in these details can
concentrate on the global information about the spectral
structure and go to Sections 6–8 where the analysis and
discussion of eigenvector properties are given.

2 Global BCN properties

From the bitcoin transaction data [23] of the period from
the very beginning in January 11th 2009 to April 10th
2013, we construct the BCN and related Google matrix.
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Fig. 1. Frequency histograms of BCN Nf in the period from
January 11th 2009 to April 10th 2013. Left panel shows the
frequency distribution Nf of number of sellers (and buyers)
transactions Na (and Nb). Right panel shows the frequency of
transactions with the same given partners Na,b. Frequencies
are computed for integer numbers Na, Nb and Na,b.

This weighted and directed network takes into account the
sum of all transactions, measured in units of bitcoin, from
one user to another during a given period of time. We call
users the addresses (accounts) which are present in trans-
actions (since one person can have several addresses or
accounts in BCN). We don’t have the information if multi-
ple users (addresses/accounts) belong to the same person
or if multiple persons are owners of one user. The total
number of transactions in this period is Nt = 28140756.
The minimum transaction value is 10−8 (was 10−3) bitcoin
for the period after (before) march 2010.

The global statistical characteristics of transactions are
shown in Figures 1–3. Thus Figure 1 shows the frequency
histogram Nf (Na), Nf (Nb) of BCN in this period, given
the dependencies for outgoing links (or sellers Na), ingoing
links (or buyers Nb), and transactions of the same partners
from a to b (Na,b). The fit of the data is in a satisfactory

agreement with an algebraic decay Nf ∝ 1/Na
β , Nf ∝

1/Nb
β , Nf ∝ 1/Na.b

β with β = 2.1 ± 0.1, β = 1.8 ± 0.1,
β = 2.2± 0.1 respectively.

Top panel of Figure 2 shows the histogram of bitcoin
transaction volume vm for the whole period (2009–2013)
measured in bitcoin. It is visible that it has peaks in values
of 10−8, 10−4 and 1. At the same time there are also trans-
actions with many bitcoins and vm as large as 834352.9.
The balance of each user Bu can be defined as the sum of
all ingoing transactions minus the outgoing ones measured
in bitcoins. This balance Bu is shown in the bottom panel
of Figure 2. For a majority of users the balance is close to
zero but in a few cases Bu is strongly negative or positive.
There are also visible peaks at values Bu = 30, 25, 20, 10.

In order to study BCN time evolution we divide the
whole period of time in year quarters from 2009 to
2013 (we take only half of years in 2009 since the
number of transactions is very small). Some charac-
teristic numbers of BCN are shown in Figure 3. The
network is constructed from all transactions from the
very beginning till the end of a given quarter. There

Fig. 2. Frequency histogram Nf of bitcoin transaction volume
vm measured in bitcoins on top panel (histogram is equidis-
tant in log10 vm with a width of 0.2). Bottom panel shows the
frequency histogram Nf of user balance Bu defined as the dif-
ference between ingoing and outgoing transactions in bitcoin
units (histogram is linearly equidistant in balance with a width
of 0.1 bitcoins). Left and right insets show zoom in vicinity of
zero balance for negative (left) and positive (right) values.

Fig. 3. Characteristic evolution of BCN with year quarters
(halves in 2009) from 2009 to April 2013. Time evolution is
shown for number of transactions Nt in a given quarter (black
circles); number links Nit of integrated transactions (where two
or more transactions of the same partners in the given period
of time are integrated) (red squares); number of nodes given
by partners N (green diamonds); and total volume of bitcoins
(blue triangles).

is a significant growth with time for the number of
transactions Nt, and the integrated number of transac-
tions Nit (from the beginning till given quarter) and the
number of nodes N (partners) for the same period of
time.

At the next step we describe the construction of the
Google matrix from the bitcoin transactions described
above.
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Table 1. Size (N), number of links (N`) and total volume
of used networks (total means from the BCN beginning till
the end of a given quarter).

Network N N` Total volume
(in bitcoins)

BC2009Q2 142 117 51499
BC2009Q4 220 188 269526
BC2010Q1 645 632 681867
BC2010Q2 7706 11275 2.33662× 106

BC2010Q3 37818 57437 9.0931× 106

BC2010Q4 70987 111015 1.86444× 107

BC2011Q1 204398 333268 3.44654× 107

BC2011Q2 697401 1328505 1.30747× 108

BC2011Q3 1547349 2857232 2.0177× 108

BC2011Q4 1885400 3635927 2.87714× 108

BC2012Q1 2186598 4395611 3.2546× 108

BC2012Q2 2645532 5655802 5.04581× 108

BC2012Q3 3742691 8381654 1.02381× 109

BC2012Q4 4672122 11258315 1.17078× 109

BC2013Q1 5998239 15205087 1.29944× 109

BC2013Q2 6297009 16056427 1.31479× 109

3 Construction of Google matrix of BCN

In this work we use the notation “BCYearQuarter” (e.g.
BC2010Q2) for the different bitcoin networks, eventu-
ally with an additional “*” for the CheiRank case (e.g.
BC2010Q2*). We consider 16 (or 32 including the
CheiRank cases) networks BC2009Q2, BC2009Q4 to
BC2013Q2 with network sizes N and link numbers N`
ranging from N = 142 and N` = 117 (BC2009Q2) to
N = 6297009 and N` = 16056427 (BC2013Q2) with typi-
cal ratios N/N` between 1 for the smallest networks and
2.5−3 for the largest networks. We stress that the network
for a given quarter (e.g. BC2010Q2) is constructed from
all bitcoin transactions from the very beginning in 2009 till
the end of a given quarter (all transactions are integrated
till the end of a given quarter). For the whole period of
all quarters we have the total G matrix size N = 6297539
with N` = 16056427 links. The values of N,N` and total
volume for all quarters are given in Table 1.

As usual we write the matrix associated to such a
network as [15,21]:

S = S0 +
1

N
edT , (1)

where eT = (1, . . . , N) is the (transpose of the) uniform
vector with unit entries, d is the dangling vector with unit
entries dl = 1 if l corresponds to an empty column of S0

and dl = 0 for the other columns.
To be more exact and detailed, we follow the case of the

world trade network [16]: for a BCN of a given quarter we
have bitcoin transactions (in bitcoin units) from account
k to account l that gives bitcoin matrix elements Mlk (we
note that in the BCN one user can have many different
accounts; account is given by the blockchain code). These
elements can be viewed as a money mass transfer from k to
l. In contrast to the adjacency matrix Alk of the WWW,

where all elements are only 0 or 1, here we have the case of
weighted elements. This corresponds to a case when there
are in principle multiple number of links from k to l and
this number is proportional to bitcoin amount transfer. In
this case still the Google matrix is constructed according
to the usual rules and relation equation (1) Slk = Mlk/mk

and Slk = 1/N , if for a given k all elements Mlk = 0.
Here mj =

∑
lMlk is the total export mass for account

j. The matrix S∗ is constructed from transposed money
matrix with Slk = Mkl/

∑
lMkl. In this way we obtain the

Google matrices S and S∗ of BCN which allow to treat
all accounts on equal grounds independently of the fact if
a given account is rich or poor.

We note that the second term of the right side of
equation (1) excludes the sink nodes with an out degree of
zero so that all such nodes have equal outgoing transition
matrix elements 1/N to all nodes. This is the usual proce-
dure proposed in [13] which allows to exclude singularities
of S0 and place the matrix S in the class of Markov chains
and Google matrix (see also [14]). The additional added
weight 1/N is small compared to usual matrix elements.

The elements (S0)lk of the matrix S0 correspond to the
value of the bitcoin transaction from a node k to another
node l normalized by the total value of transactions from
the node k to all nodes. A similar construction of S0 is
used for the world trade network [16]. For the CheiRank
case [18] the direction of the transaction is inverted in this
scheme, i.e. (S∗0 )lk corresponds to the value of the bit-
coin transaction from the node l to k normalized by the
total value of transactions from all nodes to the node k.
According to our raw data the bitcoin transactions up to
2010Q2 were done in units of 10−3 bitcoins and afterwards
in units of 10−8 bitcoins. Therefore the raw transaction
values and also the resulting (column sum normalized)
entries of the matrix S0 are rational numbers. For com-
putations using normal precision numbers (i.e. standard
double precision with a mantissa of 52 bits) these ratio-
nal numbers can simply be replaced by the closest floating
point number. However, for high precision computations
using the library GMP [24], the precise rational values
were kept as long as possible and, only when necessary,
rounded to high precision floating point values with their
maximal precision.

For the purpose of PageRank computations we also
consider the Google matrix with damping factor α given
by:

G = αS + (1− α)
1

N
e eT , (2)

where we use α = 0.85 corresponding to its typical choice
[13–15]. For the network with inverted direction of trans-
actions, corresponding to the CheiRank case, we have
G∗ = αS∗ + (1− α) 1

N e eT .
The right eigenvectors ψm of G are determined by

the equation
∑
j′ Gjj′ψi(j

′) = λiψi(j) with eigenvalues
λi. At α < 1 the largest eigenvalue is λ = 1 and the
corresponding eigenvector has only positive component
which have (for WWW networks) the meaning of prob-
abilities P (j) (

∑
j P (j) = 1) to find a random surfer on

a node j [14]. We can order all nodes in the order of
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Fig. 4. PageRank and CheiRank distributions ordered by
indices K and K∗ on top and bottom panel respectively. The
bitcoin networks are taken by quarters of years (halves in the
case of 2009) for 2009 (yellow), 2010 (red), 2011 (black), 2012
(blue) and 2013 (orange) with lines corresponding to Q1 (solid
line), Q2 (dotted line), Q3 (dashed line) and Q4 (dot-dashed
line).

monotonic decrease of probability P (K) with maximal
probability at the PageRank index K = 1 and then at
K = 2, 3.... In a similar way for the CheiRank case of G∗

we obtain the CheiRank vector at λ = 1 with CheiRank
probability P ∗(K∗) being maximal at the CheiRank index
K∗ = 1 and then at K∗ = 2, 3.... The PageRank vector is
efficiently determined by the power iteration algorithm
[13,14].

As a qualitative explanations of the construction of
matrix G we add the following. We assume that users
sell to other users only if they trust them. They have a
certain equal basic trust value for all users, represented by
the second term in equation (2). They trust more the users
with good reputation which already bought many times
from users which themselves have good reputation. This
is implemented with the first term αS in equation (2).
PageRank vector tells us how much a user can be trusted
as a buyer of bitcoins, with a recursive consideration of
reputation. CheiRank vector tells us how much a user can
be trusted as a seller. Furthermore, eigenvectors of the
Google matrix with eigenvalues having an absolute value
close to one can be used to identify communities in the
BCN. Communities are groups of nodes which interact
strongly among each other and only weakly with the rest
of the network. We note that the construction equation (2)
is the standard one for all directed networks (see e.g.
[13–15]).

The dependencies of the PageRank P (K) and CheiRank
P ∗(K∗) probabilities on their indices K,K∗ are shown
in Figure 4 for various quarters of BCN. We see
that the distributions become stabilized at last quar-
ters when the network size becomes larger reaching
its steady-state regime. Thus for BC2013Q1 we find

that the probability approximately decays in a power
law with P ∝ 1/Kν , P ∗ ∝ 1/K∗ν with ν = 0.86 ± 0.06,
ν = 0.73± 0.04 respectively (the fit is done for the range
10 < K,K∗ < 105). The value of ν is similar to the val-
ues found for other directed networks (see e.g. [15–17])
but we note that this is only an approximate description
of the numerically found behavior (see detailed discus-
sion of algebraic decay for WWW networks in [25]). In
analogy with the results obtained for the world trade net-
work [16,17] we conclude that the user accounts (BCN
nodes) with the largest PageRank probabilities P (K) are
dominant buyers of BCN while those with the largest
CheiRank probabilities P ∗(K∗) are dominant sellers. This
dominance is not related only to the sold (bought) volume,
as usually characterized by trade export (import), but
this dominance also takes into account if bitcoins are sold
to (bought by) other important sellers (buyers). There-
fore, using PageRank we understand an important aspect
of BCN going beyond the local information of the total
transaction volume of user accounts. We also note that
PageRank vectors in directed networks can also charac-
terize a degree of control that one companies produce on
other companies (see e.g. [26]).

4 Numerical methods for BCN Google
matrix diagonalization

We describe here the various skillful numerical methods
used for diagonalization of G and G∗. Their use had
been required due to heavy numerical problems for accu-
rate computation of the eigenvalues of these matrices and
related eigenvectors.

First we introduce the concept of invariant isolated sub-
sets (for more details we refer to [27]). These subsets are
invariant with respect to applications of S. The remain-
ing nodes not belonging to an invariant subset (below a
certain maximum size, e.g. 10% of the network size) form
the wholly connected core space. The practical compu-
tation of these subsets can be efficiently implemented in
a computer program [27], eventually merging subspaces
with common members, which provides a sequence of dis-
joint subspaces invariant by applications of S. Therefore
we obtain a subdivision of the network nodes in Nc core
space nodes and Ns subspace nodes (belonging to at least
one of the invariant subsets) corresponding to the block
triangular structure of the matrix S:

S =

(
Sss Ssc
0 Scc

)
. (3)

Here Sss is composed of many small diagonal blocks for
each invariant subspace and whose eigenvalues can be
efficiently obtained by direct (“exact”) numerical diago-
nalization.

We have computed for the networks up to BC2011Q4
(with N = 1884918 and N` = 3635927) (a part of) the
complex eigenvalue spectrum of the matrix S (i.e. G(α) for
α = 1) with eigenvalues closest to the unit circle. For this
we employed basically the method of references. [27,28]

https://epjb.epj.org/
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based on equation (3) to compute exactly the eigenval-
ues associated to the invariant subsets, typically a very
modest number. For each invariant subspace there is at
least one unit eigenvalue λ = 1 which is therefore possibly
degenerate (in case of several invariant subspaces). The
remaining eigenvalues associated to the main core space
(with |λ| < 1) are obtained by the Arnoldi method [19,29]
with Arnoldi dimensions up to nA = 16000. This requires
for the network BC2011Q4 a machine with 256 GB (using
standard double precision numbers).

For the larger networks (BC2012Q1 and later) it would
be necessary to increase the available memory or to reduce
the value of nA. However, it turns out that the density
of eigenvalues close to the unit circle is so high that a
significant reduction of nA does not allow to obtain (even
a small number) of reliable core space eigenvalues. This
situation is quite different from other networks such as
certain university networks [27] or Wikipedia [28] where
it was easier to access numerically a reasonable number of
the top core space spectrum of the matrix S. Furthermore
for the cases up to BC2011Q4 we also computed at least 20
eigenvectors of 20 selected (core space) eigenvalues close
to the unit circle such that roughly λj ≈ |λj | exp(i2πj/19)
for j = 0, . . . , 19 and |λj | ≈ 1.

For the smallest bitcoin networks BC2009Q2,
BC2009Q4 and BC2010Q1 with N ≤ 645 the core space
eigenvalue spectrum is actually easily accessible by direct
diagonalization or full Arnoldi diagonalization (with some
subtle effects for the small eigenvalues requiring high
precision computations).

The four networks BC2010Q2 and BC2010Q2*
(BC2010Q3 and BC2010Q3*) play a somewhat special
role in our studies since on one hand they are sufficiently
small with N = 7706 (or N = 37818) to allow (at least in
theory) to compute all (or nearly all) non-zero eigenvalues
and on the other hand they are still sufficiently large to
have an interesting spectrum, comparable to the spectra
of the larger networks, especially with a strong concentra-
tion of the majority of (non-vanishing) eigenvalues close
to the unit circle.

However, it turns out that the two cases of BC2010Q2
and BC2010Q2* suffer from a serious numerical prob-
lem similar to the citation network of Physical Review
[21]. Using both direct diagonalization (i.e. using House-
holder transformations to transform the initial matrix
to Hessenberg form and final diagonalization of the lat-
ter by the QR algorithm with implicit double shift) and
full Arnoldi diagonalization (choosing a sufficiently large
value of nA and QR algorithm to diagonalize the Arnoldi
matrix which is also of Hessenberg form) with normal pre-
cision floating point numbers we find that there are several
“rings” of eigenvalues close to the unit circle. The outer
two rings seem to contain reliable and correct eigenval-
ues but already the third ring with |λ| ≈ 0.94 and all
rings below are numerically completely unreliable since
the corresponding eigenvalues change completely between
the two methods and also different implementations of
them (i.e. applying a permutation in the network nodes
but keeping the same network structure, choosing differ-
ent ordering in the summation when computing the scalar
products for the Arnoldi method, using slightly different

but mathematical equivalent implementations of the QR
algorithm, using different runs with parallelization which
amounts to different rounding errors for the sums in the
scalar products etc.). Therefore we conclude that eigen-
values with |λ| < 0.95 are numerically incorrect as long as
we use methods based on normal precision numbers.

This situation is quite similar to the (nearly) triangular
citation network of Physical review [21] where eigenvalues
with |λ| < 0.4−0.5 are numerically wrong. The reason of
this behavior is due to large Jordan blocks for the highly
degenerate zero eigenvalue producing numerically artifi-
cial rings of incorrect eigenvalues in the complex plane
with radius r ∼ ε1/d [20,21] with ε being the machine pre-
cision (i.e. ε = 10−16 for simple double precision numbers
or ε = 2−p for high precision numbers with p binary dig-
its) and d � 1 being the dimension of the Jordan block.
The bitcoin networks do not have the (near) triangular
structure, responsible for this problem in [21], but the low
ratio of N`/N ≈ 1.5, reducing considerably the number of
non-zero matrix elements in S0, also creates large Jordan
subspaces and here the effect is even worse as compared
to reference [21].

To solve this problem and obtain final reliable eigen-
values with precision 10−15, we implemented all steps of
the numerical diagonalization methods: the computation
of the Arnoldi decomposition, reduction of an arbitrary
matrix to Hessenberg form using Householder transforma-
tions, final diagonalization of Hessenberg matrices by the
QR algorithm, with high precision floating point numbers
using the GMP library [24]. (In Ref. [21] only the com-
putation of the Arnoldi decomposition was implemented
with the GMP library.).

For the two networks BC2010Q2 and BC2010Q2*
we have been able to push the direct high precision
diagonalization (Householder transformation to Hessen-
berg form and QR algorithm) with different precision
up to p = 4096 binary digits confirming the scal-
ing r ≈ 2−p/d for the radius of incorrect eigenvalues
induced by large Jordan blocks. For p = 4096 we find
a maximal radius r ≈ 0.01 corresponding to a value of
d ≈ 616 for the dimension of the corresponding Jor-
dan block. In normal precision (with p = 52) the same
value of d corresponds to a radius ≈ 0.94 confirming
exactly the observations of the initial normal precision
results.

The direct diagonalization in high precision is however
quite expensive in both computation time and memory
requirement. In this context the (high precision) Arnoldi
method is more efficient since it automatically breaks off
when it has explored an S-invariant subspace which is
detected by a vanishing or very small coupling matrix
element in the Arnoldi matrix at some value of nA
(see Refs. [19,21] for more details on this point). If we
assume that the initial vector (which we chose either
uniform or random with two different realizations) con-
tains contributions from all eigenvectors associated to
non-vanishing core space eigenvalues the method will, at
least in theory, produce the complete spectrum of these
eigenvalues using a considerably reduced subspace for the
final (QR-) diagonalization. Here we have chosen a break
off limit of ε = 2−p/2 (with p being the precision number of
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binary digits) for the final coupling matrix element which
scales to zero with increasing precision but is still much
larger than the computation precision (2−p) allowing to
take into account the subtle effects due to the Jordan
blocks creating numerical errors on a scale much larger
than the computation precision. In this case we obtain a
reduced dimension of about 2000–3000 (depending on the
choice of random or uniform initial vectors and on both
cases of BC2010Q2 or BC2010Q2*) instead of 7706. Here
the Arnoldi method with a precision of p = 8192 binary
digits (which is considerably less expensive than the direct
diagonalization with p = 4096) or even only p = 3072 (for
the case of BC2010Q2* with uniform initial vector) allows
to obtain the complete spectra of non-vanishing eigenval-
ues for these two networks. The remaining small rings
of numerical incorrect Jordan block induced eigenvalues
can be easily removed from the correct eigenvalues by
comparing the spectra obtained by different initial vectors.

We also employed (with some suitable technical mod-
ifications which we omit here) the rational interpolation
method which we developed in reference [21]. This method
is also based on high precision computations to determine
the zeros of a certain rational function which are the core
space eigenvalues satisfying the condition dT ψ 6= 0 for
the corresponding eigenvector ψ and the above introduced
dangling vector d. It turns out that for the two networks
BC2010Q2 and BC2010Q2* all non-vanishing core space
eigenvalues satisfy this condition but for the other two net-
works BC2010Q3 and BC2010Q3* there a few core space
eigenvalues with dT ψ = 0 which we determined separately
by a method described in reference [21] exploiting that
they are degenerate subspace eigenvalues of the matrix S0

(which are different from the subspace eigenvalues of S
which we also computed).

The rational interpolation method is highly effective
with very modest memory requirements and the possi-
bility to use partial low-precision spectra to accelerate
the computation of the zeros to obtain recursively higher
precision spectra. Here we obtained for BC2010Q2 and
BC2010Q2* precise and complete spectra for p = 6144
but we also performed confirmation runs up to p = 12288.
The results of this method confirm exactly the numer-
ical values (with accuracy of 10−15 for all of the final
eigenvalues) and the precise number of non-vanishing core
space eigenvalues already obtained by the high preci-
sion Arnoldi method. We mention that the eigenvalues
of the direct diagonalization correspond numerically with
the same accuracy to these results (after removal of the
numerically incorrect Jordan induced eigenvalues) but for
p = 4096 this method misses a small number (about 3–4)
of the smallest non-vanishing core space eigenvalues (with
|λ| ∼ 5× 10−3).

5 Spectrum of BCN Google matrix

We present here the main results obtained for the spec-
trum and some eigenvectors of G and G∗ by the numerical
methods described above.

For the two networks BC2010Q2 and BC2010Q2*,
with a full network size of N = 7706, we find that
there are exactly Nc = 1967 (Nc = 1984) non-vanishing

Fig. 5. Complex eigenvalue spectrum of the Google matrix
associated to the network BC2010Q2 (BC2010Q2*) in left
(right) panels. Shown are the full spectrum in top panels or
a zoomed representation for the region λ ≈ 1 in bottom pan-
els. The red dots (crosses) are core space eigenvalues obtained
by high precision Arnoldi computations and also the ratio-
nal interpolation method and the blue thick dots (square
boxes) are invariant subspace eigenvalues obtained by the nor-
mal/high precision Arnoldi method or direct diagonalization.
The green line (if visible and not hidden by the red dots) is
the unit circle. In top panels the apparent “red circle” cor-
responds in reality to a high density of individual red dots
for the complex core space eigenvalues whose structure is
better visible in the zoomed representation in bottom pan-
els. The top core space eigenvalues (red crosses) which are
very close to the top sub space eigenvalue at λ = 1 (blue
square box) are 0.99990029706715 and 0.999678494064214 (or
0.999998157039589) for BC2010Q2 (BC2010Q2*). The 3rd
top core space eigenvalue 0.995663863983884 for BC2010Q2
is already clearly outside the blue square box. More details
for the computation method and the subspace eigenvalues are
given in the main text.

core space eigenvalues and Ns = 15 (Ns = 2) non-
vanishing subspace eigenvalues (of S) for BC2010Q2 (or
BC2010Q2*) with the complete and numerically accu-
rate spectra shown in Figure 5. The main two outer
rings close to the unit circle (with |λ| > 0.97) contain
1626 (1621) core space eigenvalues which is more than
80% of the spectrum (of non-vanishing eigenvalues). The
non-vanishing subspace eigenvalues λ, also shown in the
same figure, and their multiplicities m are m = 7 (λ =
1), m = 6 (λ = −1), m = 1 (λ = −0.723606797749979
and λ = −0.276393202250021) for BC2010Q2 and m = 1
(λ = ±1) for BC2010Q2*. All other eigenvalues (about
∼ 5700) are zero and correspond to Jordan subspaces with
potentially rather large dimensions being responsible for
the numerical problems when limiting the computations
to normal floating point precision.
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For the two networks BC2010Q3 and BC2010Q3*,
with a full network size of N = 37818, the numerical
problems due to Jordan blocks for the zero eigenvalue
are less severe but still present. Here the normal preci-
sion Arnoldi method allows to compute about 7800–7900
reliable eigenvalues within an error of 10−6 and which
are rather strongly localized close to the boundary cir-
cle (if one tries larger values of nA one obtains only
numerical incorrect eigenvalues). Here the high preci-
sion Arnoldi method is strongly limited due to memory
requirements and it is not possible to go beyond a
precision of p = 512 which produces about 500–700 addi-
tional reliable eigenvalues and the resulting spectra are
still quite concentrated close to the boundary circle.
However, the rational interpolation method still works
very well due to its high efficiency. It turns that at a
binary precision of p = 30720 using about 18400 sup-
port points (for the rational interpolation scheme) this
method produces Nc = 9192 (Nc = 9145) non-vanishing
core space eigenvalues (including 4 pairs of doubly degen-
erate eigenvalues in both cases). However, without going
into technical details, our results indicate that these num-
bers may still increase very slightly when increasing the
precision and also the number of support points but
we are confident that for both networks BC2010Q3 and
BC2010Q3* there are aboutNc ≈ 9200 non-vanishing core
space eigenvalues which is about 25% of the full net-
work size (a similar ratio we already found for BC2010Q2
and BC2010Q2*). The additional 1300–1400 eigenval-
ues with respect to the spectra obtained by the normal
precision Arnoldi method fill out rather uniformly the
inner part of the complex unit circle as can be seen in
Figure 6.

Furthermore for BC2010Q3 (BC2010Q3*) there also
Ns = 56 (Ns = 2) subspace eigenvalues for S (blue
dots/squares in Fig. 6). Here some eigenvalues are on the
unit circle with |λ| = 1 and degeneracy m = 23 (m = 1)
for λ = 1, m = 17 (m = 1) for λ = −1 and m = 2

(m = 0) for λ = (−1± i
√

3)/2. In both cases there also a
few core space eigenvalues (given as degenerate subspace
eigenvalues of S0, green dots) which were determined by
another method [21] since they are not necessarily found
by the rational interpolation method. About 8000 reli-
able eigenvalues are found by the normal precision Arnoldi
method correspond to the 4–5 rings of eigenvalues close
to the unit circle and visible in the center panels of
Figure 6.

We mention that the high precision variants of the
three methods are also useful to compute the full spec-
tra for the three smaller networks (up to BC2010Q1 with
N = 645) and also for the invariant subspace spectra (for
nearly all bitcoin networks) since they allow to remove
in a reliable way a certain number of numerical incorrect
eigenvalues below 10−3 obtained by the normal precision
computations. For these cases the computation times are
negligible and the required precision is rather modest (typ-
ically between p = 256 and p = 1024). Here the number
of non-vanishing core space eigenvalues Nc and subspace
eigenvalues Ns are given by Nc = 4 (6) and Ns = 2 (0)
for BC2009Q2 (or BC2009Q2*) with N = 142, Nc = 13

Fig. 6. Complex eigenvalue spectrum of the Google matrix
associated to the network BC2010Q3 (BC2010Q3*) in left
(right) panels. Shown are the full spectra in top panels and
two zoomed representations for the region λ ≈ 1 in center and
bottom panels. The red dots (crosses) are core space eigen-
values obtained by the rational interpolation method in high
precision, the blue thick dots (square boxes) are invariant
subspace eigenvalues obtained by the normal/high precision
Arnoldi method or direct diagonalization and the thick green
dots in top panels correspond to degenerate subspace eigenval-
ues of S0 which are also core space eigenvalues of S and not
necessarily found by the rational interpolation method (see
Ref. [21] for explanations). There are 2 (is 1) top core space
eigenvalue(s) (red cross(es)) very close to the top sub space
eigenvalue at λ = 1 i.e. nearly or completely inside the blue
square box (in bottom panels) and the 1st top core space eigen-
value is 0.999968720409915 (0.99999983940032) for BC2010Q3
(BC2010Q3*).

(15) and Ns = 4 (2) for BC2009Q4 (or BC2009Q4*) with
N = 220 and Nc = 26 (30) and Ns = 6 (2) for BC2010Q1
(or BC2010Q1*) with N = 645. The subspace eigenvalues
are always ±1 (except for BC2009Q2* where Ns = 0 and
there are no subspace eigenvalues) eventually with dou-
ble (or triple) degeneracy if Ns = 4 (or Ns = 6). Clearly
in all these cases the number of the non-vanishing core
space and subspace eigenvalues constitutes only a small
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Fig. 7. Complex eigenvalue spectrum of the Google matrix
associated to the network BC2011Q4 (BC2011Q4*) in left
(right) panels. Shown are about 12000 “reliable” top eigen-
values obtained by the Arnoldi method in normal precision
with nA = 16000 in top panels (red dots/red circle) or a
zoomed representation (red crosses) for the region λ ≈ 1 in bot-
tom panels. The blue thick dots (square boxes) are invariant
subspace eigenvalues obtained by the normal/high precision
Arnoldi method or direct diagonalization. The green line (if
visible and not hidden by the red dots) is the unit circle. In
top panels the apparent “red circle” corresponds in reality to a
high density of individual red dots for the complex core space
eigenvalues whose structure is better visible in the zoomed rep-
resentation. There are 8 (is 1) top core space eigenvalue(s) (red
cross(es)) very close to the top sub space eigenvalue at λ = 1
i.e. nearly or completely inside the blue square box and the 1st
top core space eigenvalue is 0.99999999417 (0.99999996048) for
BC2011Q4 (BC2011Q4*).

fraction of the spectrum with all other eigenvalues being
zero corresponding to certain Jordan subspaces.

For the larger networks (between BC2010Q4 with
N = 70987 and BC2011Q4 with N = 1884918) we applied
the normal precision Arnoldi method with nA = 16000.
However, in view of the numerical problems visible for
BC2010Q2/3, we performed different runs with slightly
different implementations (e.g. different summation order
for the scalar product in the Arnoldi method) leading to
different rounding errors and verified how many eigen-
values were numerically identical with an error below
10−6. For the two cases BC2011Q4 and BC2011Q4*
with N = 1884918 and nA = 16000 we obtain about
12000 numerically reliable core space eigenvalues shown
in Figure 7 and which are all very close to the unit circle
with |λ| > 0.99. Figure 7 also shows the subspace eigenval-
ues with Ns = 332 (2) for BC2011Q4 (BC2011Q4*). The
subspace spectrum of BC2011Q4 contains 242 eigenvalues
on the unit circle with |λ| = 1 which are λ = 1 (degeneracy

m = 127), λ = ±i (both with m = 1), λ = (−1± i
√

3)/2

(both with m = 3) and λ = −1 (m = 107). The remaining
90 subspace eigenvalues with 0 < |λ| < 1 are also visible
in Figure 7. Here only one eigenvalue at λ = −1/2 has a
double degeneracy. The subspace spectrum of BC2011Q4*
contains only the two (non-vanishing) eigenvalues λ = ±1
(both with m = 1).

The convergence with the increase of the Arnoldi dimen-
sion nA is illustrated in the top panels of Figure 8
for BC2011Q4 showing the dependence j(γj) where
γj = −2 ln |λj | with λj being the core space eigenvalue.
For S and S∗ the comparison between the two maxi-
mal values nA = 16000 and nA = 12000 indicates that
about j ≈ 5000−6000 eigenvalues up to γ ≈ 0.01 are
reliable. However, we remind that the comparison of
different computations for nA = 16000 shows that the
number of reliable eigenvalues is actually higher ≈ 12000
corresponding to γ ≈ 0.015. The circle structure well vis-
ible in Figure 7 is responsible for appearance of large
steps in the dependence j(γ) well seen in Figure 8. A
similar dependence γj is also present for other quar-
ters BC2011Q1, BC2011Q2, BC2011Q3 shown in bottom
panels of Figure 8.

6 Eigenstates of BCN Google matrix

The decay of PageRank and CheiRank probabilities at dif-
ferent quarters is presented in Figure 4. Here we describe
the properties of several eigenstates. As soon as the
eigenvalues are determined the eigenstates corresponding
to the selected eigenvalues can be efficiently computed
numerically as described in [15,19,28].

The results for 6 eigenvectors of BC2010Q2 are shown
in Figure 9 and for BC2011Q4 in Figure 10. The selected
eigenvectors ψ0, ψ1, ψ6, ψ10, ψ19 (additional to PageRank
and CheiRank vectors) are marked by an index j corre-
sponding to 20 core eigenvalues closest to the unit circle
with uniformly distributed eigenphases between 0 and π.
In the top panels of Figure 9 we order all amplitudes
|ψj | in monotonically descending order with their own
local-Rank index Kj with maximum at Kj = 1 (Kj is
different from PageRank index K). The interesting fea-
ture ofs these eigenstates is the presence of large plateaus
where for hundreds of nodes the amplitude |ψj | remains
practically independent of Kj . This indicates a presence
of relatively large communities of users coupled by certain
links. The bottom panels of Figure 9 show the amplitudes
|ψj | as a function of the global PageRank index K. For
the BC2010Q2 network the nodes with largest amplitudes
|ψj | are located at relatively large K values with K < 100.
It is possible that these nodes correspond to bitcoin min-
ers. However, a significant number of nodes with relatively
large amplitudes are located at very high valuesK ∼ 2000.
For the Google matrix G∗ all large amplitudes are located
at large values of the CheiRank index K∗ > 500. For the
larger BC2011Q4 network, shown in Figure 10 we find
the presence of similar plateau structure for eigenstate
amplitudes.

Similarly to Wikipedia and other networks [15] it is con-
venient to present the distribution of network nodes on the
CheiRank-PageRank plane (K,K∗) shown in Figure 11
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Fig. 8. Level number j versus the decay width γj = −2 ln(|λj |) with λj being the jth core space eigenvalue computed by the
normal precision Arnoldi method with uniform initial vector and Arnoldi dimension nA. The top left (right) panel corresponds
to the network BC2011Q4 (or BC2011Q4*) for different values of nA with 2000 ≤ nA ≤ 16000. The bottom left (right) panel
corresponds to the four networks BC2011Qk, (or BC2011Qk*) for k = 1, 2, 3, 4 and nA = 16000.

Fig. 9. Top panels: PageRank P (or CheiRank P ∗) at damping factor α = 0.85 and modulus |ψj | of 5 selected eigenvectors of
S for the network BC2010Q2 (or BC2010Q2*) versus the index K for PageRank P (K∗ for CheiRank P ∗) or the individual
ordering index Kj for each eigenvector ψj . Bottom panels: The same as top panels but only using the PageRank (CheiRank)
index K (K∗) on the x-axis for all shown vectors. Note that the given vector index values 0, 1, 6, 10, 19 do not correspond to the
level number of Figure 8 but they correspond to an index of a selected set of 20 core space eigenvalues closest to the unit circle
and with uniformly distributed eigenphases between 0 and π, i.e. the selected eigenvalues are roughly λj ≈ |λj | exp(−i2πj/19)
for j = 0, . . . , 19 and with |λj | ≈ 1. In particular: λ0 = 0.99990030 (0.99999816), λ1 = 0.99967849 (0.99612525 + i0.00704040),
λ6 = 0.63708435 + i0.75027164 (0.63887779 + i0.75813987), λ10 = 0.00130422 + i0.98315766 (−0.00043259 + i0.99066741), and
λ19 = −0.99053491 (−0.99014386) for BC2010Q2 (or BC2010Q2*).
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Fig. 10. PageRank P (or CheiRank P ∗) at damping factor α = 0.85 and modulus |ψj | of 5 selected eigenvectors of S for the
network BC2011Q4 (or BC2011Q4*) versus the index K for PageRank P (K∗ for CheiRank P ∗) or the individual ordering
index Kj for each eigenvector ψj . The given vector index is similar to Figure 9. The eigenvalues of the shown eigenvectors
are: λ0 = 0.99999999 (0.99999996), λ1 = 0.99999322 (0.99907654), λ6 = 0.64270357 + i0.76431760 (0.64271106 + i0.76429326),
λ10 = −0.00116375 + i0.99865094 (−0.00117162 + i0.99862722), and λ19 = −0.99999317 (−0.99934321) for BC2011Q4 (or
BC2010Q4*).

for the cases of BC2010Q2 of Figure 9 and BC2011Q4
of Figure 10. We see that for BC2010Q2 the density dis-
tribution of N nodes on (K,K∗)-plane is still strongly
fluctuating, but for BC2011Q4 it starts to stabilize and
becomes close to the density of our largest network of
BC2013Q2 shown in Figure 12. The important feature
of the stabilized density distributions of BC2011Q4 and
BC2013Q2 is the fact that the maximum of distribution
is located at the diagonal K = K∗. This is similar to the
situation of the world trade network [16,17] where each
country (node) or user for BCN tries to keep trade balance
between outgoing (export) and ingoing (import) flows.

In Figure 11 we show by red crosses the location of
top largest amplitudes |ψj | at j = 10 for Google matri-
ces G (left column) and G∗ (right column). We see that
only a few large amplitudes are located at leading (small-
est) values of K and K∗. This shows that the vector ψ10

corresponds to a certain rather isolated community.
The proximity of the density distribution to the diag-

onal K = K∗ leads to a significant correlation between
PageRank and CheiRank vectors P (K(i)) and P ∗(K∗(i)).
This correlation is convenient to characterized by the cor-

relator [15,18,28] κ = N
∑N
i=1 P (K(i))P ∗(K∗(i))−1. The

large values of κ corresponds to a strong correlation of
PageRank and CheiRank probabilities, while κ close to
zero or even slightly negative appears to uncorrelated
vectors P and P ∗. The dependence of κ on the net-
work size N is shown in Figure 13 (right panel) where
the correlator is becoming very large up to κ ≈ 104

for the last quarters of BCN. The frequency distribu-
tion of correlator components κi = NP (K(i))P ∗(K∗(i))
for three cases at different quarters is shown in the left
panel of Figure 13. These distribution show the presence
of very active users with large κi values correspond-
ing to their expected high activity of bitcoin outgoing
and ingoing transactions. It may be rather interesting
to determine the hidden identity of users with largest κi
values.

Fig. 11. Density of nodes W (K,K∗) on PageRank-CheiRank
plane (K,K∗) averaged over 100× 100 logarithmically equidis-
tant grids for 0 ≤ lnK, lnK∗ ≤ lnN , the density is averaged
over all nodes inside each cell of the grid, the normalization
condition is

∑
K,K∗W (K,K∗) = 1. Color varies from blue at

zero value to red at maximal density value. In order to increase
the visibility large density values have been reduced to (satu-
rated at) 1/16 of the actual maximum density. At each panel
the x-axis corresponds to lnK and the y-axis to lnK∗. Both
top panels correspond to BC2010Q2 for K and to BC2010Q2*
for K∗ and both bottom panels to BC2011Q4 for K and to
BC2011Q4* for K∗. The red crosses show the top 1000 nodes
of the eigenvector ψ10 used in Figures 9 and 10 of BC2010Q2
(top left), BC2010Q2* (top right), BC2011Q4 (bottom left)
and BC2011Q4* (bottom right).
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Fig. 12. Density of nodes W (K,K∗) on PageRank-CheiRank
plane (K,K∗) for BC2013Q2 averaged over 200 × 200 loga-
rithmically equidistant grids for 0 ≤ lnK, lnK∗ ≤ lnN , the
density is averaged over all nodes inside each cell of the grid,
the normalization condition is

∑
K,K∗W (K,K∗) = 1. Color

varies from blue at zero value to red at maximal density value.
In order to increase the visibility large density values have been
reduced to (saturated at) 1/16 of the actual maximum density.
At each panel the x-axis corresponds to lnK and the y-axis to
lnK∗.

7 Gini coefficient of BCN

In economy the distribution of wealth of a certain popula-
tion is often characterized by the Gini coefficient proposed
in 1912 (see e.g. [30–32]). The Gini coefficient is typically
defined using the Lorenz curve which plots the fraction y
of the total income of a fraction x of the population with
the lowest income versus x. The line at y = x thus repre-
sents perfect equality of incomes. The Gini coefficient is
the ratio of the area that lies between the line of equality
and the Lorenz curve normalized by the total area under
the line of equality. Therefore the Gini coefficient is 0 for
perfect equality and 1 for complete inequality.

We can generalize this definition to PageRank and
CheiRank distributions. For this let P (K) be the usual
PageRank vector with K = 1 for the maximum value cor-
responding to the top PageRank node. Then we define the
inverted PageRank as Pinv(K ′) = P (N−K ′−1) such that
for Pinv the maximum value corresponds to K ′ = N . In
this way Pinv(K ′) represents in a certain way the “income”
and its argument K ′ corresponds to the network nodes
ordered in increasing order by their income (with low-
est “income” for K ′ = 1 and maximum “income” for
K ′ = N). Then the cumulative income up to node K ′

is given by :

σ(P )K′ =

K′∑
K̃=1

Pinv(K̃) =

N∑
K̃=N−K′+1

P (K̃). (4)

The notation σ(P ) reminds that σ is defined with
respect to a given PageRank vector (or CheiRank vec-
tor P ∗ by replacing P → P ∗ in Eq. (4)). The quantity
σ(x) = σ(P )K′ with x = K ′/N corresponds to the stan-
dard Lorenz curve [31,32]. Therefore the Gini coefficient,
defined as the area between σ(P ) and the line of equality

normalized by the area below the line of equality [31], is
given by:

g = 1− 2

N∑
K′=1

σ(P )K′/N = 1− 2

N∑
K=1

KP (K)/N. (5)

The Gini coefficient for the CheiRank P ∗ is obtained in
a similar way by using σ(P ∗) and replacing P → P ∗ in
equation (5).

The above definition of g is done via the PageRank
and CheiRank probabilities, i.e. where “income” corre-
sponds to the PageRank or CheiRank values. We will
compare the corresponding g values also with the stan-
dard definition considering ingoing and outgoing amount
of bitcoins (volume transfer) for BCN nodes (users) during
a given quarter. The dependence of the different Gini coef-
ficients, defined via bitcoin volume transfer or PageRank
and CheiRank probabilities, on time is shown in Figure 14.

For the BCN the evolution of Gini coefficient g, defined
by equation (5), is shown in the bottom panel of Figure 14.
We find that the Gini coefficient defined via volume (top
panel of Fig. 14) is stabilized from 2010 and takes a very
high value g ≈ 0.9. Such a large value of g for bitcoin flows
corresponds to an enormously unequal wealth distribu-
tion between users [31,32]: a small group of users controls
almost all wealth.

We obtain smaller values of g ≈ 0.5 for PageRank and
CheiRank probabilities. We see that after 2010 the values
of g from PageRank and CheiRank probabilities become
comparable. This corresponds to the stabilization of the
node distribution in the PageRank - CheiRank plane (see
Fig. 11 and 12 discussed in the previous Section). After
2010 we find g ≈ 0.5 corresponding to a rather usual value
of g with an exponential wealth distribution in a society
(see e.g. [32]). Also the Lorenz curve in 2013 (see Fig. 15)
becomes similar to USA income distribution (see e.g. Fig.
8 in [32]).

However, the above values are obtained with the PageR-
ank and CheiRank probabilities which are smoothing the
row bitcoin flows due to the damping factor α in equa-
tion (2). For the row bitcoin flows for the whole available
period 2009–2013 we find g ≈ 0.92 (ingoing and outgoing
g values are rather close). Such high g values correspond
to very unbalanced wealth distribution in the bitcoin com-
munity. Indeed, the results presented in [9] demonstrated
that the account corresponding to Mt.Gox, being the most
popular Bitcoin Exchange site, is responsible for almost
90% of all exchange operations.

8 Discussion

We presented the results of Google matrix analysis of
bitcoin transaction network from the initial start in
2009 till April 2013. From the period after 2010 the
PageRank and CheiRank probability distributions are
stabilized showing an approximate algebraic decay with
the exponent β ≈ 0.9. We find that the spectrum of
complex eigenvalues of matrix G has a very unusual form
of circles being rather close to the unitary circle. Such
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Fig. 13. Left panel: Histogram of frequency appearance of correlator components κi = NP (K(i))P ∗(K∗(i)) for
the three networks BC2013Q2 (red), BC2011Q4 (green) and BC2010Q2 (blue). For the histogram the whole interval
10−9 ≤ κi ≤ 104 is divided in 260 cells of equal size in logarithmic scale. Right panel: The dependence of the correlator
κ = N

∑N
i=1 P (K(i))P ∗(K∗(i))− 1 on the network size N for all bitcoin networks between BC2009Q4 and BC2013Q2. The

three data points surrounded by a colored square box correspond to the three networks of the left panel with the same colors.

Fig. 14. Top panel: Gini coefficient g time evolution for ingo-
ing and outgoing bitcoin volume transfer for quarter of years
(halves for 2009). Bottom panel: Gini coefficient g time evolu-
tion for PageRank and CheiRank of BCN for quarter of years
(halves for 2009).

a structure has never appeared for other real networks
reported previously [15]. The only example with a similar
spectral structure appears for the Ulam networks gener-
ated by intermittency maps [33]. Such a circular structure
corresponds to certain hidden communities coupled by
a long series of transactions. A manifestation of such
communities with about hundreds of users is also visible
as a plateau structure in the eigenvectors of the Google
matrix whose eigenvalues are close to the unit circle. The
distribution of users in the PageRank-CheiRank plain is
maximal along the diagonal corresponding to the the fact
that each user tries to keep financial balance of his/her
transactions. A similar situation was also observed for
the world trade networks [16,17].

We also characterized the wealth distribution for BCN
users using the Gini coefficient g. The definition of g
via PageRank and CheiRank probabilities leads to usual
value g ≈ 0.5 for the time period after 2010 when the
BCN is well stabilized. However, the analysis of row bit-
coin flows gives g ≈ 0.92 corresponding to the situation

Fig. 15. The Lorenz curve of the bitcoin users (nodes) showing
σ(P )K′ (and σ(P ∗)K∗′) vs. K′/N (K∗′/N) for PageRank and
CheiRank of Q1 of 2010 and Q1 of 2013 (solid and dashed lines
respectively). The Lorenz curves for cumulative volume trans-
fer are also shown for the full period 2009–2013 for out-going
and in-going flow, taking into account users with a minimum
amount of 0 and 1 bitcoins (dotted and dot-dashed lines respec-
tively). The Gini coefficient values for volume transfer are
g = 0.948 (in-going larger than 0), g = 0.939 (out-going larger
than 0), g = 0.927 (in-going larger than 1), g = 0.925 (out-
going larger than 1). The blue solid line represents the curve
of perfect equality.

when almost all wealth is concentrated in hands of small
group of users. We argue that the damping factor of the
Google matrix is responsible to a significant reduction
of g value. Thus the Google matrix term with (1 − α)
leads to a more equilibrated distribution of health in a
society.

Finally we note that the public access to all bitcoin
transactions makes this system rather attractive for anal-
ysis of statistical features of financial flows. However,
there is also a hidden problem of this network. In fact
it often happens that a user performing a transaction to
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another user changes him/her bitcoin code after the trans-
action thus effectively creating a new user even if the
person behind the code remains the same. This feature
is responsible to the fact that the BCN is character-
ized by a rather low ratio of number of links to number
of nodes being about 2–3 while in other networks like
WWW and Wikipedia this ratio is about 10–20. This
low ratio value is at the origin of the strong sensitiv-
ity of eigenvalues of G to numerical computational errors
as we discussed in the paper. Thus even if the bitcoin
transactions are open to public it remains rather diffi-
cult to establish the transactions between real persons.
In this sense the situation becomes similar to the trans-
actions between bank units: in this case the data are
not public and are hard to be accessed for scientific
analysis.

We note that all data used in our statistical analysis of
BCN are available at [34].
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