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Abstract 

Imperfect and incomplete understanding of reaction kinetics compounded with uncontrollable variations not only prevent 
achieving an optimal operation of batch and semi-batch reactors, but also give rise to potential risks of violating product end-use 
properties, ecological or safety constraints. This paper proposes a sequential experiment design strategy based on reinforcement 
learning to accomplish the specific goal of modeling for optimization in batch reactors by making the most effective use of 
cumulative data and an approximate model. Reactor operating condition is incrementally improved over runs by integrating 
together estimation of a probabilistic measure of success using an imperfect model and a gradient-based approach so as to trade 
off exploitation with exploration. An improved operating policy is found by incrementally shrinking the region of interest for 
policy parameters. The solution strategy focuses on 'learning by doing' using a value function that accounts for endpoint 
performance and feasibility. Simulation results reveal the robustness of reinforcement learning to parametric and structural 
modeling errors. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

The increased emphasis on pharmaceutical and fine 
chemicals in the Chemical Process Industries is de- 
manding tools and methodologies to support all model- 
ing activities that are specifically geared to batch 
product and process development, scaling up and opti- 
mization (Bonvin, 1998; Shah, Samsatli, Sharif, Bor- 
land & Papageorgiou, 1999; Stephanopoulos, Ali, 
Linninger & Salomone, 1999). Adjusting operating con- 
ditions of  the reaction system is always critical for 
profitability. Modeling for  optimization is then becom- 
ing a key activity as the innovative nature of products 
and reduced time-to-market are limiting the number of 
runs performed at the small scale of operation which is 
typical of the engineering laboratory. As a result, the 
migration to production runs is often made with high 
levels of  uncertainty and risk. The main drawbacks that 
arise whilst scaling up operating strategies from lab 
conditions to commercial-size units are the high costs of  
not achieving minimal batch-to-batch variations in 
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product quality and process performance. Batch pro- 
cessing of specialty chemicals imposed tight constraints 
on impurities in the final product. Also, imperfect and 
incomplete understanding of  the kinetic phenomena 
involved compounded with intra- and inter-run varia- 
tions not only prevent achieving an optimal operation 
of  batch processes, but also give rise to potential risks 
of  violating product end-use properties, ecological or 
safety constraints. 

A sequential experiment design strategy for determin- 
ing the most profitable operating conditions can be 
designed to follow either a greedy or an active learning 
approach (Raju & Cooney, 1998; Martinez, 1999). In 
the first case, the sequence of runs is simply the result 
of  attempting to maximize the exploitation of  current 
knowledge (e.g. a tendency model) and data available. 
That is, pure exploitation merely chooses operating 
conditions for the next run bearing in mind solely 
policy optimization without any care on systematically 
reducing the uncertainty about the location of the true 
optimum. No attempt is made to influence the genera- 
tion of  data from the reactor in order to circumvent 
uncertainty by selecting the most informative operating 
conditions. This is, in general, shortsighted as the opti- 
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mization search might quickly becomes stuck in a sub- 
optimal solution. In this work, modeling for optimiza- 
tion in batch processes is approached using 
reinforcement learning (Sutton & Barto, 1998) to decide 
where to explore next, so that we can identify a near 
optimal operating policy with a small data set in the 
face of uncertainty. 

2. Modeling for optimization 

In 'modeling for optimization' any plausible model 
describing the kinetic behavior is merely a means to a 
clear-cut end, namely to help systematically improve 
and optimize the reactor operating condition in the face 
of uncertainty. The process model here is not an end in 
itself as it is in kinetic studies (Sedrati, Cabassud, 
Lehann & Casamatta, 1999). The main objective of 
estimating model's parameters is instead to help locate 
the optimum operating condition as precisely as possi- 
ble with minimum experimental effort. The strategy 
chosen to obtain sequentially the experimental data 
needed for this purpose will influence greatly the num- 
ber of modeling runs, the cost involved and the length 
of time required to accomplish the objective stated 
above. Ideally, operating conditions need to be progres- 
sively biased towards the most profitable operating 
conditions for the process. However, due to uncertain- 
ties present, this can only be done confidently if explo- 
ration of apparently less promising conditions is also 
systematically practiced. Therefore, the generation of 

Fig. 1. Modeling for optimization using learning. 

data from the batch process should be influenced ac- 
tively to bring the most meaningful information from 
each experimental run. 

The distinctive requirement of modeling for opti- 
mization is that the process model should allow quan- 
tify, for each operating condition, a local 
approximation to the gradient direction towards the 
optimum operating policy. To overcome the difficulties 
of uncertainty and imperfect process models the intro- 
duction of 'learning by doing' is proposed here. Model- 
ing for optimization using learning, proposes an 
entirely different approach to relate model development 
with process optimization. Traditionally, modeling is 
done first and, after a good model is available, opti- 
mization is then undertaken. However, for learning to 
be useful, modeling and optimization should be tightly 
integrated within an inner loop that also includes explo- 
ration as shown in Fig. 1. The learning block allows 
compensating for both structure and parameter model- 
ing errors by doing a posteriori analysis of the actual 
value of a given operating policy regardless of its 
optimality. 

3. Optimal operation under uncertainty 

Optimal operation of batch processes is typically 
based on a performance function J(xy) that involve the 
final state x i of each run, which in turn also needs to 
satisfy a set of endpoint constraints g(x i )> O. For a 
given operating policy u=(ut ,  u2 . . . . .  u,) r, unknown 
initial conditions and uncontrollable intra-run varia- 
tions make batch run outcome x i quite uncertain and 
very difficult to model accurately. Even at laboratory 
conditions, end-point reproducibility as low as 5% is 
common (Terwiesch, Agarwal & Rippin, 1994). Signifi- 
cant variability of each run outcome does make difficult 
to measure the actual quality of using a given combina- 
tion of policy parameters in terms of the chosen objec- 
tive function. Also, outcome variance gives rise the 
problem of assessing the probability of satisfying end- 
point constraints for each operating policy defined over 
the feasible region for policy parameters. The problem 
of learning improved operation using outcomes of suc- 
cessive runs consists of finding a operating policy that 
incrementally approximates the greedy policy u*, which 
solves: 

Optimize E[J(xf)] 
u 

xs= X(x0, u) + noise (known through experiments) 

Subject to: 

g(xy) >_ O, endpoint constraints 

u~ <_ ui <_ uy, uieu, initial ROI 

(1) 



E.C. Martinez / Computers and Chemical Engineering 24 (2000) 1187-1193 1189 

where E[ °] is the mean value operator, and J is a figure 
of merit for the final state that may involve not only the 
expected performance but also its variability. The map- 
ping Z represents a priori unknown relationship de- 
scribing the averaged effect of each operating policy 
and batch initial condition on the final state. Thus, the 
actual influence of a given u on x s progressively unfolds 
as more replications for each operating policy are car- 
ried out. Changes in x0 are mainly the result of inter- 
run variations such as catalyst activity, reactant/solvent 
recycling or raw material quality. The term 'noise' 
denotes unknown variations or disturbances acting on 
the process whilst a batch is being processed, e.g. poor 
temperature control or inadequate mixing. This noisy 
component of x s is typically due to intra-run variations 
resulting in different process behaviors affecting out- 
come reproducibility in a biased way. Thus, the 
stochastic nature of noise is often non-Gaussian and 
skewed, which makes it very difficult to use standard 
statistical techniques for plant data analysis. 

4. Reinforcement learning 

Reinforcement learning (RL) can be defined as learn- 
ing what to do, i.e. how to map perceptions and out- 
comes in a sequence to take decisions or actions so as 
to maximize an externally provided scalar reward signal 
(Sutton & Barto, 1998). Inherently related to the RL 
problem is the notion of a sequence of decisions under 
uncertainty such that for each stage: 
1. The optimality of alternative decisions is upper- 

bounded by previous decisions, and 
2. the goodness of the current decision will limit the 

optimality of the final solution. 

In 'modeling for optimization' each RL decision 
stage means choosing a set of policy parameters that 
hopefully provides the information that is needed to 
pinpoint a near-optimal policy after a certain number 
of runs have been made. The degree of optimality of 
the final policy found is the cumulative reward we are 
seeking to maximize each time the operating conditions 
for the next run are decided. To this end, a number of 
requisites need to be accomplished. First, the solution 
algorithm should be designed to need only a few runs. 
Secondly, it should be very robust to modeling errors 
(structure and parameters). Also, the planning of runs 
derived from the RL algorithm should be geared to 
make the process generate data that are most informa- 
tive for its global improvement, not only local opti- 
mization. Finally, and because of the uncertainty 
involved in Eq. (1), greedily seeking for u* is too 
cumbersome a task. Hence, the more practical goal of 
determining a promising region of interest for the reac- 
tor operating conditions will be adopted here. 

From the standpoint of modeling for optimization 
there exist two issues, feasibility and performance, that 
need to be integrated together when assessing the true 
value or utility of the solution found to the problem 
(Eq. (1)) and each intermediate decision. For feasibility, 
the value of each operating policy should measure the 
probability of satisfying endpoint constraints (Terwi- 
esch, Ravemark, Schenker & Rippin, 1998). The proba- 
bility of completing successfully a batch run is 
estimated here analytically using an approximated 
model. Statistical analysis of the uncertainty associated 
to model's parameters is used to assess the risk of 
endpoint constraint violation. Cubature integration 
techniques or other quadrature formulas aimed at effi- 
cient sampling are readily available for doing this calcu- 
lation. The maximum achievable value of Pr~[g(xs) > 0] 
will depend on the magnitude of uncontrollable distur- 
bances affecting each run outcome, i.e. xf. For perfor- 
mance, the value of each policy should account for the 
expected value of J(xs). The quality of experimental 
data generated whilst modeling for optimization should 
then be measured in terms of the increasing capability 
of the resulting model to help assess the averaged value 
of operating policies. 

The RL solution strategy proposed here shrinks sys- 
tematically the region of interest (ROI), for each policy 
parameter u,-, i = 1 . . . . .  r, over which process optimiza- 
tion is constrained to take place. Initially, ROI0 corre- 
sponds to the overall feasible region for defining a 
policy as defined in Eq. (1). By cutting away unpromis- 
ing regions within ROIo, the algorithm is aimed at 
generating a sequence of ROI1, ROI2 . . . . .  ROIiter, 
ROIiter + 1 ..... such that 

ROIiter ~ ROIiter + 1 (2) 

Eventually, a final ROI is obtained for which all 
possible operating policies are non-superior to each 
other. For this subset of policies, different values for x s 
can only be explained on the basis of the noise compo- 
nent. As a result, further improvements can result only 
from reducing the variance of noise and, measurements 
permitting, by policy improvement through on-line (in- 
tra-run) optimization that compensates for changes in 
the batch initial conditions Xo. 

5. Exploration versus exploitation 

Let's consider that each policy u has an expected 
endpoint value given that this policy has been tried 
infinitely. In a practical sense, this true value can be 
approximated by averaging the Je(xf) actually obtained 
when policy u is chosen, weighted by a model-based 
estimation of Pr~ = [g(xf)> 0]. Sampled estimations of 
values aim to approximate the true endpoint value Q(u) 
for a given policy u defined as follows 
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Q(u) = Je(Xf) X Pru[g(xf) > 01 (3) 
e = l  

The RL problem solving approach is based on incre- 
mentally improving the estimation of the endpoint 
value for each policy u previously tried so as to make a 
sound decision for choosing the operating policy for the 
next run. Because of the uncertainty involved, value 
estimation creates the need for selective exploration 
during learning. In this work, exploration refers to 
either choosing again (replicating) one of the already 
tried policies or trying an entirely new one. In the latter 
case, deciding where over ROI, exploration is deemed 
necessary demands the use of a function approximation 
technique (e.g. regression or neural network) to extrap- 
olate/interpolate the values of control policies to unseen 
operating conditions. Hence, at any time there is a least 
one policy within ROI, whose estimated value seems to 
be the greatest. We call this a greedy policy. If this 
policy is chosen for next run, it can be said that that we 
are exploiting our current knowledge of the values of 
control policies. 

Exploitation is the right thing to do assuming that 
value estimates are sufficiently good and data are abun- 
dantly available all over ROI. However, if uncertainty 
is such that there would be other operating policies 
whose true values are in fact higher that the current 
greedy policy, then exploration is called for. Since it is 
not possible both to explore and to exploit with any 
single policy selection a conflict between these orthogo- 
nal objectives arises. To obtain more reward, we must 
prefer control policies that have been already tried and 
found to be effective in terms of the endpoint objective 
and constraints. But to discover such policies, we must 
try operating conditions that have not been selected 
before. Exploitation is needed to obtain more reward 
whilst exploration is needed to find better policies to 
exploit in the future. The dilemma is that neither ex- 
ploitation nor exploration can be exclusively pursued 
whilst doing modeling for optimization without failing 
to satisfy the endpoint constraints. Having said this, the 
solution algorithm need to be designed to selectively try 
informative control policies, and progressively favors 
those that appear to be the best, upon actual experi- 
ence. Also, and because of uncertainty, each operating 
policy must be tried a minimum number of times (say 
two or three) to gain a reliable estimation of its ex- 
pected endpoint value. As model accuracy improves, 
the need for replicating a given policy diminish and 
value estimation can be made quite reliably even when 
it has been tried only once. 

The balance between exploration and exploitation is 
achieved by varying the policy selection probabilities as 
a graded function of estimated values. The policy hav- 
ing the highest value according to current knowledge is 
still given the maximum selection probability, but all 
previously tried policies are ranked according to their 
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value estimates. This is called the so f tmax  criterion 
where the probability of selecting a certain u in the next 
run is defined as 

e Q(u)/r (4) 
e Q(b)/z 

b = l  

where n is the number of alternative policies to choose 
from (including the greedy one) and z is a positive 
parameter called the temperature. High temperatures 
cause all the n policies to be nearly equiprobable. As 
the temperature is lowered, policies with higher values 
have greater chances of being selected. In the limit as 
z ~ O, the bias towards pure exploitation is total, i.e. the 
probability of selecting the greedy policy tends to 1, 
and no room for exploration is left. 

6. Sequential experiment design strategy 

Given as input a data set DSiter from previous batch 
runs, the following steps are carried out iteratively. 

6.1. Ranking 

Each policy uj, j = 1, 2 . . . . .  for data points included in 
DSiter , is given a figure of merit based on its current 
value to identify where cutting away an unpromising, 
yet feasible sub-space of the policy parameters ui i = 
1 . . . . .  r is deemed appropriate. 

6.2. Cutt&g 

Let (Umi n + Q(Umin) ) be the data point that is pre- 
dicted to be the worst within DSiter. To define a cut of 
ROIiter, all we need is an estimation of the direction of 
the steepest gradient V,Q(u) at u--Umi,- This requires 
using some function approximation technique to ex- 
trapolate/interpolate the values of policies over ROIiter. 
There might be several approaches to follow for this 
purpose, e.g. using a regression model, a neural net- 
work or a fuzzy system. Because of the scarcity of data, 
the use of a simple linear (in the parameters) regression 
model is considered enough here: 

0 = xTfl + (5) 

where X = X ( u )  is a 1 x m matrix function of the 
control variables with rank m, fl is a m-vector of 
unknown parameters and e is normally distributed 
scalar variable with zero mean and variance a 2 , is 
sufficient for our purpose. Moreover, since DSit~r often 
will consist of very few, weirdly distributed data points, 
simply fitting a quadratic is proposed here: 

Oj(uj) = c + b ruj + 1/2uTAu j (6) 
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where c, b and A, correspond to the set of fitting 
parameters to be obtained by the least-squares crite- 
rion. The local gradient at u = Umi, is then easy to 
calculate as VQ = b + hUmi n. A cut to DSiter is made 
using the half-plane perpendicular to VQ so that: 

ROIiter + 1 "~-- ROIiter ~ {ul(u --  Umin)'VQ ~ 0} (7) 

For the next cut, the data points to be considered 
are reduced to: DSit,r + 1 = DZiter - (Umin ~ Q(Umin)). 

Ranking/cutting is continued this way until either 
one of the two following conditions apply: 
1. There is not enough data present in DZiter+l  tO 

determine all fitting parameters in c, b and A. The 
immediate result of insufficient data is matrix inver- 
sion problems; 

2. the confidence interval around Q(u*), for the esti- 
mated optimum operating policy u*=  - A -  lb, ex- 
ceedsllQ(um~x)- Q(umin) corresponding to best and 
worst points in DSiter + 1, respectively. Once no more 
cuts are allowed, proceeds to the planning step 
below. 

6.3. Planning 

At this stage, the crucial decision of defining the 
policy Unext to be used in the next experiment needs 
to be made. From the point of view of exploitation, 
it seems attractive to consider the greedy decision of 
choosing as the operating policy for the next run 
Unext = U *= --A-lb.  However, this excessive bias to- 
wards exploitation is unsound unless the information 
gathered in previous runs provides enough evidence 
to support that Pru[g(xf)> 0] is high enough all over 
the reduced ROI, and the confidence interval around 
u* is sufficiently small. Otherwise, the next run oper- 
ating policy should be decided on the grounds of 
seeking for a trade off between pure exploitation 
against exploring further the reduced ROI, provided 
by the cutting stage above. From the point of view of 
exploration, we consider the question 'where over the 
reduced ROI, should one explore further in order to 
achieve the maximum reduction in the uncertainty 
about the location of the optimal policy?' To answer 
this, concepts of optimum experiment design (OED) 
theory are needed. According to the OED, the next 
run policy should be chosen so as to minimize the 
variance of value estimations for operating conditions 
over the final ROI. 

6.3.1. Example 
Consider the chemical reaction system conducted in 

an isothermal semi-batch reactor, which behaves ac- 
cording to the true mechanism: 

kl 
A+B¢~I~C;  B + B ~ D  (order 2.5) 

k2 k3 k4 

This simple problem characterizes an important 
class of industrial situations (Young, 1980; Terwiesch 
et al., 1998). At the chosen operating temperature, 
the true kinetic parameters (which are unknown) have 
the following mean values: kl = 1.1355, k2 = 5.0, k 3 = 
4.5239 and k4 = 3.5880, which correspond to perfect 
temperature control. In industrial-size units, tempera- 
ture control will never be perfect. As a result, the 
final state of each run will show unsystematic varia- 
tions. Since the side-reaction yielding the undesired 
species D will be favored at high concentrations of B, 
it is better not to add all B initially. On the other 
hand, to easy product formation via the short-lived 
intermediate /, the equilibrium reaction should be 
forced towards the right. Accordingly, the system is 
operated in a semi-batch mode where a stream of 
pure B ([B]feed=0.2 mol 1-1 is added to a 1000 1 
vessel which initially contains 0.2 mol l-1 of A and 
no B, and is filled to 50%. 

The production objective is, through proper addi- 
tion of reactant B, to convert as much as possible of 
the expensive reactant A to the desired product, C, in 
a maximum time of 120 rain. Thus, J(xf)= [C]sx Vy. 
The specifications on the final state of each batch are 
as follows. For safety reasons in downstream process- 
ing, the final concentration of unreacted B cannot be 
greater than 0.0035 mol 1-1. Also, product purity 
limits the final concentration of undesired side 
product, D, to be no more than 0.018 mol l-1; and 
process profitability demands obtaining at least 0.058 
moles of C at the end of the batch. Operating condi- 
tions are defined here as feed addition rate 0 _< F _  
12.0 [l min -l] and the duration of the semi-batch 
period 0_< t l _  tnnal = 120. Even though more elabo- 
rated operating strategies can be used only this simple 
feeding policy is considered here for the sake of clar- 
ity and space. Since the optimal solution should nec- 
essarily be within a ROI, such that Pru[g(xf)>_ 0] is 
as high as possible, there is no point in reducing the 
overall batch time to less than the available 120 min. 
As a result, only two variables, F and tl, are left for 
defining the reactor operating policy. 

For the present case study, it is assumed that for 
each modeling run the only available measurements 
are the final concentrations of species B, C and D. 
Since the short-lived intermediate I cannot be ob- 
served, a postulated mechanism that was thought to 
agree well to the data from modeling runs is: 

Using this imperfect model and standard regression 
technique, a given data set allows estimating /~ and 
k2 to account for both the kinetic behavior and varia- 
tions due imperfect temperature control. 
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Fig. 2. (a) Initial set of operating policies. (b). The reduced ROI, after 
ten new policies have been explored/exploited. 

Fig. 4. Value function for the example. 

tirely new control policy for the next run was actually 
implemented and its resulting information added to 
DSo, the temperature parameter z was decreased geo- 
metrically with the cumulative number of control poli- 
cies z explored while learning using: 

r(z) =p(1 _p)Z, z~{0, 1, 2 . . . .  } (8) 

with p = 0.25 to allow more exploration. 

7 .  F i n a l  r e m a r k s  

The precise meaning and distinctiveness of batch 
process modeling for optimization has been discussed 
along with the importance of introducing a learning 
dimension in the problem-solving strategy. The synergy 
between exploration and exploitation (optimization) 
has been then considered instrumental to deal success- 
fully with ubiquitous uncertainty and imperfect kinetic 
models whilst deciding the next-run operating condi- 
tions. A sequential experiment design strategy based on 
reinforcement learning has been presented. 

Fig. 3. Probability of success contour plots. 

6.4. Results 

The initial data set was made up of the ten policies 
shown in Fig. 2(a), each of which was tried twice. Note 
that the initial policies were judiciously chosen in a 
ROI, were the policy has some chances of satisfying the 
endpoint constraints. After ten new policies have been 
incorporated into the data set, the ROI, has been 
drastically reduced as shown in Fig. 2(b). Fig. 3 depicts 
the probability of  success estimated using the imperfect 
model and data collected. The value function obtained 
is shown in Fig. 4. These results were obtained using an 
exponential cooling procedure as follows. After an en- 
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