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A procedure for overlapping deconvolution
and the determination of its confidence
interval for arsenic and lead signals in TXRF
spectral analysis
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We studied the applicability and validity range of amathematical procedure on the basis of the principia of maximum likelihood for
the identification and quantification of arsenic and lead. This procedure has showed to be appropriate for analyzing two or more
signals that interfere with each other or for the quantification of a small signal in a very noisy environment, but a complete study
of determination of its confidence interval in samples in which one element in the overlap is present in a concentration lower than
the other elements was not studied previously. The identification implemented provides very exact values of relative concentrations
for cases that are difficult to process using other adjustment methods. The proposed procedure is applied to experimental cases,
analyzing liquid solutions through total reflection X-ray fluorescence to determine a range of concentrations for the detection of
traces of arsenic signals in the presence of large lead interfering signals and vice versa. Copyright © 2013 John Wiley & Sons, Ltd.
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Introduction

The total reflection X-ray fluorescence (TXRF) technique analysis
has produced an important advance in the quantification of very
TXRF small amounts of analytes. This is because TXRF has very
low detection limits, unlike the traditional energy dispersive
X-ray fluorescence technique. These low detection limits are
due to drastically reduced backgrounds produced by the sample,
given that the sample carrier produces a total reflection of the
incident radiation by the special geometry designed. With TXRF,
elements can be found from silicon to uranium.

The TXRF is proposed as an excellent tool for analyzing traces
of elements from different types of samples. At present, the
ability to determine metal concentrations to elucidate their
composition is of great importance for applications such as the
prospection of energetic materials,[1,2] geology and mining,[3]

studies of catalytic processes,[4,5] biochemistry or cellular toxicity
studies,[6,7] material physics,[8,9] and archeology.[10]

The portability and efficiency of TXRF as technique in the
spectral analysis of highly toxic elements are a very important
task; one of the dangerous kinds of pollution in aquatic systems
is the addition of materials containing heavy metals in aqueous
samples, in specific: arsenic and lead are typically present at trace
level,[11] but high concentrations of those elements in water used
in industry may be highly damaging. The environmental
problems are related to their high tendency to accumulate in
vital organs of humans and animals.

A typical problem in the detection and quantification of those
elements in TXRF is the overlap in the fluorescence signals (arsenic
K and lead L lines) that affect negatively the quality of the results. This
problem has enhanced the optimization of analysis and handling of
data, to improve the results and resolve this overlapping.[12,13]

The procedure presented here for identifying and quantifying
spectral signals is based on the methods of maximum likelihood,
developed on previous works for the deconvolution of trace
X-Ray Spectrom. 2013, 42, 93–99
mercury and other heavy metals,[14] but a complete study of
determination of its confidence interval in samples in which
one element in the overlap is present in a concentration lower
than the other elements was not studied previously. If one
element is in a small proportion compared with others, its correct
identification and quantification are complex.

The proposed procedure was applied to a wide number of
experimental cases to determine traces of arsenic signals in the
presence of large lead interfering signals and vice versa. We study
how this mathematical procedure produces improvements in the
detection of small signals with low sensitivity in TXRF analysis. This
criterion established also can be applied in other spectroscopic
techniques,[11,15] in which their spectra grow linearly with time.
Theory

Spectral analysis

The number of counts in a particular peak in any TXRF spectrum
is directly proportional to the acquisition time; hence, the relative
intensities are dependent only on the relative proportions of the
elements in the sample and on their relative detection sensitivities.
The intensity, Ii, of the signal produced by the element i detected
by a TXRF setup is[16]
Copyright © 2013 John Wiley & Sons, Ltd.
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Ii ¼
Z Emax

Eabs

I0 Eð ÞG w

sin ’
sij Eð ÞCif Eij

� �
e Eij

� �
dE (1)

where Eiabs is the energy of the absorption edge of element i,
Emax being the maximum energy of the excitation spectrum, Eij is
the energy of the j line of element i, I0(E) is the spectral distribution
of the exciting radiation, G is the geometry factor, sij is the

fluorescence cross-section for the j shell of element i, f Eij

� �
is the

absorption factor for the fluorescence radiation between the
sample and the detector, and e is the relative detector efficiency
for the energy Ej.
When the sample depositions can be approximated to the thin

film geometry, a simplified expression for Eqn (1) is obtained, and
it was implemented in the models of the intensity of the signal
produced.[17] In this work, we verified experimentally that all
samples satisfied conditions required in Eqn (1) to obtain a linear
relationship between the amount of mass irradiated and the
intensity of the line measured.
If the characteristic signals corresponding to each of the

elements are known, a spectrum, M, made up of n elements,
can be expressed through Eqn (1) as the product of two vectors:

M ¼ I0N Fz¼1Fz¼2; . . . ; Fz¼nð Þ
wSð Þz¼1
wSð Þz¼2
⋮

wSð Þz¼n

0BB@
1CCA (2)

The first vector contains information on the characteristic
functions, Fi, for each element with atomic number i (Z= i). The
characteristic functions, Fi, are obtained empirically from the
characteristic spectrum of the element by irradiating a pure
sample of the respective element. This function does not change
if none of the experimental parameters on the instrument are
modified; that is, given an identical geometry of excitation, we
obtain identical detectors for all the samples, gains for the ampli-
fiers, electronics of data collection, and so on. These spectra are
divided by the integral of the region of interest (ROI, the set of
channels or energies in which the element and the signal are
defined). Finally, the functions obtained are normalized by divid-
ing each count for each channel in the region by the integral of
the ROI (net area). If the influence of the background and the
fluctuations of the statistical count are small, all the characteristic
spectra, Fi, of a given element should be identical in shape for any
time of acquisition and concentration (if the statistical fluctua-
tions are neglected).
The second vector contains information of the composition of

the sample, such as the amount of sample w and the sensitivity of
the signal detection S (which includes the physical properties of
each element, the efficiency of detection for a given energy,
and the geometric configuration). In the specific case of overlap-
ping spectra of two elements under study, any obtained
spectrum, M, can be expressed according to Eqn (2)

M ¼ I0N0 wBBN SB þ wCCN SC½ � (3)

where the signal of the resulting overlap, M, is obtained as a
linear combination of the functions F1 =BN and F2 =CN, the charac-
teristic functions for elements B and C, respectively. The subscript N
indicates that both functions are normalized.
wileyonlinelibrary.com/journal/xrs Copyright © 2013 J
Strictly speaking, M, BN, and CN are a set of numbers M( j), BN( j),
and CN( j), where j is the number of the channel that goes from
the beginning to the end of the ROI of the spectrum. The joint
signal of the overlap is found in the ROI.

In this work, we implemented a method of adjustment with
a formulation of normalized functions. Therefore, we must
write the adjusted function in its normalized form. For this, we
must calculate its integral in the ROI between the limiting
energies, Ei and Ef.

Z Ef

Ei

M dE ¼I0N0 wBSB þ wCSC½ � (4)

For this region, the characteristic normalized functions of
elements B and C have a unitary area and, therefore, are simplified.

Defining the ratio of concentrations in which the two elements
are found as f=wB/wC=CB/CC, we obtain

MN ¼ fSC=BBN þ CN
1þ fSC=B

(5)

The normalized spectrum of the adjusted overlap becomes a
function made up of the two monoelemental functions of the
elements involved, multiplied by factors of concentration and
detection sensitivities.

Treatment of data from the spectrographic signal

The magnitude of the data measured, m, is often expressed as
the number of events or counts. When the problem is the recov-
ery of a small signal in a strong background, a procedure for
obtaining the best result has been developed with a formulation
based on the maximum likelihood approach.

This problem is dealt with using a given set of measured data,
m, and a function, F, both as function of a variable x. The function
F represents the response presence of an element or a given
physical phenomenon that can be found within the measured
data, affected by an intensity, a.

The function, F(x), which must be known to be quantified, is
expressed as a discrete value, F(xi). In a sequence of data, m(xi),
we must determine the most likely value of a which affects
F(xi) (See Figure 1). The treatment developed herein establishes
an interval of confidence, Δa, for the parameter of the intensity, a.

The random function (stochastic) G(xi) is defined. The associated
probability distribution function (pdf) is a normalized Gaussian
function centered on the value aF(xi), and the variance of this
function is given by s2j (the uncertainty or standard deviation of
the count of channel j) (See Figure 2).

Each of the G(xi) is described by the Gauss function as

G aF xið Þ;s2i ;mið Þ ¼
1ffiffiffiffiffiffi
2p

p
si
e
� mi�aF xið Þð Þ2

2s2
i (6)

Once the measurement has been carried out, we have a set of
points {(xi, mi)} (i=1, . . ., n), the probability of obtaining the set of
results {mi}, supposing that the pdf of the random variables, G(xi),
is the product of the probabilities of each variable G(xi) adopting
the value mi.
ohn Wiley & Sons, Ltd. X-Ray Spectrom. 2013, 42, 93–99
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Figure 1. A discrete experimental data set, depending either on energy or channel number, is shown made of points (xi,mi) or (Ei,mi). In this set of data
m, a function F(xi) must be found, affected by a parameter a. Each pointmi is described by a random Gaussian function with centroid in the value aF(xi). A
particular Gaussian function, G(i=5.75), is represented inside of the main graphic.
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Figure 2. Maximization of the parameter aN as a function of the factors
K1 and K2, with the condition K1 + K2 = 1.
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That is, it is the product of the G(xi), which we can call L:

L m1;;m2 ;...;;mn;að Þ ¼ G aF x1ð Þ;s21;m1ð Þ � G aF x2ð Þ;s22;m2ð Þ⋯�⋯

� G aF xnð Þ;s2n;mnð Þ (7)

Given that the function ln(x) increases monotonously in x,
maximizing L is equivalent to maximizing ln(L):

ln Lð Þ ¼ �
Xn

i¼1

mi � aF xið Þ½ �2
s2i

þ
Xn

i¼1
ln

1ffiffiffiffiffiffi
2p

p
si

� �
(8)

Finding the derivative with respect to a of this expression and
equalling it to zero, we obtain the most likely value of for the set
X-Ray Spectrom. 2013, 42, 93–99 Copyright © 2013 John W
of data {mi}.
[14,18,19] A normalized version of a can be considered

as a criteria of comparison of similarity of the measured spec-
trum, mN, with the characteristic normalized function sought,
FN. In this case, the two data series should take a value for the
aN close to 1.

aN ¼

Xn

i¼1

mNð Þi � FNð Þi
sNð Þ2iXn

i¼1

FNð Þ2i
sNð Þ2i

(9)

Application of the spectral analysis procedure for the quan-
tification of relative concentrations of lead–arsenic signals

To apply the procedure described earlier, we need to construct a
characteristic function F(Ei) that represents the overlap of the
monoelemental spectra of lead and arsenic multiplied by the
factors that give the information of their detection sensitivities
and relative concentrations. For this, we use Eqn (5), obtaining
a theoretical discrete and normalized function, FN(Ei) representing
the overlap of the lines K and L of lead and arsenic:

FN Eið Þ ¼ fSAs=Pb AsNð Þi þ PbNð Þi
1þ fSAs=Pb

(10)

By evaluating the parameter aN on the measured spectrum, the
value obtained for these two data series is close to 1 only if the
data measured correspond to a spectrum with the adjusted
signals of Pb and As in their respective concentrations.

The statistical scatter of the measured and normalized data
corresponding to each cannel i, (sN)i, is calculated using the
standard uncertainty equation:[20]
iley & Sons, Ltd. wileyonlinelibrary.com/journal/xrs
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Figure 3. Theoretical spectrum of the superposition of the signals of
arsenic and lead.
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sNð Þi ¼
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k

@ mNð Þi
@xk

� �2

Δx2k

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

miXn
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mi

� �2 þ
mi

2Xn

i¼1
mi

� �3

vuut (11)

Now, it is necessary to find a normalized function that maximizes
the parameter of comparison, a, equalling it to 1. For this, we take
Eqn (10) and write it in function of two unknown coefficients that
carry the information of the sensitivity and relative concentration
of the elements:

FN Eið Þ ¼ fSAs=Pb AsNð Þi þ PbNð Þi
1þ fSAs=Pb

¼ K1 AsNð Þi þ K2 PbNð Þi (12)

These K1 and K2 values are constrained by a normalizing condi-
tion given that FN, AsN, and PbN are normalized functions:

K1 þ K2 ¼ 1 (13)

Thus, we can find the equation for aN in function of a single
parameter, K1:

aN K1ð Þ ¼

Xn

i¼1

K1 mNð Þi � AsNð Þi þ 1� K1ð Þ mNð Þi � PbNð Þi
� �

sNð Þ2iXn

i¼1

K1 AsNð Þi þ 1� K1ð Þ PbNð Þi
� �2

sNð Þ2i
(14)

As can be seen in the aforementioned equation, we obtain a
function of variable K1 whose maximum should tend towards a
value of 1 (see Figure 2). This provides the value of the coordinates
(K1, K2) that maximize the aN. This pair of values is used to find the
relative concentration of the elements.
The information on the relative concentrations of these

coefficients is obtained by replacing the coefficients in the char-
acteristic function, Eqn (12). From this, we obtain the proportion

K1
K2

¼ fSAs=Pb (15)

Thus, if the relative sensitivity of the detection of the elements
is known for the ROI in which the spectrum is being analyzed, the
relative concentration in which the elements are found, f, can
easily be determined with Eqn (15).

Identifying the presence of monoelemental signals in spectra
with overlapping emission lines

The monoelemental spectra of lead and arsenic are largely
similar, their respective emission lines La1,2 and Ka1,2 overlap, in
the region near 10.5 keV (see Figure 3).
The challenge for the proposed methodology is to recog-

nize the presence of one signal over another given extreme
relative concentrations, that is, when there is a large concen-
tration of arsenic over lead and vice versa. For this, we need
information from three different comparisons, along with their
respective errors, to discriminate the presence of a signal in
the measured spectrum.
wileyonlinelibrary.com/journal/xrs Copyright © 2013 J
We calculate the normalized alpha parameter, aN, for the
measured spectrum, adjusting first for only one monoelemental
function and later for two monoelemental functions.

It should be remembered that the normalized alpha parameter
tends to be 1 when the adjusted function corresponds to the
elements of the measured spectrum. If the said function, FN, does
not correspond, the alpha value should drop between (0, 1).

That is,

aN ¼

Xn

i¼1

mNð Þi � K1 AsNð Þi þ K2 PbNð Þi
� �

sNð Þ2iXn

i¼1

K1 AsNð Þi þ K2 PbNð Þi
� �2

sNð Þ2i

e1 (16)

aPbN ¼

Xn

i¼1

mNð Þi � PbNð Þi
sNð Þ2iXn

i¼1

PbNð Þi2
sNð Þ2i

< 1 (17)

aAsN ¼

Xn

i¼1

mNð Þi � AsNð Þi
sNð Þ2iXn

i¼1

AsNð Þi2
sNð Þ2i

< 1 (18)
Experimental

We used a spectrometer S2 PICOFOX (Bruker) for all the TXRF
analysis made for the proposed procedure. The system is
enclosed in a biological X-ray shield adequately designed.

The system includes

1. An air-cooled metal–ceramic X-ray tube with a molybdenum
target that operates at a maximum of 50W of power, at 50 kV,
and 1.5mA.

2. A multilayer monochromator.
3. A high-resolution, Peltier-cooled XFlash silicon drift detector

(SDD) that does not need a liquid nitrogen cooling system,
ohn Wiley & Sons, Ltd. X-Ray Spectrom. 2013, 42, 93–99
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with a 10-mm2 active area and energy resolution of <160 eV
to 100 Kcps (Mn K line, 5.9 keV).

The spectrometer S2 PICOFOX TXRF is a versatile instrument,
able to analyze traces of elements in different types of samples.
It is completely independent of any means of cooling and,
therefore, suitable for in situ analysis. Other advantages of the
S2 PICOFOX are its simple calibration routine and capacity for
multielemental analysis.
Preparation of artificial samples

The samples were prepared using a solvent that can be dried by
evaporation (herein, double distilled and deionized water) as a
matrix. A micropipette was used to deposit 5 ml of solution from
each sample on a quartz reflector (30mm diameter); this was
dried with an infrared lamp.

A set of different samples (see Table 1) was prepared. None of
the compounds presented special risks for handling. Commercial
reagents (monoelemental certificate Merck) were used; these
reagents were certified volumetric standards, containing a certified
concentration of 1000mg/l (1000ppm). Solutions were prepared
with mixtures of concentrations from 1 to 40ppm. The solutions
containing the monoelemental samples of lead and arsenic were
prepared with concentrations of 40 ppm. Irradiation and data
collection times were preset at 1000 s for each sample, and one
measurement was carried out for each sample.
Data analysis

All the data were acquired in the spectrometer PICOFOX. For all the
quantitative data, the instrument was operated using its normal
energy levels with data acquisition times of 1000 s. The TXRF instru-
ment used in this study was calibrated in the routine manner.

We consider that the uncertainty of the concentrations of the
artificial samples was produced because of the instrumental
error of preparation. The interpretation of the spectra and the
Table 1. Values of aN parameter for the set of samples classified by the re

’=CPb/CAs aN�ΔaN

45.590 0.9927 0.0015 0.1

16.850 0.98957 0.00043 0.2

10.001 0.9938 0.0012 0.3

5.259 0.9933 0.0013 0.4

3.615 0.9922 0.0014 0.5

3.277 0.9850 0.0017 0.5

2.297 0.9904 0.0016 0.5

1.962 0.9890 0.0019 0.5

1.375 0.9924 0.0013 0.6

1.276 0.9768 0.0031 0.6

0.861 0.9918 0.0012 0.7

0.831 0.9893 0.0015 0.7

0.804 0.99406 0.00071 0.7

0.668 0.9741 0.0016 0.7

0.368 0.9840 0.0016 0.8

0.307 0.9898 0.0018 0.8

0.300 0.9669 0.0037 0.8

0.034 0.9753 0.0014 0.9

X-Ray Spectrom. 2013, 42, 93–99 Copyright © 2013 John W
elemental evaluation were first carried out using the X-ray analysis
software, SPECTRA 5.3 (Bruker), provided with the equipment
(S2 PICOFOX 6.0).

The SPECTRA software has a database with spectra showing
the characteristic and relative sensitivities of all the elements.
Thus, the relative concentrations at which the elements are found
can be quantified. The software allows users to obtain a reference
value that does not necessarily have to coincide with the theoret-
ical preparation value given in Table 1.

If the background obtained with this technique (using portable
samples of silicon and a water matrix) is very small, the method-
ology consists of adjusting a measured spectrum that can be con-
sidered to be a greater background. This is then removed directly
from the measured data, and only the spectrum containing infor-
mation on the elements (and not on any other source) is used. To
model and then remove the background require first adjusting it;
references with methods regarding the modeling of the back-
ground can be found in references and in software packages
such as AXIL and WINQXAS.[21,22]

Once the background is eliminated from the counts of the
measured spectrum, an ROI is chosen that consists of the chan-
nels of energy in which information on the two elements under
analysis is found. For the cases of lead and arsenic, the channels
made up between the energies 8.4824 and 16.0215 keV were
taken to be the ROI.

The spectra are normalized, and then, we calculated the value
of the coefficients, K1 and K2, that maximize the parameter, aN.
Results

The problem consists of determining the limits of f, in which the
new method is capable of identifying the presence or absence of
the signal of an element. For this, we need to compare the three
adjustments of Eqns (16)–(18).

Figure 4 shows the value of aN for all the samples, ordered
according to their relative concentrations, f, obtained with Eqn
lative concentration of lead on arsenic

aN
As�ΔaN

As aN
Pb�ΔaN

Pb

6652 0.00062 0.9906 0.0015

7695 0.00023 0.98166 0.00043

3788 0.00069 0.9769 0.0012

4604 0.00084 0.9557 0.0012

0150 0.00096 0.9303 0.0013

106 0.0012 0.9147 0.0017

749 0.0013 0.8831 0.0016

985 0.0014 0.8599 0.0017

574 0.0010 0.8013 0.0011

611 0.0025 0.7755 0.0027

2934 0.00099 0.69425 0.00096

324 0.0013 0.6832 0.0013

4102 0.00061 0.67815 0.00059

528 0.0014 0.6165 0.0013

347 0.0014 0.4569 0.0011

595 0.0017 0.4124 0.0011

425 0.0034 0.3979 0.0024

564 0.0014 0.06952 0.00038

iley & Sons, Ltd. wileyonlinelibrary.com/journal/xrs
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Figure 4. Values of parameter aN with complete and incomplete adjust-
ments (only one element), plotted for a range of different relative concen-
trations, f. The data are shown in Table 1.
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(15). Moreover, it shows the calculation of the alpha parameter
with incomplete adjustments, considering only lead, aN

Pb, and
only arsenic, aN

As.
The adjustment with only arsenic approaches the value of aN

when the lead in the sample decreases, and the adjustment with
only lead approaches the value of aN when the concentration of
lead is much greater than that of arsenic. The values obtained are
shown in Table 1.
With the values in Table 2, we used the criterion of Eqns (16)–(18),

and we compared the values of the complete and incomplete
adjustments when thesewere close, taking the difference consider-
ing the uncertainties obtained.
The aforementioned table shows the limits of the relative

concentrations that the new method can identify for the signals
of lead and arsenic in a sample. It was not possible to determine
the presence of arsenic over lead at a ratio CPb =45.5*CAs Thus,
Table 2. Differences between the value of parameter aN with full
adjustment and with an adjustment of a single element

’=CPb/CAs (aN�ΔaN)� (aN
As +ΔaN

As) (aN�ΔaN)� (aN
Pb +ΔaN

Pb)

45.590 0.82399 �0.0009

16.850 0.71196 0.0071

10.001 0.65402 0.0145

5.259 0.54519 0.0352

3.615 0.48836 0.0592

3.277 0.47147 0.0669

2.297 0.41265 0.1041

1.962 0.38721 0.1256

1.375 0.33271 0.1887

1.276 0.31009 0.1955

0.861 0.26034 0.2955

0.831 0.25398 0.3032

0.804 0.25172 0.3146

0.668 0.21839 0.3548

0.368 0.14635 0.5245

0.307 0.12693 0.5745

0.300 0.11736 0.5630

0.034 0.01598 0.9040

wileyonlinelibrary.com/journal/xrs Copyright © 20
13 J
the adjustment with the two elements could not be differenti-
ated from an adjustment with only the lead function. On the
other hand, the procedure identified the presence of a lead signal
in a sample in which the ratio of concentration was CPb = 0.03*CAs
and could even be lower.
Conclusions

We studied the applicability and validity range of a mathematical
procedure for the identification and quantification of arsenic and
lead. This procedure has showed to be appropriate for analyzing
two or more signals that interfere with each other or for the
quantification of a very small signal in a very noisy environment,
but a complete study of determination of its confidence interval
in samples in which one element in the overlap is present in a
concentration much lower than the other elements was not
studied previously.

The procedure proposed an identification criterion that was
successful for most of the samples, being able to identify the
presence of one signal over the other for very small ratios, with
very critical concentrations.

Because of the similarity of the monoelemental spectra of lead
and arsenic and the total overlap of their emission lines, La1,2 and
Ka1, in the region near 10.5 keV, the selection of this test for the
method was very appropriate. The procedure was successfully
applied for the deconvolution and subsequently quantification
of the two elements.

The method proposed can also be applied easily to other over-
laps, even with any technique of dispersive energy spectroscopy
because it only requires information on the characteristic mono-
elemental functions or the background that is present in the ROI.
If quantification is desired, it is necessary to know the relative
sensitivity of the equipment for the two elements in question,
and if the concentrations are very low, the method is optimized
with a high counting statistics, so it takes a longer time of
measurement.
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