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Abstract

Process performance models for a multiproduct batch protein plant are used to exploit alternative strategies in the optimization
of both the process variables and the structure of the plant. Simple process performance models are used to describe the unit
operations, which renders explicit expressions for the size and time factor model in the design of batch plants. In the proposed
approach the process variables are optimized regardless the plant structure constraints, which are left as a posterior decision. This
optimization is done in a single product-free intermediate storage (SP-FIS) scenario, unbiased with any plant structure. The
approach is compared to the case of recipe values for the process variables and to the best optimal solution for the nonconvex
mixed integer nonlinear program (MINLP), which arises when simultaneously optimizing the structure and the process variables.
This last optimization model is hard to solve and its global solution remains as an open problem. The proposed approach
generates solutions very close to the ones obtained from nonconvex MINLP and is quite superior than simply resorting to recipes.
We also study the role of process variables in this approach. It is found that they behave as in continuous processes by trading
off cost components, with a smooth dependence on the overall cost. Moreover, for feasible designs that include the size and time
constraints that correspond to the plant structure, the process variables accommodate the size and time factors to reduce idle times
and equipment under-occupancy. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The constant time and size factor model (Biegler,
Grossmann & Westerberg, 1997; Ravemark & Rippin,
1998) is the most widespread to design multiproduct
batch processes. These models are used to optimize the
plant design by proper selection of the batch sizes of
each product, the operating times of semi-continuous
units and the structure of the plant (number of units in
parallel at each stage and provision of intermediate
storage).

In an alternative approach, process performance
models (Salomone & Iribarren, 1992) are used to de-
scribe time and size factors as functions of those pro-
cess variables selected as optimization variables. These
process performance models are obtained from the
mass balances and kinetic expressions that describe
each unit operation. They are kept as simple as possi-
ble, yet retaining the influence of the process variables
selected to optimize the plant. Salomone and Iribarren
(1992) developed the single product case and later
Montagna, Iribarren and Galiano (1994) extended this
to multiproduct plants. These contributions had in
common that the plant structure was given for the
problem of optimizing the process variables.

The same mathematical model for plant design is
used in both approaches, with the process performance
models as additional constraints in the second case.
Therefore, the optimization of process variables de-
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pends on the optimization of the structure. To our
knowledge, the simultaneous optimization of both the
process variables and the structure has not been ap-
proached before in the literature.

Barrera and Evans (1989) proposed a multi-level
approach where the plant structure is at an upper level,
the sizing of units at an intermediate level and the
optimization of process variables at a lower level. The
authors restricted their case study to the two lower
levels, that presented feasibility problems because the
optimization at the level of the process variables vio-
lated either size constraints imposed at the intermediate
level or production targets imposed at the upper level.
The particular batch reactor–batch distillation example
studied by Barrera and Evans received much attention
in the literature, but in this case structural optimization
is quite simple, since it refers to the separation network
synthesis or the recycle of intermediate cuts, and not to
parallel unit processing or provision of intermediate
storage.

Recently, Allgor, Evans and Barton (1999) described
the multi-level approach as a sequence of ad hoc itera-
tions between the structural and process variable opti-
mization subproblems. These authors propose screening
models based on the bounds of process variables to
optimize the structure of the plant, for the particular
batch reactor–batch distillation process.

In the present paper, we exploit alternative strategies
for the simultaneous optimization of the process vari-
ables and the structure of a protein plant. In a simpler
approach we propose assigning values for the process
variables, which sets the size and time factors that can
be used to optimize the batch plant structure with the
traditional fixed factor model. Then, we propose to first
optimize the process variables disregarding the plant
structure. We do this by considering single product-free
intermediate storage (SP-FIS) scenarios. In such scenar-
ios, we show that process variables behave as in contin-
uous processes trading off cost components with a
smooth dependence of the total cost on the process
variables. This is done for each of the process perfor-
mance variables of a plant that processes four proteins.
We analyze these results in the context of previous

work, mainly the preliminary process design step de-
vised for continuous processes by Douglas (1988), and
the pioneering work by Barrera and Evans (1989), who
first addressed the issue of process variables trade off in
batch processes.

In the first part of this paper, we briefly describe the
process for producing human insulin, vaccine for hep-
atitis B, chymosin and a cryophilic protease by geneti-
cally engineered Saccharomices cere6isiae. Then we
describe the fixed factor design model that describes
this plant, and exemplify how the process performance
model was constructed with the fermentor as a typical
batch stage and the homogenizer as a typical batch —
semi-continuous composite stage.

Following, we present the different approaches for
using the process performance models to optimize the
plant. Thereafter, we use the process performance mod-
els in the SP-FIS scenario to study the role of process
variables in the optimization, and analyze the tradeoffs
where they are involved. Finally, merits and shortcom-
ings of the approaches are discussed.

2. Process description

Fig. 1 shows the flowsheet of a multiproduct batch
plant for the production of human insulin, vaccine for
hepatitis B, chymosin and cryophilic protease, pro-
duced by genetically engineered S. cere6isiae. A more
detailed description of the process can be found in
Montagna, Vecchietti, Iribarren, Pinto and Asenjo
(2000).

Insulin and vaccine are well-established commercial
products. The plant shown in Fig. 1 would produce the
technical grade products with further purification steps
rendering the clinical grade. On the other hand, chy-
mosin and the protease are newer products that could
be made in the plant shown in Fig. 1. While there is
sufficient information about chymosin, cryophilic
protease is still in its development stage and most of the
process information has been estimated.

All four proteins are produced as the cells grow in
the fermentor. Vaccine and protease are intracellular,

Fig. 1. Flowsheet of the batch plant for the production of proteins.
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hence microfilter 1 is used to concentrate the cell sus-
pension, which is afterwards sent to the homogenizer
for cell wall disruption and release of the proteins.
Microfilter 2 is used to remove the cell debris from the
solution of proteins.

The ultrafiltration step prior to the extractor is used
for concentrating the solutions in order to minimize the
extractor volume. In the liquid–liquid extraction, salt
(NaCl) concentration is manipulated to first drive the
product to a polyethylene glycol phase (PEG) and back
again into an aqueous phosphate solution. In this pro-
cess, most of the proteins other than the product are
removed.

Ultrafiltration is used again for concentrating the
solution, and finally the last stage is chromatography
where selective binding is used to further separate the
product of interest from the remaining proteins.

Insulin and chymosin are extracellular products.
These remain in the permeate that crosses the filtration
membrane of the first microfilter. In order to reduce the
amount of valuable product lost in the retentate, extra
water is added to the cell suspension. The filtration
operation with make up water is also called diafiltration
and dilutes the solution of proteins.

The homogenizer and microfilter for cell debris re-
moval are skipped by the extracellular products, but the
ultrafilter is necessary to concentrate the dilute solution
prior to extraction. The final steps of extraction, ultrafi-
ltration and chromatography are common to all
products.

This example represents a more realistic one than the
one in Montagna et al. (1994), who solved a problem
with three stages and two products. Larger processes
have been solved in the literature resorting to simula-
tion packages as in Mignon and Hernia (1996) for
single product plants and fixed plant structures.

3. Fixed factor model for the plant

The general batch process literature (Ravemark,
1995; Biegler et al., 1997; Ravemark & Rippin, 1998)
describes batch plants through size and time equations.
For batch stages these expressions are as follows:

Vj]SijBi (1)

Tij=Tij
0 +Tij

1Bi (2)

In Eq. (1), Vj is the size of each unit at stage j (m3),
Bi is the batch size for product i (kg of product exiting
the last stage) and Sij is the size factor of stage j (m3

required at stage j to produce 1 kg of final product i ).
In Eq. (2), Tij (h) is the time required at stage j to
process a batch of product i and is composed of Tij

0 that
is a time factor that accounts for fixed time and Tij

1,
which accounts for time demands that are proportional

to the batch size to be processed. For semi-continuous
units the following expression holds:

Rj]Dij

Bi

uij

(3)

where Rj is the size of the semi-continuous item j,
usually a processing rate, as in the case of the homoge-
nizer capacity (m3/h). In the case of the filtration steps,
Rj denotes the filtration area A (m2). In any case, the
sizes are proportional to the batch size Bi (kg) and
inversely proportional to the operating time uij (h),
through a so-called duty factor Dij.

In the case of composite stages with a semi-continu-
ous item that processes the material held in a batch
item (as in the case of the homogenizer), we take the
model proposed by Salomone, Montagna and Iribarren
(1994). The stage is described with Eq. (1) for the batch
item size, while the batch processing time Tij includes a
fixed downtime Tij

0 plus the operating time uij of the
semi-continuous item, that can be obtained from Eq.
(3), which holds as an equality for predicting uij once
the size of the semi-continuous item Rj has been
adopted, as follows:

Tij=Tij
0 +Dij

Bi

Rj

(4)

Moreover, the following assumptions hold for the
optimization model for the design of multiproduct
batch plants:
� The plant consists of a sequence of M batch process-

ing stages, which are used to manufacture P different
products.

� At each batch stage j there are Mj groups of units in
parallel operating out of phase, with each group
consisting of Nj units operating in phase.

� Each product i follows the same general processing
sequence, admitting only that some stages be
skipped. This last case is handled by setting zero
values for the size and time factors of the skipped
stages. This is an approximation because in the strict
sense, this might lead to an overestimation of the
schedule (Voudouris & Grossmann, 1996).

� When an intermediate storage tank is not allocated,
batches are transferred from one stage to the next
without delay, so zero wait policy is considered.

� Intermediate storage tanks of size VTj may be allo-
cated between batch stages j and j+1.

� Production requirements Qi for each product i in the
time horizon H are given.
Some comments about the structure follow. Units are

put to work out of phase to overcome time constraints,
while operate in phase to overcome size constraints that
are given as upper bounds.

The Mj groups of Nj units include the simpler cases
of units working out of phase (Nj=1) or in phase
(Mj=1). In any case the total number of units at stage
j is Mj times Nj with each unit of size Vj.
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The structure of the MjNj units in parallel in and out
of phase is supposed to be the same for all products.
Ravemark and Rippin (1998) proposed a more rational
approach, which allows a different number of units at
each stage as a function of the product. However this
approach would require a significant increase in the
number of binary variables and therefore was not im-
plemented in the present work.

We also assume that once a storage tank is allocated
to position j, it is used by all products in this same
location. A more rational approach has been proposed
by Vecchietti and Montagna (1998) in which tanks may
be used at a different location by each product, but this
option also increases significantly the combinatorial
aspect of the problem and was not adopted here either.

With the assumptions above, the design problem for
the multiproduct batch plant is posed with the objective
of minimizing overall capital cost, given by:

Min C= %
M

j=1

MjNjajVj
aj+ %

M

j=1

MjNjbjRj
bj+ %

M−1

j=1

cjVTj
gj

(5)

In Eq. (5) parameters aj, aj, bj, bj, cj and gj denote
appropriate cost coefficients for each item in the plant.
The first term on the right hand side corresponds to the
batch items, the second to the associate semi-continu-
ous items and the last to the intermediate storage tanks.
The summation in the second term holds only for the
composite batch stages that contain semi-continuous
units (microfilters, homogenizer and ultrafilters).

Batch units must be selected in order to contain the
size requirements for all products, which yields:

Vj]
SijBi

Nj

Öi, Öj (6)

The operation of the plant is bottlenecked by a cycle
time TLi for each product, which corresponds to the
limiting time, i.e. the time between two consecutive
batches of this product. Then:

TLi]
Tij

Mj

Öi, Öj (7)

Over the time horizon H, it is required that the plant
processes the given amounts Qi of each of the P prod-
ucts. Then:

%
P

i=1

QiTLi

Bi

5H (8)

The allocation of a storage tank decouples the pro-
cess into two subprocesses upstream and downstream
of the tank, so independent batch sizes and limiting
cycle times for each subprocess are introduced. There-
fore, the (so far) unique Bi is transformed into batch
sizes Bij defined for product i at stage j. Moreover,
binary variables yj are introduced, whose value is 1 if
an intermediate storage tank is allocated at position j
(between stages j and j+1) and 0 otherwise.

The size of the intermediate storage tank VTj is
obtained using the following expression from Modi and
Karimi (1989):

VTj]STij(Bij+Bi, j+1)−Fij(1−yj)

Öi, Öj=1,…, M−1 (9)

where Fij is a sufficiently large constant (Big-M con-
straint), such that the tank volume is relaxed when it is
not selected (yj=0).

Extra constraints are used to model the relationship
between the batch size values of consecutive stages
(Ravemark, 1995):

1+
�1

F
−1

�
yj5

Bij

Bi, j+1

51+ (F−1) yj

Öi, Öj=1,…, M−1 (10)

where F is an upper bound for the ratio of batch sizes
in consecutive stages. In the case that no tank is
allocated, constraint (10) enforces consecutive batch
sizes to be the same.

In addition, constraints are written to enforce the
same productivity for each product at every stage, to
avoid accumulation of material in the tanks:

Pri=
Bij

TLis

j�s, Öi, Ös (11)

In Eq. (11), Pri is the production rate of product i
and TLis is the limiting cycle time for product i in
subprocess s, between two consecutive storage tanks.

Furthermore, there is a set of constraints correspond-
ing to the upper and lower bounds for all variables
involved.

Some comments about the implementation and reso-
lution of this fixed factor model follow:
� Eq. (11) replaces TLi in constraints (7) and (8) in

order to simplify the model (Modi & Karimi, 1989).
� The integer variables Mj and Nj are expressed in

terms of binary variables, introducing additional in-
teger constraints (Biegler et al., 1997; Ravemark &
Rippin, 1998).

� The fixed factor model is a geometric program that
can be convexified. Grossmann and Sargent (1979)
proved that this model has a unique local optimal
solution.

� The resulting MINLP was solved with DICOPT++

included in the GAMS optimization modeling soft-
ware (Brooke, Kendrick & Meeraus, 1992).

4. Process performance models

If the size and time factors in the model presented in
the previous section are expressed as constant values, it
is necessary to estimate values for every process vari-
able in order to cover the degrees of freedom of the
process mass balances, as done for the protein plant in
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Montagna et al. (2000). In the approach of the present
paper we use as simple as possible process performance
models that still retain the influence of the process
variables that we a priori expect to have the largest
impact on the economics of the process.

Once these variables have been selected, we write the
mass balances and kinetic equations that describe each
stage by guessing or estimating values for every non-se-
lected process variable, except for the chosen optimiza-
tion variables. As a result, we obtain analytical
expressions for the size and time factors that will be
functions of these process variables.

Note that even if the process is new, it usually
consists of unit operations that are well known to the
designer. At each of them, the extent of separation or
of advance of the operation can be described as a
function of parameters of both the unit and the mate-
rial processed, as well as the process variables. The
methodology that we are suggesting for selecting suit-
able unit operations, their interconnections, and a list
of dominant design variables (these steps must be per-
formed prior to pose the optimization problem that we
address here), is the hierarchical approach described in
detail in Douglas (1988).

The process variables that have been selected as
optimization variables are as follows: the biomass con-
centration at the fermentor (Xfer) and microfilter 1
(Xmf1) for all products, the volumetric ratio of diafiltra-
tion water to suspension feed in microfilter 1 (Wmf1) for
extracellular insulin and chymosin and at microfilter 2
(Wmf2) for intracellular vaccine and protease after cell
disruption, the number of passes through the homoge-
nizer (Np) for intracellular vaccine and protease, and
the volumetric ratio (R) of PEG to phosphate phases in
the extractor for all products.

Following is a brief description of the process perfor-
mance models for the Fermentor as a typical batch
stage, and for the homogenizer as a typical composite
batch-semi-continuous stage. Most of the information
needed to develop them was taken from Asenjo (1990)
and Belter, Cussler and Hu (1988). A more detailed
description as well as the process performance models
of the protein plant can be found in Pinto, Montagna,
Vecchietti, Iribarren and Asenjo (2000).

4.1. Fermentor

A kinetic mechanism constrained by a maximum
biomass concentration is assumed for cell growth (logis-
tic equation):

dXi, fer

dt
=fXi fer

�
1−

Xi, fer

Xmax

�
Öi (12)

We estimate the same kinetic constant f=0.263 h−1

and maximum biomass concentration Xmax=55 kg/m3

for all products (Atkinson & Mavituna, 1983; Mon-

tagna et al., 2000). The batch size produced in the
Fermentor is related to the fermentation broth volume
Vi, fer through the biomass concentration as follows:

Bi, fer=Vi, ferXfi, ferki Öi (13)

where ki is a stoichiometric ratio (kg of product i/kg of
biomass) whose value is 0.08 for protease, 0.06 for
chymosin, 0.02 for insulin, and 0.04 for vaccine (Mon-
tagna et al., 2000). Then, it must be taken into account
that the batch size at any stage j is related to the batch
size exiting the plant through the yields of all stages
between this particular stage and last stage of the plant,
as follows:

Bi=Bij 5
M

k= j+1

hik Öi, Öj (14)

In Eq. (14), hik denotes the yields of product i at
stage k (the ratio of batch size that leaves the stage to
the batch size that enters the same stage), M is the total
number of stages in the plant, and Bij is the batch size
of product i that leaves stage j.

Integrating Eq. (12) between an initial biomass con-
centration 0.05 Xmax (inoculum seeded amounts to 5%
of the Fermentor capacity) and Xi, fer and adding an
estimated downtime of 4 h (1 h for discharging, 2 for
sterilizing and 1 for charging), gives the time expres-
sions for the Fermentor as in Eq. (15):

Ti, fer (h)=4+3.8 ln
<0.35Xi, fer

1−
Xi, fer

55

=
Öi (15)

Eq. (15) is the same for all products. Note that if
Xi, fer were set to any value, then the expression would
result in a constant time factor; note that by comparing
the batch time expression (15) to the general Eq. (2) it
can be observed that it has a non-zero value for Tij

0 but
Tij

1 =0 (there is no time demand proportional to the
batch size). This is typical of operations governed by
kinetics (bioreactors, cristallizers).

Recalling that the size factor for the Fermentor is the
Vi, fer of fermentation broth divided by the Bi (kg of
product i exiting the plant), we can get the size factor
expression for the Fermentor from Eqs. (13) and (14).
For example, in the cases of insulin and chymosin,
these are:

Si, fer (m3/kg)=
1.25

kiXi, ferhi, mf1hi, exthi, chr

i={I, C}

(16)

where the factor 1.25 accounts for the fact that the
fermentation broth occupies 80% of the fermentor ves-
sel, and that the denominator contains the yield values
different from one for extracellular products. Consider-
ing that the yields of the stages also depend on the
process variables, we have that if these were set at some
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value, then the size factor would assume constant
values.

4.2. Homogenizer

The vaccine and protease batches pass through the
homogenizer for cell disruption. The holding vessel
capacity corresponds to the final volume in the reten-
tate vessel of microfilter 1. This yields the following size
factor expressions:

Si, hom (m3/kg)=
1.25

kiXi, mf1hi, homhi, mf2hi, exthi, chr

i={P, V} (17)

The denominator of (17) contains the yields other
than one, for the intracellular products. The time re-
quired to homogenize is proportional to the volume fed
to the homogenizer Vi, hom (m3) and inversely propor-
tional to the homogenizer capacity cap (m3/h) plus a
downtime:

Ti, hom=Ti, hom
0 =

Vi, hom

Cap
i={P, V} (18)

The volume fed to the homogenizer is the batch
volume times the number of passes through the homog-
enizer Np, and estimating a 1.25 h downtime (25 min
for each discharging, cleaning and charging) yields the
time expressions for the homogenizer:

Ti,hom (h)=1.25+
� Npi

kiXi, mf1hi, homhi, mf2hi, exthi, chr

n Bi

Cap

i={P, V} (19)

Observe that in the numerator inside the brackets, we
replaced 1.25 by 1 because we are considering the batch
volume without incrementing it due to the 80% vessel
occupancy. By comparing Eq. (19) with Eq. (4), it can
be seen that the term inside brackets is the duty factor
for the homogenizer.

Successive passes through the homogenizer drive the
fraction of cells disrupted asymptotically to 1 through a
first order law. This is also the fraction of proteins
released Fri, expressed as in Eq. (20):

Fri=1−exp (−k1Npi) i={P, V} (20)

where k1 is a constant that measures how labile is the
microorganism and Npi the number of passes through
the homogenizer. The same law can be used to estimate
the fraction of released proteins that are denatured Fdi :

Fdi=1−exp (−k2Npi) i={P, V} (21)

where k2 measures how labile is the product. k1 is larger
than k2 because larger particles are more easily dis-
rupted. We estimate these constants to be k1=1.5 and
k2=0.03 (Engler, 1990). While it is correct that k1 be
the same for both protease and vaccine because the

element being disrupted is the same yeast, k2 should be
experimentally found for each product. Here we took a
single figure for k2 which is a typical value for proteins.
The yield in the homogenizer is the fraction released
times the fraction not denatured:

hi,hom=Fri(1−Fdi) i={P, V} (22)

Replacing Eqs. (20) and (21) into Eq. (22) results in the
yield for the homogenizer:

hi,hom= [1−exp (−1.5Npi)] exp (−0.03Npi)

i={P, V} (23)

Again, note that by setting a value for the process
variables Npi would provide a constant value for the
yield in Eq. (23). Similar expressions are obtained for
the size factor, time factor and yield of every other
stage of the protein production plant in Pinto et al.
(2000).

5. Proposed optimization approaches

The traditional geometric program used for the mul-
tiproduct batch plant design only considers fixed values
for size and time factors. Now, having process perfor-
mance models such as the ones described in the previ-
ous section, we may address different options in order
to include the effect of the process variables in the
search for the optimal design.

5.1. The non con6ex MINLP approach

The more rigorous form to include the process per-
formance models in the mathematical program is to
combine the traditional geometric program (where the
size and time factors are previously fixed) and the
process performance models, that describe each of these
factors as functions of the process variables.

As a whole, this is a MINLP, which lacks a definite
structure, just because the nonlinear process perfor-
mance models depend on the particular unit operations
involved in the process at hand. The global optimiza-
tion of this problem, which most likely have multiple
local optima, is still an open problem, and it is included
as one of the challenges in global optimization, in a
recent review by Floudas and Pardalos (1999).

5.2. Hierarchical approaches

Douglas (1985, 1988) presented a hierarchical ap-
proach for designing continuous processes, which is
based on a sequence of decisions of decreasing level of
economic impact and increasing level of detail. Once
the methodology reaches to the point of generating
alternative process flowsheets, they are evaluated re-
sorting to simplified unit operation models to size and
cost the alternatives.
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We present and compare two alternative approaches
for including the process performance models to obtain
improved solutions to the multiproduct batch plant
design. In both cases we decompose the problem. First,
we assign values to the process variables, i.e. we con-
struct the recipe for the processes. Then, we use this set
of process variables and the resulting size and time
factors to optimize the structure of the plant with the
traditional geometric program.

5.3. First approach: user-pro6ided process 6ariables

We take advantage of the fact that the process per-
formance models permit computing a set of consistent
time and size factors. In a very simple strategy, we can
guess a set of reasonably good process variables to
obtain a consistent set of time and size factors, and
then solve the resulting geometric program of the multi-
product plant.

While it is relatively simple to guess reasonable val-
ues for the process variables for someone familiar with
the unit operations involved in the process, it is not
always an easy task to guess a reasonable and consis-
tent set of size and time factors.

5.4. Second approach: optimize the process 6ariables in
a constraint– free scenario

The SP-FIS scenario removes all the size and time
constraints and so fulfils the objective that the opti-
mization be unbiased with respect to the plant struc-
ture, which has been left as a second level decision. The
optimal solution of this SP-FIS problem also provides a
set of fixed size and time factors to the Geometric
MINLP.

To pose the SP-FIS problem, we need to perform an
arbitrary, yet as reasonable as possible, partition of the
annual operating time among the products that we
expect to produce in the same plant and define a
production rate Pri for each product:

Pri (kg/h)=
Qi (kg)
Hi (h)

Öi (24)

where Qi is the annual target production and Hi the
time horizon assigned to each product i. In the case of
the protein production plant, the most expensive stage
is fermentation, so a reasonable partition of the total
horizon time should consider similar Fermentor size
requirements through the stoichiometric ratios ki. As in
our case the biomass production step demands the
same amount of time regardless the protein being pro-
duced, this criteria leads to assigning the following time
horizon for each product:

Hi=H
Qi/ki

%
i

Qi/ki

Öi (25)

This maximal occupancy of the more expensive stage
used to be the industrial design practice in the past, as
reported in Flatz (1980, 1981).

While the single product assumption relaxes the siz-
ing constraints, the free intermediate storage assump-
tion permits to ignore the time constraints so that each
stage works with its own cycle time uninterruptedly,
thus satisfying the production rate assigned to the
product.

Note that the level of storage that is required is not
unlimited, but the decoupling level described in Modi
and Karimi (1989), which sizes the tanks to simulta-
neously hold the batches entering and leaving the tank.

5.5. Comparison of approaches

First, following the first approach presented, we esti-
mated a good set of values for the process variables,
which is shown in Table 1. The value chosen for Xfer

corresponds to 90% total conversion in the Fermentor
and Xmf1 is near its upper bound of 250 kg/m3. Usual
amounts of washing water are of the same order of the
feed amount, i.e. Wmf1(mf2):1; moreover, we chose a
larger figure for the intracellular products because the
feed concentration is higher. Usual values for Np are
larger than 1 but seldom larger than 5; finally, 1 is a
common choice for R in the laboratory.

The process performance models were used to obtain
a consistent set of time and size factors, and then the
resulting geometric program was solved for two cases:
with and without the allocation of intermediate storage
tanks and the possibility of parallel units in both cases.

Second, using the SP-FIS approach, the single
product problems were solved with the process perfor-
mance models included as additional constraints and
with the time horizons for each product as given by Eq.
(25). These unconstrained NLP (but for bounds on the
process variables) are easy to solve, and even if there is
no guarantee of unique optimal solutions, no evidence
was found on the existence of multiple optima. The
optimal values obtained for the process variables are
shown in Table 2. This set of process variables was used
to obtain the time and size factors for the geometric
model of the multiproduct plant, through the process
performance models. The geometric program was
solved for the two cases presented in the first approach.

Table 1
User-provided values for the process variables

Wmf1 Wmf2 NpXfer RXmf1Product

200. – 1.0Insulin 1.25 –50.
1.03.0Vaccine 1.50-200.50.

1.25 – –Chymosin 50. 1.0200.
1.03.0Protease 50. –200. 1.50
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Table 2
Optimal values of the process variables in the SP-FIS scenario

Xmf1Product Wmf1Xfer Wmf2 Np R

250. 0.26Insulin –48.21 – 0.617
250. – 1.197 2.566 0.596Vaccine 46.02
250. 0.25 –48.15 –Chymosin 0.604
250.Protease –45.81 1.159 2.561 0.608

In the case of Wmf1, the discrepancy between guessed
and optimal values was larger than for the other vari-
ables. At the optimal solution, Xmf1 was larger than the
guessed value, and at its upper bound, so that the
volume of retentate at the end of the filtration step was
smaller than expected. So, at the diafiltration stage the
washing water added was more effective in recovering
the valuable product and so the optimal value was
smaller than expected. In any event, this kind of differ-
ences between guessed and optimal values were consid-
ered rather satisfactory. On the other hand, the
differences in other variables were surprisingly small.

In the case of the biomass concentration at mi-
crofilter 1 shown in Table 2, the optimal value lies on
its upper bound, which lead us to remove it from the
list of variables in the MINLP. This was done even if
there is no guarantee that it would remain at the same
value in the MINLP optimal solution. The usual rule
for the membrane concentration steps is to dewater up
to an upper bound dictated by physical limitations in
the case of a suspension of cells or by protein precipita-
tion in the ultrafilters. We have only proposed one of
these final concentrations as an optimization variable
(in microfilter 2 and both ultrafilters the models imple-
mented set the final concentrations to these bounds).
This was done to illustrate that, if process variables that
are not involved in a tradeoff are selected as optimiza-
tion variables, the optimization step will automatically
place them at a bound.

Comparing Table 2 of optimal values of the uncon-
strained problem with Table 3 of optimal values for

Finally, the complete non-convex MINLP model was
also solved. This problem is quite hard to solve and the
solutions presented were obtained after running from
several initial points and are not guaranteed to be
global optima. The set of optimal values for the process
variables is presented in Table 3.

The values of the objective function at the optimal
solutions and typical execution times in a PC with
Pentium 200 are shown in Table 4, for the three ap-
proaches, with and without storage tanks.

Comparing guessed values for the process variables
in Table 1 with the optimal values from Tables 2 and 3,
we notice that the former were in general near the
optimal, with the exception of the amount of washing
water at microfilter 1 (Wmf1). Despite that, in Table 4
the cost of the alternatives designed with the factors
that correspond to the set of optimal variables of the
SP-FIS problem is approximately 10% lower than the
results of the first approach. Even more importantly,
these are very close to the optimal cost of the non-con-
vex MINLP.

Table 3
Optimal values of the process variables with the non-convex MINLP

Np RXferModel Wmf1Product Wmf2

– 0.636Without tanks 46.54Insulin 0.35 –
0.4742.361.81–38.52Vaccine

– 0.63438.96Chymosin 0.10 –
Protease 31.26 – 1.75 2.39 0.635

––0.21 0.63649.35InsulinWith tanks
Vaccine 45.54 – 1.31 2.23 0.582

– 0.63449.12Chymosin 0.20 –
Protease 45.54 – 1.31 2.23 0.582

Table 4
Comparison of optimal solutions

Storage policy

Without storage tanksApproach With storage tanks

CPU time (s)Optimal cost ($) Optimal cost ($) CPU time (s)

1 770 418 12User provided-geometric MINLP 920 790 17
1 595 305SP-FIS — geometric MINLP 25 803 329 30
1 505 326 78 800 138 221Non-convex MINLP
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solutions constrained to their respective structures, it
should be noticed that the process variables moved
away from the unconstrained optimum. The structure
with tanks, which is the most cost effective, demanded
smaller deviations from the values at the unconstrained
optimum. Clearly, the model that allows both units in
parallel and storage tanks was the most cost effective.
The optimal structure is shown in Fig. 2. It has just one
unit per stage and four tanks located after the fermen-
tor, microfilter 2, ultrafilter 1 and ultrafilter 2; no
duplication was implemented although this was al-
lowed. The same optimal structure was obtained with
all three approaches. When only parallel units are
allowed, the optimal structure of the non-convex
MINLP model generates a design with five fermentors
working out of phase, and two chromatographic
columns in phase. The fixed factor models obtained a
similar structure with five fermentors out of phase, but
three chromatographic columns in phase.

Comparison of the optimal costs shown in Table 4
shows that the optimization of the structure has a much
higher impact on the cost than the optimization of the
process variables. Optimization of the process variables
reduced the cost by 10% when moving from guessed
values to the optimal SP-FIS for both structures. Fur-
ther improvement was obtained when solving the non
convex MINLP; 5% for the case without tanks but only
0.5% when tanks are allowed, both with respect to
SP-FIS. On the other hand, optimization of the struc-
ture, moving from parallel units without storage to the
structure with storage and no duplication, reduced the
cost of the plant by 50% in the three cases.

In Table 4, in the case of user-provided values for the
process variables, the times reported correspond to
solving the geometric MINLP. The SP-FIS geometric
MINLP approach doubled the execution time, since the
optimization of the four SP-FIS problems demanded
about 3 s each. The largest Geometric MINLP solved
had 285 constraints, which include 90 process perfor-
mance constraints, and 297 variables, from which 87
were binary. The times reported for the non-convex
MINLP are typical figures for just one optimization.

Several optimizations were done starting from different
initial points in each case.

6. The role of the process variables

In this section we analyze the economic impact of the
process variables of the protein production plant, in the
SP-FIS scenario. We took the cryophilic protease as an
example because, being intracellular, it goes through all
the processing stages. First, we optimized the process
variables. Then, we plotted the cost items versus each
variable, with the remaining variables at their optimal
values.

6.1. Biomass concentration in the fermentor Xfer (Fig.
3)

Biomass concentration increases monotonically with
time, at a decreasing pace as it asymptotically ap-
proaches a maximum. On the other hand, production
of biomass in the Fermentor reaches a maximum rate
at an intermediate value of 45.1 kg/m3, in agreement
with the minimum cost for the fermentor. However, the
cost of the downstream process decreases monotoni-
cally with the increase in concentration. Consequently,
the downstream shifts the overall optimum to a slightly
larger concentration value of 45.8 kg/m3.

6.2. Biomass concentration at microfilter 1 Xmf 1 (Fig.
4)

Higher values of biomass concentration require
larger volumes of liquid to be permeated through the
membrane. At a constant permeation rate, this requires
more area and thus, an increased filter cost. On the
other hand, both the homogenizer and microfilter 2
sizes are inversely proportional to this concentration, so
their costs decrease monotonically. The optimal
biomass concentration is at its upper bound of 250
kg/m3.

Fig. 2. Optimal plant protein structure with duplication of units and intermediate storage tanks.
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Fig. 3. Tradeoff in the selection of biomass concentration at the
fermentor (Xfer). Fig. 5. Tradeoff in the selection of a number of passes (Np) through

the homogenizer.

6.3. Number of passes through the homogenizer Np
(Fig. 5)

A larger number of passes through the homogenizer
increases the number of cells disrupted (protein re-
leased) but also increases the amount of released
protein that is being denatured. As a result, there is a
maximum yield of product (released but not denatured,
with respect to the total amount inside the cells before
processing) at Np=2.65 passes.

The size of the homogenizer is proportional to Np
and inversely proportional to the yield and has a mini-
mum value at Np=1.35. However, the yield affects the
whole plant (specially increasing the size required from
the units upstream of the homogenizer). The optimal

value for the plant is Np=2.55, which is very close to
the maximum yield.

6.4. Ratio of washing water at microfilter 2 Wmf2 (Fig.
6)

At microfilter 2, the protein already released is recov-
ered by diafiltration with distilled water. An increase in
the amount of water increases the size of both mi-
crofilter 2 and of ultrafilter 1, whose purpose is to
re-concentrate the diluted protein solution.

So the costs of microfilter 2 and ultrafilter 1 increase
monotonically (and so does the yield of product in
microfilter 2) with Wmf2. The increase in yield decreases
the size required from the upstream units: fermentor,

Fig. 4. Tradeoff in the selection of biomass concentration (Xmf1) at
microfilter 1 (Xmf1).

Fig. 6. Tradeoff in the selection of washing water ratio (Wmf2) at
microfilter 2.
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Fig. 7. Tradeoff in the selection of the volumetric ration of PEG to
phosphate phases (R) at the extractor.

those that occur between or among stages, and of the
third type those that are a combination of the first two
types. Their analysis of the tradeoffs presented in batch
plants fully applies in our case and it appears to be quite
general.

The biomass concentration in microfilter 1 and the
washing water ratio in microfilter 2 are involved in
tradeoffs of the second type (an increase in these vari-
ables increases the costs of these units, but decreases the
cost of the units down or up stream). The biomass
concentration in the fermentor, the number of passes
through the homogenizer and the ratio of PEG to
phosphate phases in the extractor, are involved in trade-
offs of the third type. There is a particular value for
these variables that produces a minimum cost of the
respective stages, but they also affect the cost of other
units up or down stream.

More recently, papers dealing with the optimization
of process variables in the design of multiproduct batch
plants, such as that of Bhatia and Biegler (1996), pose
the present problem as a system of algebraic and differ-
ential equations. They found that optimizing the indi-
vidual stages sequentially renders poor results as
compared with simultaneous optimization. In the con-
text of the tradeoff analysis, sequential optimization
would only succeed in the case that all the tradeoffs were
of the first type. Incidentally, no tradeoffs of the first
type were found in the Protein Production Plant.

The shapes of the overall cost functions of Figs. 3–7
show an interesting point regarding the role of process
variables in the optimization. When the variables pro-
duce a minimum cost for the overall process at a value
within their allowed range, the shape of these overall
cost functions is rather flat around the optima. Thus, the
process variables can be moved (which in turn affects the
size and time factors) with no major penalty on the
overall cost.

An important fraction of the cost of a multiproduct
batch plant is due to the idle times and volumetric
under-utilization of the process units. This is illustrated
in Tables 5 and 6 that compare the idle times of the
designs obtained with the User-Provided process vari-
ables and with the non-convex MINLP. While the
optimization of the process variables reduces the idle
times in both cases, in the plant with storage tanks these
are smaller as in this case the structure is optimal.

Even if the summation of the unit idle times is a rather
arbitrary performance index, it gives an idea of this
effect. In Table 5, this index is of 48 h for user provided
process variables and is reduced to 32 h when optimizing
the variables. In Table 6, with storage tanks, the opti-
mization reduces the overall idle time from 7 to 6 h.

It is also interesting to note that in every case the idle
time of the fermentor is zero, thus endorsing the as-
sumption that the more expensive stage is fully utilized.
We used this assumption to distribute the horizon time
among the products.

microfilter 1 and homogenizer. As a result, we have an
overall optimum for the plant at a ratio of washing
water to feed at Wmf2=1.15, which is an intermediate
value.

6.5. Volumetric ratio of PEG to phosphate phases R
(Fig. 7)

Augmenting the ratio R causes an increase in the yield
of the first extraction from the phosphate into the PEG
phase, but decreases the yield of the back extraction into
the new salt-free Phosphate phase. This occurs because
of the smaller amount of the new phase, and because of
a poorer dilution of the NaCl that remains in the PEG,
which jeopardizes the partition constant for this back
extraction. As a result, the overall extraction yield has a
maximum at R=0.63.

The cost of the extractor grows linearly with R (R
denotes the volume of PEG phase to be added, per
volume of the batch entering this stage) and is inversely
proportional to the extraction yield. Consequently, the
cost of the extractor shows a minimum at a phase ratio
of R=0.2. However the extraction yield also affects all
the sizes of the upstream stages, so the overall process
optimum is at R=0.61 (close to the maximum yield).

6.6. Analysis of the tradeoffs that occur when setting
the process 6ariables

Barrera and Evans (1989) published a pioneering
work addressing the role of process variables in batch
plants. These authors named tradeoffs of the first type
those that occur within a single stage, of the second type
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7. Conclusions

Process performance models recently developed for
a multiproduct batch protein plant have been used
to explore alternative optimization strategies and to
study the role of process variables in the simultaneous
optimization of both the process variables and
the structure of the plant. To our knowledge this
simultaneous optimization has not been approached
before.

The main merit of the optimization approach is its
modular structure. The process performance models are
additional constraints to the traditional geometric pro-
gram, which remains unchanged. Setting up models
with higher level of detail is highly facilitated; for
example one might start implementing a fixed factor
model and next incorporate process performance mod-
els for selected key-stages.

While it is not trivial to estimate a set of reasonable
constant time and size factors, it is easier to guess good
values for the process variables. In this sense, the
process performance models are able to predict a con-
sistent set of size and time factors as a function of
process variables.

A better set of time and size factors was obtained by
optimizing the process variables in a single product-free
intermediate storage scenario. Furthermore, the plant
structures obtained with the fixed factors that corre-

spond to this set were close to the ones obtained with
the complete model.

The role of process variables in the optimization was
also studied. We find that in the unconstrained SP-FIS
scenario they behave as in continuous processes, trad-
ing off cost components with a smooth dependence of
the total cost on the process variables. Moreover, for
feasible designs that include the size and time con-
straints that correspond to the plant structure, the
process variables shift to accommodate the size and
time factors to reduce idle times and under-occupancy
of equipment.

The complete MINLP that includes the proposed
performance models is non-convex and difficult to
solve. The optimal solutions obtained are local optima,
and future work is needed to address this issue.
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Table 5
Stage idle times (h) without storage tanks

Uf2ExtUf1Mf2Hom ChrMf1FerProductApproach

––0. 4.370.InsulinUser Pro6ided Variables 2.163.000.01
Vaccine 0. 2.40 0. 0. 3.26 4.320.3.00
Chymosin 0. 0.66 – – 0. 3.00 3.00 4.33

0. 2.95 0.13 0.12Protease 3.28 3.00 0.85 4.29

0. 0.Non-con6ex MINLP –Insulin – 0. 2.54 2.01 3.92
3.240.1.892.120.030.0.560.Vaccine

0.Chymosin 0.49 – – 0. 1.92 2.42 3.28
Protease 0. 0.81 0. 0. 1.82 1.46 0.74 2.80

Table 6
Stage idle times (h) with storage tanks

Product Fer Mf1 HomApproach Mf2 Uf1 Ext Uf2 Chr

Insulin 0. 0. – – 0. 0. 0.72 0.93User Pro6ided Variables
Vaccine 0. 1.73 0. 0. 0. 0. 0. 0.27
Chymosin 0. 0. – – 0. 0. 1.00 0.06
Protease 0. 2.07 0. 0. 0. 0. 0.23 0.

0.920.770.0.––0.Non-con6ex MINLP 0.Insulin
Vaccine 0. 0.51 0. 0. 0.57 0. 0. 0.25
Chymosin 0.021.050.0.––0.510.

0.260.0.0.0.1.150. 0.Protease
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Appendix A. Nomenclature

area (m2) of filtration or cross sec-A
tion of chromatographic column

aj cost coefficient for a batch unit at
stage j

Bi batch size of product i (kg)
Bij batch size of product i in batch

stage j (kg)
cost coefficient for a semi-continu-bj

ous item associated to stage j
C capital cost ($)

cost coefficient for a intermediatecj

storage tank in position j
Cap capacity of the homogenizer (m3/h)
Dij duty factor (size kg−1 h) of semi-

continuous item j
constant for modeling a Big-MFij

constraint
fraction of released proteins dena-Fdi

tured for product i
fraction of proteins released forFri

product i
net available production time forH
all products (h)

Hi time horizon assigned to product i
(h)
rate constant for the disruption ofk1

yeast
rate constant for the denaturationk2

of product
stoichiometric ratio of product i (kgki

of product/kg biomass)
M number of batch stages in the plant
Mj number of batch units in parallel

out of phase in stage j
number of batch units in parallel inNj

phase in stage j
number of passes at the homoge-Npi

nizer for product i
number of productsP
production rate of product i (kg/h)Pri

production target (kg) of product iQi

R volumetric ratio of PEG to phos-
phate phases
size of semi-continuous item j ARj

(m2) or Cap (m3/h)
size factor of product i in batchSij

item j (size per kg)
size factor of intermediate storageSTij

tank at position j for product i
(size per kg)

T time (h)
Tij processing time of product i at

batch stage j

time factor to account for fixedTij
0

amounts of time in Tij (h)
Tij

1 time factor to account for times
proportional to Bi in Tij

TLi limiting cycle time of product i (h)
limiting cycle time of product i inTLis

subprocess s (h)
volume of fermentation broth whenVi, fer

producing product i (m3)
Vj size of a batch item j (m3)
VTj size of the intermediate storage

tank allocated in position j (m3)
volumetric ratio of diafiltration wa-W
ter to feed at the Microfilters

X concentrations of biomass (kg/m3)
binary variable that denotes the al-yj

location of intermediate storage
tank after batch stage j

Greek letters
cost exponent for a batch unit ataj

stage j
bj cost exponent for a semi-continuous

item associated to stage j
cost exponent for an intermediategj

storage tank allocated in position j
kinetic constant of Fermentor (perf

h)
yield of product i at stage jhij

operating time of product i at semi-uij

continuous item j (h)
F maximum ratio between batch sizes

of consecutive stages

Subscripts and
superscripts

chr chromatographic column
ext extractor
fer fermentor

homogenizerhom
microfilter 1mf1
microfilter 2mf2
ultrafilter 1uf1

uf2 ultrafilter 2
max maximum concentration of biomass

at the fermentor
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