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Abstract. In this paper, for each givenp, 1 < p < ∞, we characterize the weightsv for which
the centered maximal function with respect to the gaussian measure and the Ornstein-Uhlenbeck
maximal operator are well defined for every function inLp(vdγ ) and their means converge almost
everywhere. In doing so, we find that this condition is also necessary and sufficient for the existence
of a weightu such that the operators are bounded fromLp(vdγ ) into Lp(udγ ). We approach
the poblem by proving some vector valued inequalities. As a byproduct we obtain the strong type
(1, 1) for the “global" part of the centered maximal function.
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1 Introduction

In this work we obtain some weighted inequalities for operators related to the
gaussian harmonic analysis, namely those associated to the study of the Ornstein-
Uhlenbeck semigroup.

Let γ be the gaussian measure inR
n, that isdγ (z) = e−|z|2dz. The initial

question we pose is the following: given a fixed operatorT , bounded inLp(dγ )

for somep, 1 < p < ∞, find necessary and sufficient conditions for a weightv

in order to haveTf (x) < ∞a.e.x for everyf ∈ Lp(vdγ ). However, it turns out
that this question is equivalent to the problem: given a fixed operatorT , bounded
in Lp(dγ ) for somep, 1 < p < ∞, find sufficient and necessary conditions for
a weightv in order to exist a non trivial weightu such thatT becomes bounded
from Lp(vdγ ) into Lp(udγ ).
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This last question, nowadays classical in the context of Euclidean Harmonic
Analysis, was first formulated by B. Muckenhoupt and solved for particular
operators by several authors, see [GC,R] and the references there. Latter on,
J.L. Rubio de Francia realized that this type of results could be obtained from
appropiate vector valued inequalities for the operator under consideration.

In this paper, we take Rubio de Francia’s approach, so we start the study of
the centered maximal function with respect to the gaussian measure, by deriving
a kind of Fefferman-Stein inequality (see Theorem 2.10).

To achieve this result, as it is usual in gaussian harmonic analysis, we de-
compose the operator in its “local" and “global" parts. For the first, we use that
it essentially behaves as a singular integral and we apply the theory of vector
valued Calder´on-Zygmund operators. As for the global part, we get a bound in
terms of a positive integral operator which we prove it is of strong type(1, 1) (see
Theorem 2.7). This behaviour came as a surprise to us, since the same procedure,
when applied to other related gaussian operators like Ornstein-Uhlenbeck max-
imal opeartor, first and second order Riesz transforms and multipliers, always
leads to positive integrals operators which are, as far as we know, just of weak
type(1, 1), see [P] [MPS] [FGS] [GMST1] [GMST2].

In this way we found the precise condition on the weightv, namelyv
− 1

p−1 ∈
L1(dγ ), which solves the problems stated above. This condition is also the
natural necessary and sufficient condition for uniform boundedness and almost
everywhere convergence of the gaussian means of functions inLp(vdγ ). All
these results are contained in Theorem 2.12.

In section 3 we also give some outlines of how to achieve similar results for
others operators, like the Ornstein-Ulhenbeck maximal operator, Riesz Trans-
forms andg−functions.

Next we introduce some notation and definitions and we state several known
results which will be used often in the sequel.

GivenB1, B2 Banach spaces, letdµ denote either the Lebesgue or the Gauss
measure onRn andNt denote the region{(x, y) : |x − y| < t

1+|x|+|y| }. We shall
consider a linear operatorT defined inL∞

0,B1
, the space ofB1− valued, compactly

supported and essentially bounded functions, into the space ofB2−valued and
strongly measurable functions onR

n, satisfying the following assumptions:

1. T extends to a bounded operator either fromL
q

B1
(dµ) into L

q

B2
(dµ) for some

q, 1 < q < ∞, or fromL1
B1

(dµ) into weak-L1
B2

(dµ).
2. There exists aL(B1, B2)−valued measurable functionK, defined on the

complement of the diagonal inRn × R
n, such that for every functionf in

L∞
0,B1

Tf (x) =
∫

K(x, y) f (y)dy,
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for all x outside the support off ; where the kernelK satisfies the estimates

‖K(x, y)‖ ≤ C

|x − y|n , ‖∂xK(x, y)‖ + ‖∂yK(x, y)‖ ≤ C

|x − y|n+1
,

for all (x, y) in the local regionN2, x �= y.

Following [GMST2] we introduce some definitions. For an operatorT as
above, givenϕ a smooth function onRn×R

n such thatϕ(x, y) = 1 if (x, y) ∈ N1,
ϕ(x, y) = 0 for (x, y) /∈ N2 and

|∂xϕ(x, y)| + |∂yϕ(x, y)| ≤ C |x − y|−1 if x �= y,(1.1)

we define theglobal and thelocal parts of the operatorT by

Tglobf (x) =
∫

K(x, y)(1 − ϕ(x, y))f (y)dy,

Tlocf (x) = Tf (x) − Tglobf (x).

Definition 1.2 We shall say that an operatorT defined onL∞
0,B1

into the space
ofB2−valued strongly measurable functions islocal if its kernel is supported in
N2.

We shall use the following results, which can be found in [GMST2].

Proposition 1.3 If the operatorT satisfies assumptions 1 and 2 as above, then
the operatorTloc is bounded fromL

p

B1
(dγ ) into L

p

B2
(dγ ) and fromL

p

B1
(dx)

into L
p

B2
(dx) , for 1 < p < ∞. MoreoverTloc is bounded fromL1

B1
(dµ) into

weak-L1
B2

(dµ), both, with respect to the Lebesgue and the Gauss measure.

Proposition 1.4 If S is a local operator, then the weak type(1, 1) for Lebesgue
and Gauss measures are equivalent.

We shall also need the following theorem due to Rubio de Francia, see [GC,R]
p. 554.

Theorem 1.5 Let(X, µ) be ameasure space,G a Banach space andT a sublin-
ear operator fromG intoLs(X), which satisfies for somes < p, the folllowing
inequality ∥∥∥∥∥∥


∑

j

∣∣Tfj

∣∣p




1/p∥∥∥∥∥∥
Ls(X)

≤ Cp,s


∑

j

∥∥fj

∥∥p

G




1/p

whereCp,s is a constant depending onp and s. Then there exists a positive

functionu such thatu−1 ∈ L
s

p−s (X) and
(∫

X

|Tf (x)|p u(x)dµ(x)

)1/p

≤ ‖f ‖G
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We derive a simple consequence of Rubio de Francia theorem, since this will
be the useful statement for us.

Corollary 1.6 LetT be a sublinear operator such that

γ


x :


∑

j

|Tfj (x)|p



1/p

> λ


 ≤ C

λ

∫
Rn


∑

j

|fj (x)|p



1/p

dγ (x)

then, for anyv such that
∫

Rn v
− 1

p−1 (x)dγ (x) < ∞ and s < p, there exists a

positive functionu such thatu−1 ∈ L
s

p−s (X), and

∫
Rn

|Tf |pu(x)dγ (x) ≤
∫

Rn

|f |pv(x)dγ (x)

Proof.Sinceγ (Rn) is finite ands < p, we have by using Kolmogorov’s inequal-
ity that

∥∥∥∥∥∥

∑

j

|Tfj |p



1/p∥∥∥∥∥∥
Ls(dγ )

≤ Cs sup
λ>0

λγ





x :


∑

j

∣∣Tfj (x)
∣∣p




1/p

> λ







≤ Cs

∫
Rn


∑

j

∣∣fj (x)
∣∣p




1/p

dγ (x)

≤ Cs


∫

Rn

∑
j

∣∣fj (x)
∣∣p

v(x)dγ (x)




1/p

×
(∫

Rn

v
− 1

p−1 (x)dγ (x)

)1/p′

≤ Cs


∫

Rn

∑
j

∣∣fj (x)
∣∣p

v(x)dγ (x)




1/p

= Cs


∑

j

∥∥fj

∥∥p

Lp(vdγ )




1/p

.

Therefore we are in the hypothesis of Theorem 1.5 withG = Lp(vdγ ), and the
corollary follows. ✷
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2 The centered maximal function

Given the centered Hardy-Littlewood maximal operator with respect to the gaus-
sian measureγ , that is

Mγ f (x) = sup
r>0

|Arf (x)| = sup
r>0

∣∣∣∣ 1

γ (B(x, r))

∫
Rn

f (y)dγ (y)

∣∣∣∣ ,

we consider the operatorsMγ,1 andMγ,2 defined by

Mγ,1f (x) = sup
r>0

∣∣∣∣ 1

γ (B(x, r))

∫
B(x,r)

χ{
|x−y|≤min

(
1
2 , 1

2|x|
)}(y)f (y)dγ (y)

∣∣∣∣
and

Mγ,2f (x) = sup
r>0

∣∣∣∣ 1

γ (B(x, r))

∫
B(x,r)

χ{|x−y|>min
(

1
2 , 1

2|x|
)
}(y)f (y)dγ (y)

∣∣∣∣ .

For the latter operator we have the following result

Theorem 2.7 There exists a positive kernelP (x, y) such that the operator de-
fined by
Pf (x) = ∫

P (x, y)f (y)dy satisfies

Mγ,2f (x) ≤ Pf (x) a.e.x,

andP is of strong type(1, 1) with respect to the gaussian measure. Moreover,
the kernel is supported in the region|x − y| ≥ min(1

2, 1
2|x|), and the following

estimates hold

P (x, y) ≤ C|y|ne|x|2−|y|2− 2δ
3 |y||x−y| if |x| ≥ 1  and |x − y| ≤ |x|

2

≤ C|x|2e|x|2−|y|2−|x|ε if |x| ≥ 1 and |x − y| ≥ |x|
2

≤ Ce−|y|2 if |x| ≤ 1,

for some positiveε andδ.

Proof.Let us denote byL the setL = {(x, y) : |x − y| ≤ min(1
2, 1

2|x|)}, then

Mγ,2f (x) = sup
r>0

∣∣∣∣ 1

γ (B(x, r))

∫
B(x,r)

χLc(x, y)f (y)dγ (y)|
∣∣∣∣ ,

It is clear that this operator is bounded by the integral operator with kernel
H(x, y) given by

H(x, y) = sup
r>0

1

γ (B(x, r))
χLc(x, y)χB(x,r)(y)e−|y|2
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Also, it is easy to see that

H(x, y) ≤ P (x, y) = 1

γ (B(x, |x − y|))χLc(x, y)e−|y|2

Now we shall make some calculations, forn ≥ 3, to estimate by below the
Gauss measure of a general ballB(x, R). Since the gaussian measure is rotation
invariant, we can assume thatx = |x|en, and then we have

∫
{|z−x|<R}

e−|z|2dz =
∫

{|u|<R}
e−|u+x|2du =

∫
{|u|<R}

e−|u|2−|x|2−2<u,x>du

=
∫ 2π

0

∫ π

0
...

∫ π

0

∫ R

0
e−r2−|x|2−2r cosϕ1|x|rn−1 sinn−2 ϕ1

... sinϕn−2dϕ1...dϕn−1dr

≥ e−|x|2
∫ R

0

∫ 2π

0

∫ π

0
...

∫ π

0

∫ π/2

0
e−r2

e2r|x| cosϕ1rn−1 sinn−2 ϕ1

... sinϕn−2dϕ1...ϕn−1dr

≥ Cn,ϕ0e
−|x|2e−R2

∫ R

0

∫ π/2

ϕ0

e2r|x| cosϕ1r sinϕ1dϕ1r
n−2dr

= Cn,ϕ0

e−|x|2e−R2

|x|
∫ R

0

∫ 2r|x| cosϕ0

0
eudurn−2dr

≥ Cn,ϕ0

e−|x|2e−R2
Rn−2

|x|
∫ R

R/2

∫ 2r|x| cosϕ0

0
eududr,

whereϕ0, 0 < ϕ0 < π/2 denotes a fixed angle and we have done the change of
variablesu = 2r|x| cosϕ1. If we now assume that

R|x| cosϕ0 ≥ β > 0,(2.8)

the double integral above can be estimated by below by

(1 − e−β)2

2|x| cosϕ0
e2R|x| cosϕ0.

Therefore in this case, we get the estimate

γ (B(x, R)) ≥ Cn,ϕ0,β

e−|x|2e−R2
Rn−2

|x|2 e2R|x| cosϕ0(2.9)

for n ≥ 3. It is easy to check that forn = 2 we get the same type of estimate,
while for n = 1 we obtain

γ (B(x, R)) ≥ Cn,ϕ0,β

e−x2
e−R2

|x| e2R|x|.
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In order to estimate the kernel, we consider first the case when min(1
2, 1

2|x|) =
1

2|x| , that is |x| ≥ 1. Then for (x, y) ∈ Lc, the condition 2.8 is satisfied for
R = |x − y|, so we may apply estimate 2.9 withR = |x − y|. Then we have

P (x, y) ≤ Cn,ϕ0,β

e|x|2e|x−y|2|x|2e−2|x−y||x| cosϕ0

|x − y|n−2
e−|y|2

≤ Cn,ϕ0,βe|x|2e|x−y|2|x|ne−2|x−y||x| cosϕ0e−|y|2,

where we have used|x − y| > 1
2|x| . We observe that even the estimate 2.9 for

the casen = 1 was sligthly different we can also arrive to the last inequality.
To further estimate the kernel we distinguish two cases.
First suppose|x − y| ≤ |x|

2 , which implies|x|
2 ≤ |y| ≤ 3|x|

2 . Therefore, under
these assumptions, we have

|x|ne|x−y|2e−2|x−y||x| cosϕ0 = C|y|ne|x−y|(|x−y|−2|x| cosϕ0)

≤ C|y|ne−|x−y||x|(2 cosϕ0− 1
2 ) ≤ C|y|ne− 2

3δ|x−y||y|,

whereδ is some positive number, provided we takeϕ0 small enough.
Second, let us assume|x − y| >

|x|
2 . This, together with|x| ≥ 1, gives

|x − y| ≥ 1
2 and hence

γ (B(x, |x − y|) ≥ γ

(
B

(
x,

1

2

))
≥ Cn,ϕ0,β

e−|x|2e|x| cosϕ0

|x|2 .

Consequently
P (x, y) ≤ Cn,ϕ0,βe|x|2e−|y|2e−|x| cosϕ0|x|2.

We point out that forn = 1 this estimate also holds since|x| ≥ 1.

Finally if min(1
2, 1

2|x|) = 1
2, we have|x| ≤ 1. In this caseB(x, 1

2) ⊂ B(x, |x−
y|) and therefore

γ (B(x, |x − y|)) ≥
∫

|x−z|< 1
2

e−|z|2dz ≥ e−4|B(x, 1)| = C

This ends the proof of the estimates stated in the theorem. Let us see now that
the operatorP is of strong type(1, 1).∫ ∫

P (x, y)|f (y)|dydγ (x) ≤ C

∫
|f (y)|e−|y|2

∫ (∫
|y|n e− 2

3δ|y||x−y|dx

)
dy

+ C

∫
|f (y)|e−|y|2

(∫
|x|2 e−|x|εdx

)
dy

+ C

∫
|f (y)|e−|y|2

(∫
e−|x|2dx

)
dy

≤ C ‖f ‖L1(dγ ) .
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where in the innner integral of the first term we have perfomed the change of
variablesu = (x − y)|y|. ✷

Now we are going to combine the estimate just proved forMγ,2 with the
results for local operators stated in Proposition 1.4 in order to get a vector valued
inequality for the centered maximal operatorMγ .

Theorem 2.10Given1 < p < ∞, the following inequality holds

γ





x :


∑

j

|Mγ fj (x)|p



1/p

> λ





 ≤ C

λ

∫
Rn


∑

j

|fj (x)|p



1/p

dγ (x).

Proof. It is clear that

Mγ,1f (x) = sup
0<r≤min

(
1
2 , 1

2|x|
)
∣∣∣∣ 1

γ (B(x, r))

∫
B(x,r)

f (y)dγ (y)

∣∣∣∣ .

Moreover if z ∈ B(x, r), r ≤ min(1
2, 1

2|x|), we get that there exists a constant

C such thatC−1e−|z|2 ≤ e−|x|2 ≤ Ce−|z|2. To see this obseve thate−|z|2 =
e−|z−x|2e−2<z−x,x>e−|x|2, and that| < z − x, x > | ≤ 1

2, and|z − x| ≤ r ≤ 1
2.

Then we getMγ,1f (x) ≤ CMf (x), whereM is the Hardy-Littlewood operator
with respect to the Lebesgue measure. Then by the well known result for the
operatorM, we get thatMγ,1 satisfies

∣∣∣∣∣∣


x :


∑

j

|Mγ,1fj (x)|p



1/p

> λ




∣∣∣∣∣∣

≤ C

λ

∫
Rn


∑

j

|fj (x)|p



1/p

dx.(2.11)

If now we consider thel∞−valued version of the operatorMγ,1 given by

Vf (x) =
{

1

γ (B(x, r))

∫
B(x,r)

χ{
(x,y):|x−y|≤min

(
1
2 , 1

2|x|
)}(y)f (y)dγ (y)

}
r

,

inequality 2.11 says thatV is bounded fromL1
lp (dx) into weak-L1

lp(l∞)(dx). We
notice thatV is a local operator since it is easy to check that{(x, y) : |x − y| ≤
min(1

2, 1
2|x|)} ⊂ N2. Therefore we can apply Proposition 1.4 to get thatV is

bounded fromL1
lp (dγ ) into weak-L1

lp(l∞)(dγ ), but this, in turn, implies that
Mγ,1 satisfies the desired inequality.
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On the other hand it is well known that a positive linear operator bounded
from L1(dµ) into L1(dµ) with dµ any measure, has a vector valued bounded
extension fromL1

B(dµ) intoL1
B(dµ) for any Banach spaceB, see [RT].Applying

Theorem 2.7 and this remark to the operatorP, to the Banach spaceB = lp and
to the gaussian measure, we have that

∫ 
∑

j

|Mγ,2fj (x)|p



1/p

dγ (x) ≤
∫ 

∑
j

|Pfj (x)|p



1/p

dγ (x)

≤ C

∫ 
∑

j

|fj (x)|p



1/p

dγ (x),

giving the result. ✷

The Theorem we just proved allows us to use the connection between vector-
valued estimates and weightedLp inequalities, as stated in Corollary 1.6

Theorem 2.12Given1 < p < ∞ and v a positive measurable function, the
following conditions are equivalent

(i) For everyf ∈ Lp(vdγ ), lim r→0 Arf (x) = f (x) a.e.x,

whereArf (x) = 1
γ (B(x,r))

∫
B(x,r)

f (y)dγ (y).

(ii) For everyf ∈ Lp(vdγ ), Mγ f (x) < ∞ a.e.x.

(iii) There exists a positive measurable functionu and a constantC such that
for everyf ∈ Lp(vdγ ) and allλ > 0, we have∫

{x∈Rn:Mγ f (x)>λ}
u(x)dγ (x) ≤ C

λp

∫
Rn

|f (x)|pv(x)dγ (x).

(iv) There exists a positive measurable functionu and a constantC such that
for everyf ∈ Lp(vdγ ) we have∫

Rn

Mγ f (x)pu(x)dγ (x) ≤ C

∫
Rn

|f (x)|pv(x)dγ (x).

(v) There exists a positive measurable functionu and a constantC such that
for everyf ∈ Lp(vdγ ) and allλ > 0, we have

sup
r>0

∫
{x∈Rn:|Ar f (x)|>λ}

u(x)dγ (x) ≤ C

λp

∫
Rn

|f (x)|pv(x)dγ (x).

(vi) There exists a positive measurable functionu and a constantC such that
for everyf ∈ Lp(vdγ ) we have

sup
r>0

∫
Rn

|Arf (x)|pu(x)dγ (x) ≤ C

∫
Rn

|f (x)|pv(x)dγ (x).
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(vii) v
− 1

p−1 ∈ L1(dγ ).

Moreover the weightu whose existence is guaranteed in (iii),(iv),(v) or (vi)
satisfies‖u−1‖

L
s

p−s (dγ )
< ∞ for every0 < s < 1.

Proof.We shall prove this theorem as follows:
(vii) ⇒ (iv) ⇒ (vi) ⇒ (v) ⇒ (vii);
(iv) ⇒ (iii) ⇒ (i) ⇒ (ii) ⇒ (iii) ⇒ (v).
We first observe that implications (iv)⇒ (vi), (vi) ⇒ (v), (iv) ⇒ (iii), (i)

⇒ (ii) and (iii) ⇒ (v) are obvious. Since limr→∞ Arf (x) = f (x) a.e.x. for
everyf ∈ Lp(vdγ ) ∩ L1(dγ ) which is a dense subset ofLp(vdγ ), the Banach
Principle says that (iii)⇒ (i). In order to see that (v)⇒ (vii) we first observe
that there is a positive radiusS such that 0<

∫
B(0,S)

u(y)dγ (y). Now for any
R > S we haveA2R(χB(0,R)|f |)(y) ≥ (γ (Rn))−1

∫ |χB(0,R)(z)f (z)|dγ (z), y ∈
B(0, S). Applying the hypothesis, we have

0 <

∫
B(0,S)

u(y)dγ (y) ≤
∫

{y:A2R(χB(0,R)|f |)(y)≥(γ (Rn))−1
∫ |χB(0,R)f |dγ }

u(y)dγ (y)

≤ C(∫ ∣∣χB(0,R)f
∣∣ dγ

)p

∫ ∣∣χB(0,R)(y)f (y)
∣∣p

v(y)dγ (y).

Hence we get(
∫ ∣∣χB(0,R)(y)f (y)

∣∣ dγ (y))p ≤ C
∫ |χB(0,R)f (y)|pv(y)

dγ (y), for everyR > S, in particular this implies that(
∫ |f (y)|dγ (y))p ≤

C
∫ |f (y)|pv(y)dγ (y). If we setf = gv−1/p the last inequality can be writ-

ten as(
∫ |g(y)|v−1/p(y)dγ (y))p ≤ C

∫ |g(y)|pdγ (y), and this implies that
v−1/p ∈ Lp′

(dγ ) which is (vii).
Next we show that (vii)⇒ (iv)
By Theorem 2.10, the operatorMγ satisfies the hypotheses of Corollary 1.6,

therefore there exists a weightu such that∫
Rn

∣∣Mγ f (x)
∣∣p

u(x)dγ (x) ≤ C

∫
Rn

|f (x)|p v(x)dγ (x).

and‖u−1‖
L

s
p−s (dγ )

< ∞ for every 0< s < 1.

Now, we shall prove (ii)⇒ (iii). If 1 < p ≤ 2 we can use Nikishin’s Theorem,
see VI.1.4 and VI.2.7 in [GC,R] obtaining (iii) for this range ofp. If 2 < p we

write w = v
1

p−1 and we have

L2(wdγ ) ⊂ Lp(vdγ ) + L1(dγ ),

since any positive functionf ∈ L2(wdγ ) can be decomposed asf = g+h, with

g(x) = f (x) if f (x) ≤ v
− 1

p−1 (x) and 0 otherwise. By hypothesisMγ g(x) < ∞,

moreover ash ∈ L1(dγ ) we also haveMγ h(x) < ∞ thereforeMγ f (x) < ∞.
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Applying Nikishin’s theorem again withp = 2 and the weightw, there exists
a positive functionu such that (iii) holds withp = 2 andw. Since we already
proved that (iii)⇒ (v) and (v)⇒ (vii) we can conclude that the weightw satisfies∫

w−1(x)dγ (x) < ∞ and that means
∫

v
− 1

p−1 dγ (x) < ∞. ✷

3 Weighted inequalities for related operators

What we have done for the maximal operator can also be carried out for other op-
erators. The crucial step in our development has been the vector-valued inequality
in Theorem 2.10. We remind that its proof relies on an appropiate analysis of the
“local" and “global" parts of the operator, allowing suitable vector-valued exten-
sions. Now, as an example, we work out this program for the Ornstein-Uhlenbeck
maximal operator, namely

O∗f (x) = sup
0≤r<1

|Orf (x)| = sup
0≤r<1

∣∣∣∣
∫

Rn

Mr (x, y)f (y)dy

∣∣∣∣ ,

where

Mr (x, y) = π−n/2
(
1 − r2

)−n/2
exp

(
−|rx − y|2

1 − r2

)
.

Theorem 3.13Given1 < p < ∞, the following inequality holds

γ





x :


∑

j

|O∗fj (x)|p



1/p

> λ







≤ C

λ

∫
Rn


∑

j

|fj (x)|p



1/p

dγ (x).(3.14)

Proof.Given the operatorO∗, we consider its vector valued version given by

Wf (x) =
{∫

Rn

Mr (x, y)f (y)dy

}
r

.

Since O∗ is of weak type(1, 1) with respect to the Gaussian measure, see
[P], we have thatW is bounded fromL1(dγ ) into weak−L1

l∞(dγ ) and so it
is Wloc. By proposition 1.4 the operatorWloc is bounded fromL1(dx) into
weak−L1

l∞(dx). Moreover the kernel satisfies assumption 2; in particular it is
a Calder´on-Zygmund operator and consequently bounded fromL1

lp (dx) into
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weak-L1
lp(l∞)(dx), see [RRT]. Applying again Proposition 1.4 we get thatWloc

is bounded fromL1
lp (dγ ) into weak-L1

lp(l∞)(dγ ). On the other hand
∥∥Wglobf (x)

∥∥
l∞ ≤ Qf (x)

=
∫

Rn

sup
0≤r<1

|(1 − ϕ(x, y))Mr (x, y)f (y)| dy.(3.15)

Since this operatorQ is positive and of weak type(1, 1) with respect to the
gaussian measure, see [P], it has a bounded extension fromL1

lp (dγ ) into weak-
L1

lp (dγ ). It follows from 3.15 thatWglob is bounded fromL1
lp (dγ ) into weak-

L1
lp(l∞)(dγ ). This ends the proof by observing thatO∗f (x) = ‖Wf (x)‖l∞ . ✷

Now we are in position to state a parallel result to Theorem 2.12 for the
Ornstein-Uhlenbeck maximal operator.

Theorem 3.16Given1 < p < ∞ and v a positive measurable function, all
the conditions (i) to (vii) of the Theorem 2.12 are equivalent if we change the
operatorsAr, Mγ by the operatorsOr, O∗, and lim r→0 Ar by lim r→1 Or.

Moreover the weightu whose existence is guaranteed satisfies‖u−1‖
L

s
p−s (dγ )

< ∞ for every0 < s < 1.

Proof.The proof follows the lines of that of Theorem 2.12. We shall only point
out where some differences appear. First, we use Theorem 3.13 in order to prove
(vii) ⇒ (iv). Observe thatO0f (x) ≥ C

∫
f (y)γ (y)dy for everyx ∈ R

n and then
we can repeat the argument of (v)⇒ (vii). On the other hand it is well known, see
[M], that limr→1 Orf (x) = f (x) for everyx ∈ R

n andf a continuous function
with compact support, therefore the Banach Principle can be applied as in the
case of theAr means. ✷

Remark 3.17We point out that inequality 3.13 holds true for the first and second
order Riesz Transforms and also for some suitableg−functions.As in the case of
the Ornstein-Ulhenbeck operator the proofs rely again in the analysis of the local
and global parts.As in the previous cases it can be shown that their local parts are
essentially Calder´on-Zygmund operators (possibly with vector valued kernels).
On the other hand, the global parts are known to be controlled by positive linear
operators of weak type(1, 1), see [MPS] [GMST1] [FGS]. In this way both parts
can be extended boundedly tolp−valued functions.

As a consequence we obtain, for example, that for weightsv satisfying

v
− 1

p−1 ∈ L1(dγ ), 1 < p < ∞, there exists a weightu such that any of the
above operators is bounded fromLp(vdγ ) into Lp(udγ ).
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