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Abstract. In this paper, for each givep, 1 < p < oo, we characterize the weightsfor which

the centered maximal function with respect to the gaussian measure and the Ornstein-Uhlenbeck
maximal operator are well defined for every functio.ii(vdy ) and their means converge almost
everywhere. In doing so, we find that this condition is also necessary and sufficient for the existence
of a weightu such that the operators are bounded frbf{vdy) into L? (udy). We approach

the poblem by proving some vector valued inequalities. As a byproduct we obtain the strong type
(1, 1) for the “global" part of the centered maximal function.

Mathematics Subject Classification (19942B20, 42B25, 42C10

1 Introduction

In this work we obtain some weighted inequalities for operators related to the
gaussian harmonic analysis, namely those associated to the study of the Ornstein
Uhlenbeck semigroup.

Let y be the gaussian measurel, that isdy (z) = e~*dz. The initial
guestion we pose is the following: given a fixed operdtpbounded inL”(dy)
for somep, 1 < p < oo, find necessary and sufficient conditions for a weight
in order to have f (x) < oca.e.x forevery f € L?(vdy). However, it turns out
that this question is equivalent to the problem: given a fixed opefatoounded
in L?(dy) for somep, 1 < p < oo, find sufficient and necessary conditions for
a weightv in order to exist a non trivial weight such thatl’ becomes bounded
from L?(vdy) into L? (udy).
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This last question, nowadays classical in the context of Euclidean Harmonic
Analysis, was first formulated by B. Muckenhoupt and solved for particular
operators by several authors, see [GC,R] and the references there. Latter on
J.L. Rubio de Francia realized that this type of results could be obtained from
appropiate vector valued inequalities for the operator under consideration.

In this paper, we take Rubio de Francia’s approach, so we start the study of
the centered maximal function with respect to the gaussian measure, by deriving
a kind of Fefferman-Stein inequality (see Theorem 2.10).

To achieve this result, as it is usual in gaussian harmonic analysis, we de-
compose the operator in its “local" and “global” parts. For the first, we use that
it essentially behaves as a singular integral and we apply the theory of vector
valued Calderh-Zygmund operators. As for the global part, we get a bound in
terms of a positive integral operator which we prove itis of strong {ip#) (see
Theorem 2.7). This behaviour came as a surprise to us, since the same procedure
when applied to other related gaussian operators like Ornstein-Uhlenbeck max-
imal opeartor, first and second order Riesz transforms and multipliers, always
leads to positive integrals operators which are, as far as we know, just of weak
type (1, 1), see [P] [MPS] [FGS] [GMST1] [GMST2].

In this way we found the precise condition on the wei(g;,hhamelyv’TE1 €
LY(dy), which solves the problems stated above. This condition is also the
natural necessary and sufficient condition for uniform boundedness and almost
everywhere convergence of the gaussian means of functiohg(miy). All
these results are contained in Theorem 2.12.

In section 3 we also give some outlines of how to achieve similar results for
others operators, like the Ornstein-Ulhenbeck maximal operator, Riesz Trans-
forms andg—functions.

Next we introduce some notation and definitions and we state several known
results which will be used often in the sequel.

Given By, B, Banach spaces, | denote either the Lebesgue or the Gauss
measure ofR” and N, denote the regiof(x, y) : |[x — y| < m}. We shall
consider alinear operat@rdefined inLg’; , the space oB; — valued, compactly
supported and essentially bounded functions, into the spaBe-ofalued and
strongly measurable functions @&, satisfying the following assumptions:

1. T extendsto a bounded operator either frbﬁll(du) into L‘gz (dp) for some
q,1<q < oo, orfromLy, (dpu) into weakd, (du).

2. There exists & (B1, B,)—valued measurable functioki, defined on the
complement of the diagonal IR” x R", such that for every functiorf in
L8~,OB:L

Tf(x) = / K(x.y) FOdy,
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for all x outside the support of ; where the kernek satisfies the estimates

1K (x, y) < -
lx — yl

o K G, I+ 10,K (e, Il < X =yt

for all (x, y) in the local regionV,, x # y.
Following [GMST2] we introduce some definitions. For an operdtoas

above, giverpy a smooth function oR” x R" suchthab (x, y) = 1if (x, y) € Ny,
@(x,y) =0for(x,y) ¢ N2 and

(1.2) 8.9, M| + 18y 0x, I < Clx =y 7H if x # y,
we define theylobal and thelocal parts of the operatdF by

Tyon f () = / K (x. y)(L— g(x. 1)) F()dy,
Tlocf(x) = Tf(x) - Tglohf(x)-

Definition 1.2 We shall say that an operatdr defined onLg’;, into the space
of B,—valued strongly measurable functiondasal if its kernel is supported in
No.

We shall use the following results, which can be found in [GMST2].

Proposition 1.3 If the operatorT satisfies assumptions 1 and 2 as above, then
the operator7j,. is bounded fromL} (dy) into L} (dy) and from L (dx)

into ng(dx) , forl < p < oo. MoreoverT,. is bounded frorrL}gl(du) into
WeakL%;2 (dw), both, with respect to the Lebesgue and the Gauss measure.

Proposition 1.4 If S is a local operator, then the weak typg 1) for Lebesgue
and Gauss measures are equivalent.

We shall also need the following theorem due to Rubio de Francia, see [GC,R]
p. 554.

Theorem 1.5 Let(X, u) be ameasure spac€,a Banach space antl a sublin-
ear operator fromG into L*(X), which satisfies for sone< p, the folllowing
inequality

1/p 1/p

P P
2174 = Cps | 2215
j Ls(x) j

whereC,  is a constant depending om and s. Then there exists a positive

functionu such that:—* € L7 (X) and

1/p
</X|Tf(X)I”u(X)dM(X)) <1fllo
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We derive a simple consequence of Rubio de Francia theorem, since this will
be the useful statement for us.

Corollary 1.6 LetT be a sublinear operator such that

1/p 1/p
C
y |x: (waj(x)v’) > k] = T/Rn (Zlfj(x)”) dy (x)
j j

then, for anyv such thatfR,, v‘ﬁ(x)dy(x) < oo ands < p, there exists a
positive function: such that:=* € Lﬁ(X), and

ITf1Pu(x)dy (x) < . | f17v(x)dy (x)

R»

Proof.Sincey (R") is finite ands < p, we have by using Kolmogorov’s inequal-

ity that
1/p
< C, supry ([x: (Z Tfj(x)p) > A})
Loy >0 F

1/p
J
1/p
< C, /R (; }fj(x)r’) dy (x)

1/p
< (/R S )" v(x)dy(x))
J

L 1/p
X (/ v_l’—l(x)dy(x))

1/p
<G, (/R > }f,-(x)lpv(x)dy(x))
J

1/p
P
LP(vdy) ’

Therefore we are in the hypothesis of Theorem 1.5 Witk L7 (vdy), and the
corollary follows. O

-c. (Zm
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2 The centered maximal function

Given the centered Hardy-Littlewood maximal operator with respect to the gaus-
sian measurg, that is

’

M, f(x) = SU(E)IArf(X)I = sup

r>0

1
S d
S (Br.r) /Rnf(y) y()

we consider the operatond, ; and M, , defined by

My,lf(x) = Sup

r>0

XHlx—yISmin(%,z‘%)} (y)f(y)dy(y)‘

y(B(x, 7)) JB(x.r) \

and

My,Zf(x) = Sup

r>0 I

Y(BGx. ) (11 d )
Y(B(x, 1) Jper X{Ix—y\>m|n(§,w)}(y)f(y) J/(y)‘

For the latter operator we have the following result

Theorem 2.7 There exists a positive kerngl(x, y) such that the operator de-
fined by

Pf(x) = [ P(x,y) f(y)dy satisfies
M,>f(x) < Pf(x)a.ex,

and P is of strong typg1, 1) with respect to the gaussian measure. Moreovet,
the kernel is supported in the region — y| > min(Z, ﬁ), and the following
estimates hold

P(x.y) < Cly["e*DF=Fl i |x) > 1 mdu—ﬂf%l
x|

< Clx[Pe PPl it x| >1 and |x — y| > 5

<Ce M if |x] <1,
for some positive andé.

Proof. Let us denote by. the setL = {(x, y) : |x — y| < min(3, ﬁ)}, then

My,Zf(x) = sup

r>0

Xee (e, ) fF)dy (DI

)/(B(X, I’)) B(x,r)

It is clear that this operator is bounded by the integral operator with kernel
H (x, y) given by

1 2
H(x,y) = sup———xp<(x, .r el
(x,y) DODV(B()”))XL X, V) xBx,n»(y)
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Also, itis easy to see that

1 2
— : =yl
H(x’y)SP(x’y)_y(B(x, |x_y|))XL‘(x7y)e

Now we shall make some calculations, foe= 3, to estimate by below the
Gauss measure of a general ik, R). Since the gaussian measure is rotation
invariant, we can assume that= |x|e,, and then we have

{lz— X|<R} \M|<R} {lul<R}
/ / / / —r2—|x|2— 2rCOSg01|x| n— lSIr{z o1

..SIN@,_2d@;...de,_1dr

5 R 2 b4 b4 /2 5
> e—lx\ / / / / / e lelxlCOS(plrn—l Sirfl_z @1
0 0 0 0 0

..SiN@,_2d@;...0,_1dr

R pm/2
L _R2 ) . B
> Cp.pp€ xl"—R / / e? 1001 sin gy drr™"2dr

—|x? 2r|x| cosgo
e e~
e dur"2dr
T

e—lxl e~ Rn 2 2r|x| cosgo .
>Crpy— e“dudr,
|x] r/2Jo

wheregg, 0 < ¢g < /2 denotes a fixed angle and we have done the change of
variablesy = 2r|x| cosy;. If we now assume that

(2.8) R|x|cospy > B > 0,
the double integral above can be estimated by below by
—B\2

A= oageos,

2|x| cosgo
Therefore in this case, we get the estimate

—|x|2 —Ran—Z
(2_9) y(B(x, R)) > Cn’woyﬂ%eZRlxlcoswo
X

forn > 3. Itis easy to check that for = 2 we get the same type of estimate,
while for n = 1 we obtain
—x2 —R?

e e
y(B(x, R)) > cn,wo,,sTezR‘X'.
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In order to estimate the kernel, we consider first the case whe@mjh) =

% that is|x| > 1. Then for(x, y) € L€, the condition 2.8 is satisfied for
R = |x — y|, SO we may apply estimate 2.9 with= |x — y|. Then we have

2 eey2 —2x—
elI7 el =1 |y |22l —llxIcosgo

2
P(x,y) < Cﬂ;@o,ﬂ Ix — y|n—2 eV

2 2 COly— —v|2
< Cpyo e e x| ne2rylixlcospo Iyl

where we have used — y| > m We observe that even the estimate 2.9 for

the case: = 1 was sligthly different we can also arrive to the last inequality.
To further estimate the kernel we distinguish two cases.
First supposéx — y| < 5, which implies! < |y| < 221 Therefore, under
these assumptions, we have

Ix|"e lx—y[? e 2x—yllxIcospo =Cly|"e [x=y|(lx—y|—2|x| cospo)
< Cly[re W IHI2eos=3) < C|y|ne= 30kl
whereé is some positive number, provided we taikesmall enough.

Second, let us assume — y| > % This, together withix| > 1, gives
|x — y| = 3 and hence

1 e~ 1x1? glxI cospo
y B, |x=yD =y ( (x 5)) > Cn,(po,ﬂT-

Consequently
2 2
P(x,y) < Cn,wo,ﬁelx‘ e—l)l e |X|005<ﬂ0|x|2'

We point out that fon =1 this estimate also holds sinpg > 1.
Finally if min(3, o |) = 1, wehavex| < 1.InthiscaseB(x, 3) C B(x, [x—
y|) and therefore

Y (B(x, |x — y])) = / e Pdz = e B, 1) = C
lx—zl<3

This ends the proof of the estimates stated in the theorem. Let us see now that
the operatofP is of strong typg1, 1).

/ f e,y ldydy (x) < C f e / ( / |y|"e5”””'dx) dy
e / L ()le < / |x|2e—X'8dx> dy
+ C/ |f(y)|e_‘y|2 (/ e_xlzdx) dy

< Cllfllpray, -
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where in the innner integral of the first term we have perfomed the change of
variablesy = (x — y)|y|. a

Now we are going to combine the estimate just provedMgr, with the
results for local operators stated in Proposition 1.4 in order to get a vector valued
inequality for the centered maximal operaidy, .

Theorem 2.10 Givenl < p < oo, the following inequality holds
1/p 1/p

C
(1 (Smswr| =ap) <5 [ (Smwr] ao.
J

J

Proof. It is clear that

My,lf(x) = sup
0<r5min<%,ﬁ)

_ d .
'V(B(X,r)) B(x,r)f(y) V(y)‘

Moreover ifz € B(x,r),r < min(3, ﬁ), we get that there exists a constant

C such thatC—le=?* < ¢=1* < Ce . To see this obseve that!?® =
e*“*x'ze*Z“*x’“e*'X‘z, andthatl <z —x,x > | < % and|z — x| <r < %

Then we getV,, 1 f(x) < CMf(x), whereM is the Hardy-Littlewood operator
with respect to the Lebesgue measure. Then by the well known result for the

operatorM, we get thatV,, ; satisfies
1/p

(D IMafi@r | >
J

1/p

c
(2.11) =3/ Y] dx.
J

If now we consider thé>—valued version of the operatdf, ; given by

1

S 1 d
B o X[<x,y);|x_y|§mm(§,m)}(y)f(y) J/(y)}

Vi) = { ;
inequality 2.11 says that is bounded fronL;, (dx) into weakd, ;. (dx). We
notice thatV is a local operator since it is easy to check tfat y) : |x — y| <
min(3, 551)} C N2. Therefore we can apply Proposition 1.4 to get thais
bounded fromL}, (dy) into weakd}, ,(dy), but this, in turn, implies that
M, , satisfies the desired inequality.
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On the other hand it is well known that a positive linear operator bounded
from L(du) into L(dw) with du any measure, has a vector valued bounded
extension fronL} (d ) into L (d ) for any Banach spadg, see [RT]. Applying
Theorem 2.7 and this remark to the operatoto the Banach spadg = /” and
to the gaussian measure, we have that

1/p 1/p

fZIMy,zfj(X)l” dy(x)s/ YOIPL@IP | dyx)
J

J
1/p

sc[|Zinwr] arw.
J

giving the result. O

The Theorem we just proved allows us to use the connection between vector-
valued estimates and weightéd inequalities, as stated in Corollary 1.6

Theorem 2.12 Givenl < p < oo andv a positive measurable function, the
following conditions are equivalent

(i) Foreveryf e L?(vdy),lim,_ oA, f(x) = f(x)a.e.x,
whereA, f (x) = st [y ) FO)dY ().

(i) Foreveryf e LP(vdy), M, f(x) < oo a.e.x.

(iif) There exists a positive measurable functw@and a constanC such that
foreveryf € L?(vdy) and allA > 0, we have

C
/ w(dy () < / L @IPv)dy ().
{xeR™:M, f(x)>1} R~

(iv) There exists a positive measurable functioand a constanC such that
foreveryf € L?(vdy) we have

. M, f () u(x)dy (x) < C/Rn |f ) Pv(x)dy (x).

(v) There exists a positive measurable functioand a constanC such that
foreveryf € L?(vdy) and allA > 0, we have

C
sup ux)dy(x) < — | f O v(x)dy (x).
r>0 J{xeR™|A, f(x)|>A) AP JRa

(vi) There exists a positive measurable functioand a constantC such that
foreveryf € L?(vdy) we have

sup | [A, f)Pu(x)dy(x) < C/Rn Lf )Pv(x)dy (x).

r>0 JR"
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(i) v 7T € Li(dy).

Moreover the weightt whose existence is guaranteed in (iii),(iv),(v) or (vi)
satisfieg|u 1| < oo forevery0 < s < 1.

S
L7 dy)

Proof.We shall prove this theorem as follows:

(vii) = (iv) = (vi) = (V) = (vii);

(iv) = (i) = (i) = (i) = (i) = (v).

We first observe that implications (i (vi), (vi) = (v), (iv) = (iii), (i)
= (ii) and (iii) = (v) are obvious. Since lim,,, A, f(x) = f(x) a.ex. for
every f € L?(vdy) N L*(dy) which is a dense subset bf (vdy), the Banach
Principle says that (iii}= (i). In order to see that ()= (vii) we first observe
that there is a positive radius such that O< fB(QS) u(y)dy (y). Now for any

R > S we haveAzg (xpo.p)| /D) = RN [ xp0.8)(@) f(@Idy(2), y €
B(0, S). Applying the hypothesis, we have

0</ u(y)dy (y) 5/ u(y)dy (y)
B(0,S) {y:A2r (xBO,R) D= R~ [ 1x80,R) fldV}

C
= UTewo f\dy)”/ X800 (M f W[ vy ().
B(O,R)

Hence we get(f |xso.nMf(M|dy(M?P < C [lxsorfOI"v(y)
dy(y), for everyR > S, in particular this implies that/ | f (y)|dy (y))? <
C [1fOMIPv(y)dy(y). If we set f = gv~Y? the last inequality can be writ-
ten as(f 1g(M v Y7 (y)dy(y)” < C [lg(»IPdy(y), and this implies that
v=YP e L¥ (dy) which is (vii).

Next we show that (vii}= (iv)

By Theorem 2.10, the operatdf, satisfies the hypotheses of Corollary 1.6,
therefore there exists a weightsuch that

A\Myf<x>\”u<x>dy<x>sch | f ()P v(x)dy (x).

and|lu™Y s < oo foreveryO< s < 1.
L7 (dy)

Now, we shall prove (ii}= (iii). If 1 < p < 2we canuse Nikishin’s Theorem,
see VI.1.4 and VI.2.7 in [GC,R] obtaining (iii) for this range pflf 2 < p we

. 1
write w = v?-I and we have

L%(wdy) C L?(vdy) + L*(dy),

since any positive functiofi € L?(wdy) can be decomposed @is= g+h, with
1

gx) = f(x)if f(x) < v 7I(x)andOotherwise. By hypothesi$, g(x) < oo,

moreover ag € L'(dy) we also haveM, h(x) < oo thereforeM,, f(x) < oo.
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Applying Nikishin's theorem again witlp = 2 and the weightv, there exists
a positive functioru such that (iii) holds withp = 2 andw. Since we already
proved that (iii)= (v) and (v)= (vii) we can conclude that the weightsatisfies

[w™(x)dy(x) < oo and that meang U_P%ldy(x) < o0. O

3 Weighted inequalities for related operators

What we have done for the maximal operator can also be carried out for other op-
erators. The crucial step in our development has been the vector-valued inequality
in Theorem 2.10. We remind that its proof relies on an appropiate analysis of the
“local" and “global” parts of the operator, allowing suitable vector-valued exten-
sions. Now, as an example, we work out this program for the Ornstein-Uhlenbeck
maximal operator, hamely

O*f(x) = sup |0, f(x)| = sup

O<r<l1 O<r<1

” M, (x, y) f(y)dy

’

where
M, (x,y) = 72 (1— r2)_"/2 exp( — lrx — y|2
r ’ 1 _ ]"2 .
Theorem 3.13 Givenl < p < oo, the following inequality holds
1/p
y {{x:[ D107 0] >
J
1/p

C
(3.14) =5 L. SIHE@IP | dy).
J

Proof. Given the operato©*, we consider its vector valued version given by

WFx) = { /R M y)f(y)dy} .

Since O* is of weak type(l, 1) with respect to the Gaussian measure, see
[P], we have that¥ is bounded fromL1(dy) into weak-L}.(dy) and so it
is W,.. By proposition 1.4 the operatd¥,,. is bounded fromL!(dx) into
weak- L} (dx). Moreover the kernel satisfies assumption 2; in particular it is
a Caldeon-Zygmund operator and consequently bounded figpidx) into
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weaki}p(lw)(dx), see [RRT]. Applying again Proposition 1.4 we get tha,
is bounded fromLj, (dy) into weakd}, ,~,(dy). On the other hand

|| ngobf(x)”loo < 0f(x)
(3.15) = /R sup |(L— ¢(x, )M, (x, y) f(»)|dy.

n 0<r<l1
Since this operato is positive and of weak typé€l, 1) with respect to the
gaussian measure, see [P], it has a bounded extension fiaay ) into weak-
L},(dy). It follows from 3.15 thatW,,,, is bounded fromL}, (dy) into weak-
L}p(lw)(dy). This ends the proof by observing that f (x) = || Wf (x)|[;c. O

Now we are in position to state a parallel result to Theorem 2.12 for the
Ornstein-Uhlenbeck maximal operator.

Theorem 3.16 Givenl < p < oo andwv a positive measurable function, all
the conditions (i) to (vii) of the Theorem 2.12 are equivalent if we change the
operatorsA,, M, by the operator®,, O*, andlim,_ A, bylim,_1 O,.

Moreover the weight whose existence is guaranteed satisfiest||

< ooforevery0 <s < 1.

s
LP=s(dy)

Proof. The proof follows the lines of that of Theorem 2.12. We shall only point
out where some differences appear. First, we use Theorem 3.13 in order to prove
(vii) = (iv). Observe thaDqo f (x) > C [ f(y)y (y)dy for everyx € R” and then

we can repeat the argument of &) (vii). On the other hand itis well known, see

[M], thatlim,_1 O, f(x) = f(x) for everyx € R"” and f a continuous function

with compact support, therefore the Banach Principle can be applied as in the
case of thed, means. O

Remark 3.17We point out that inequality 3.13 holds true for the first and second
order Riesz Transforms and also for some suitgbl@unctions. As in the case of
the Ornstein-Ulhenbeck operator the proofs rely again in the analysis of the local
and global parts. As in the previous cases it can be shown that their local parts are
essentially Calderi-Zygmund operators (possibly with vector valued kernels).
On the other hand, the global parts are known to be controlled by positive linear
operators of weak typgl, 1), see [MPS] [GMST1] [FGS]. In this way both parts
can be extended boundedly/to-valued functions.

As a consequence we obtain, for example, that for weighsstisfying

VT € Li(dy),1 < p < oo, there exists a weight such that any of the
above operators is bounded frami(vdy) into L? (udy).
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