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Abstract. Recently, M. D. Sarrión and the authors gave a sufficient condition on
invertible Lamperti operators on Lp which guarantees the convergence in the Cesàro-
α sense of the ergodic averages and the ergodic Hilbert transform for all f ∈ Lp with

p > 1
1+α

and −1 < α ≤ 0. The result does not hold for the space L
1

1+α . In this

paper we give a positive result for the smaller Lorentz space L 1
1+α

,1.

1. Introduction.

Let (X,F , µ) be a σ-finite measure space. In [14], R. Sato studied the almost ev-
erywhere and the Lp-norm convergence of the ergodic averages Rnf = 1

n

∑n−1
k=0 T kf

and the ergodic partial sums Hnf =
∑n

k=1
T kf−T−kf

k corresponding to the ergodic
Hilbert transform. This study was done for invertible Lamperti operators on Lp(µ),
1 < p < ∞, (see [9] for the definition and the properties) such that the linear mod-
ulus |T | of T satisfies the following norm condition: supn≥0

∥∥∥ 1
2n+1

∑n
k=−n |T |k

∥∥∥
p

<

∞.
The convergence of {Rnf} is the Cesàro-1 (C, 1) convergence of the sequence

{Tnf} and the convergence of the partial sums {Hnf} is the (C, 0) summability of
the ergodic Hilbert transform, i.e., of the series

∑∞
k=1

T kf−T−kf
k . The general aim

of this paper is to continue the study of the Cesàro-α convergence of {Tnf} with
0 < α < 1 and {Hnf} with −1 < α < 0, which was initiated in [3], [4] and [8].

Recently the authors and M. D. Sarrión studied in [2], in the setting of Lamperti
operators (see also [10]), the convergence in the Cesàro-α sense (see [17] or [5])
of the sequences {Tnf} and {Hnf}. In fact, for −1 < α < 0, it was studied the
(C, 1 + α) convergence of {Tnf} and the (C, α) summability of the ergodic Hilbert
transform, i.e., the limits of the following sequences

Rn,1+αf =
1

A1+α
n

n∑

k=0

Aα
n−kT kf and Hn,αf =

1
Aα

n

n+1∑

k=1

Aα
n+1−k

(
T kf − T−kf

k

)

where the Cesàro numbers Aα
n are defined by Aα

n = (α+1)···(α+n)
n! and Aα

0 = 1. More
precisely, in [2] it was proved the following theorem.
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Typeset by AMS-TEX

1



2 A. L. BERNARDIS AND F. J. MARTÍN-REYES

Theorem 1.1 [2]. Let (X,F , µ) be a σ-finite measure space, −1 < α < 0, 1
1+α <

p < ∞ and T an invertible Lamperti operator on Lp(µ) such that the linear modulus
|T | of T satisfies

sup
n≥0

∥∥∥∥∥
1

2n + 1

n∑

k=−n

|T |k1+α

∥∥∥∥∥
p(1+α)

< ∞, (1.1)

where Tβ is the linear operator given by Tβf = [T (fβ)]1/β for f ≥ 0. Then, for all
f ∈ Lp(µ), there exist the limits

lim
n→∞

Rn,1+αf and lim
n→∞

Hn,αf

almost everywhere and in the strong operator topology.

The study of the averages Rn,1+αf in Theorem 1.1 is a simple modification of
the corresponding result proved in [10] in the setting of the positive linear operators
with positive inverse. It is clear from the proofs of Theorem 1.1 in [2] or Theorem
3.1 in [10] that for the convergence of the averages Rn,1+αf we actually need a
weaker condition than the assumption (1.1).

Theorem 1.2 ([10] or [2]). Let (X,F , µ), α and p be as in Theorem 1.1. Let T
be an invertible Lamperti operator on Lp(µ) such that

sup
n≥0

∥∥∥∥∥
1

n + 1

n∑

k=0

|T |k1+α

∥∥∥∥∥
p(1+α)

< ∞. (1.2)

Then, for all f ∈ Lp(µ), there exist the limits limn→∞Rn,1+αf almost everywhere
and in the strong operator topology.

Theorems 1.1 and 1.2 do not hold in the limit case p = 1
1+α . Y Deniel proved

in [4] this fact for the averages Rn,1+α and the corresponding result for Hn,α was
proved in [2].

On the other hand, in [12], R. Sato studied the limit case p = 1 of his result,
mentioned at the beginning of the introduction. He studied the ergodic Hilbert
transform but it is worth noting that the result also holds for the averages Rnf .
The theorem proved by Sato is the following.

Theorem 1.3 [12]. Let T be an invertible Lamperti operator on L1(µ) such that

sup
n∈Z

||Tn||1 < ∞ (1.3)

and
sup
n∈Z

||Tn||∞ < ∞. (1.4)

Then the limit limn→∞Hnf exists almost everywhere for all f ∈ L1(µ).

The goal of this paper is to give a positive result of Theorems 1.1 and 1.2 in
the the limit case p = 1

1+α . In both cases we shall obtain almost everywhere
convergence for functions f in the Lorentz space L 1

1+α ,1(µ) = {f : ||f || 1
1+α ,1;µ =

∫∞
0

(
λf (t)

)1+α
dt < ∞}, where λf (t) = µ({x : |f(x)| > t}) is the distribution

function of f . More precisely, we prove the following theorems.
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Theorem 1.4. Let (X,F , µ) be a σ-finite measure space, −1 < α ≤ 0 and T an
invertible Lamperti operator on L

1
1+α (µ) such that

sup
n≥0

∥∥∥∥∥
1

n + 1

n∑

k=0

|T |k1+α

∥∥∥∥∥
1

= M1 < ∞ (1.5)

and
sup
n∈Z

||Tn||∞ = M∞ < ∞. (1.6)

Then the limit limn→∞Rn,1+αf exists almost everywhere, for any f in L 1
1+α ,1(µ).

Theorem 1.5. Let (X,F , µ) be a σ-finite measure space, −1 < α ≤ 0 and T an
invertible Lamperti operator on L

1
1+α (µ) such that

sup
n≥0

∥∥∥∥∥
1

2n + 1

n∑

k=−n

|T |k1+α

∥∥∥∥∥
1

= M2 < ∞ (1.7)

and
sup
n∈Z

||Tn||∞ = M∞ < ∞. (1.6)

Then the limit limn→∞Hn,αf exists almost everywhere, for any f in L 1
1+α ,1(µ).

Notice that, Theorem 1.4 generalizes Corollary 1 in [3]. We have also that
Theorem 1.3 is obtained from Theorem 1.5 when α = 0, since condition (1.3)
implies condition (1.7).

Throughout this paper α will be a number such that −1 < α ≤ 0 and the letter
C will mean a positive constant non necessarily the same at each ocurrence.

2. Preliminary results.

This section is devoted to establish some results and several properties of the
Lamperti operators that we shall need in the proof of the theorems.

Let (X,F , µ) be a σ-finite measure space, −1 < α ≤ 0 and T an invertible
Lamperti operator on L

1
1+α (µ). T is called a Lamperti operator on L

1
1+α (µ) if T is

a bounded linear operator on L
1

1+α (µ) such that T separates supports. It follows [9]
that there exists a positive linear operator Φ on the space of measurable functions,
induced by a σ-endomorphism of the σ-algebra F , also denoted by Φ, such that

Φ (χE) = χΦ(E),

and a measurable function h on X, with 0 < |h(x)| < ∞ a.e. on X, such that

Tf(x) = h(x)Φf(x), for all f ∈ L
1

1+α (µ).

The operator Φ verifies that Φ1 = 1 and Φ(|f |r) = |Φ(f)|r, for any positive r. On
the other hand, since T−1 is also an invertible Lamperti operator, it is clear that if
h1(x) = h(x) then the powers of T and T−1 are of the form

T jf(x) = hj(x)Φjf(x), for all j ∈ Z,
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where the functions hj verify also that 0 < |hj(x)| < ∞ a.e. on X and hj+k =
hjΦj(hk), for all j, k ∈ Z. It is easy to see that

||T j ||∞ = ||hj ||∞, for all j ∈ Z. (2.1)

Other important property is the existence of a sequence of positive measurable
functions {wj} such that wjΦj(w−j) = 1 and

∫ ∣∣T j(f)
∣∣ 1
1+α wj dµ =

∫
|f | 1

1+α dµ. (2.2)

For such an operator T , there exists a positive linear operator |T | on L
1

1+α (µ)
such that |Tf | = |T ||f |, for every f ∈ L

1
1+α (µ). |T | is also an invertible Lamperti

operator, called the linear modulus of T . We can easily see that |T |f = |h|Φf and
for each integer j, |T |jf = |hj |Φjf . Observe that |T |j1+αf = |hj |

1
1+α Φj(f).

From (2.1) and the relation hjΦj(h−j) = 1 we can prove easily the following
proposition that we will use in the proof of the theorems.

Proposition 2.1. Let (X,F , µ) be a σ-finite measure space, −1 < α ≤ 0 and T

an invertible Lamperti operator on L
1

1+α (µ) such that T verifies (1.6). Then, for
all j ∈ Z and almost every x ∈ X

1
M∞

≤ |hj(x)| ≤ M∞.

A key fact in the proof of the theorems is the relation between the assumptions
on the operator and the classes of weights A1(Z) and A+

1 (Z).

Definition 2.2. Let v be a nonnegative function on the integers.
(i) v ∈ A1(Z) if there exists a constant C such that

sup
n≥0

1
2n + 1

n∑

k=−n

v(i + k) ≤ Cv(i), for all i ∈ Z.

(ii) v ∈ A+
1 (Z) if there exists a constant C such that

sup
n≥0

1
n + 1

n∑

k=0

v(i− k) ≤ Cv(i), for all i ∈ Z.

The next proposition establishes the relations between the assumptions (1.5) and
(1.7) and the classes A1(Z) and A+

1 (Z).

Proposition 2.3. Let (X,F , µ) be a σ-finite measure space, −1 < α ≤ 0 and T

an invertible Lamperti operator on L
1

1+α (µ).
(i) If T verifies (1.5) then, for almost every x ∈ X, the functions wx(i) = wi(x) ∈

A+
1 (Z), with a constant independent of x.

(ii) If T verifies (1.7) then, for almost every x ∈ X, the functions wx(i) = wi(x) ∈
A1(Z), with a constant independent of x.
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Proof. (i) By the assumption (1.5) applied to a function f = |T |i1+α(g) with g ≥ 0,
g ∈ L1(µ) and i ∈ Z, we have

1
n + 1

n∑

k=0

∫

X

[|T |i+k
(
g1+α

)] 1
1+α dµ ≤ M1

∫

X

[|T |i (
g1+α

)] 1
1+α dµ,

for all n ∈ N. On the other hand, the property (2.2) of T for f ≥ 0 can be written

as
∫ [|T |j(f)

] 1
1+α dµ =

∫
f

1
1+α w−j dµ for all j ∈ Z. Then, applying this equality

in both integrals of the above inequality we have

∫

X

g(x)

[
1

n + 1

n∑

k=0

w−i−k(x)

]
dµ(x) ≤ M1

∫

X

g(x)w−i(x) dµ(x),

for all g ≥ 0, g ∈ L1(µ) and all n ∈ N. Now (i) follows immediately with constant
M1.

The proof of (ii) is similar. Thus, we omit it.

In the proofs of the theorems we shall use weighted inequalities for the discrete
maximal Hilbert transform

h∗a(i) = sup
n≥1

∣∣∣∣∣
n∑

k=1

a(i + k)− a(i− k)
k

∣∣∣∣∣

and the maximal operator m+
1+α associated with the Cesàro averages of functions

defined on the integers

m+
1+αa(i) = sup

n≥0

1
A1+α

n

n∑

k=0

Aα
n−k|a(i + k)|.

For the operator h∗ we have the following result (see [6]).

Theorem 2.4 [6]. Let v be a positive measurable function on the integers. Then,
v ∈ A1(Z), if and only if, there exists a constant C such that

∑

{i:h∗a(i)>λ}
v(i) ≤ C

λ

∞∑

i=−∞
|a(i)|v(i)

for all λ > 0 and all functions a on Z.

On the other hand, for the operator m+
1+α, we have the following result which

is Theorem 2.7 proved in [11] applied in our setting (see Proposition 2.4, Example
2.5 (3) and Remark 2.8 in [11]).

Theorem 2.5 [11]. Let −1 < α ≤ 0 and v be a positive function on the integers.
Then, the following statements are equivalent.

(i) The operator m+
1+α applies the space L 1

1+α ,1(v) into the space L 1
1+α ,∞(v), that

is, there exists a constant C such that

∑

{i:m+
1+αa(i)>λ}

v(i) ≤ C

λ
1

1+α




∫ ∞

0


 ∑

{i:a(i)>t}
v(i)




1+α

dt




1/1+α

, (2.3)
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for all functions a on Z.
(ii) There exists a constant C such that

∥∥χ[r,s]

∥∥
1

1+α ,1;v

∥∥∥∥
Aα

k−·
v(·) χ[s,k]

∥∥∥∥
− 1

α ,∞;v

≤ CA1+α
k−r ,

for all integer numbers r, s and k with r ≤ s ≤ k, i.e., there exists a constant C
such that

sup
r≤s≤k

(
A1+α

k−r

)−1




s∑

j=r

v(j)




1+α

sup
t>0

t




∑

{j∈[s,k]:
Aα

k−j
v(j) >t}

v(j)




−α

< ∞. (2.4)

An important result that we shall need in the proof of Theorem 1.4 is the equiv-
alence between condition (2.4) and the class of weights A+

1 .

Lemma 2.6. Let v be a positive measurable function on the integers. Then, v ∈
A+

1 (Z), if and only if, v verifies (2.4).

Proof. We start proving that A+
1 (Z) implies (2.4). For fixed t, r, s and k, let E =

{j : j ≤ k,
Aα

k−j

v(j) > t} and Es,k = E ∩ {s, . . . , k}. Let ` be the number of elements
of Es,k. We may assume that ` > 0. Since v satisfies A+

1 (Z) then we have for all
i ∈ Es,k

s∑

j=r

v(j) ≤ C(k − r + 1)v(i) ≤ C(k − r + 1)
Aα

k−i

t
.

Therefore
s∑

j=r

v(j) ≤ C(k − r + 1)
t`

∑

i∈Es,k

Aα
k−i. (2.5)

By (2.5) and the definition of Es,k we get that

(
A1+α

k−r

)−1




s∑

j=r

v(j)




1+α

t


 ∑

i∈Es,k

v(i)



−α

≤

≤ (
A1+α

k−r

)−1


C(k − r + 1)

t`

∑

i∈Es,k

Aα
k−i




1+α

t


1

t

∑

i∈Es,k

Aα
k−i



−α

=
C(k − r + 1)1+α

A1+α
k−r

∑
i∈Es,k

Aα
k−i

`1+α
.

Observe that
∑

i∈Es,k
Aα

k−i ≤
∑`−1

k=0 Aα
k since the possible terms to add are Aα

0 , . . . Aα
k−s

and we know [17] that Aα
0 ≥ Aα

1 ≥ · · · ≥ Aα
k−s. Now, keeping in mind that∑`−1

k=0 Aα
k = A1+α

`−1 and A1+α
n is essentially equivalent to n1+α [17], the right hand-

side of the above inequality is less than or equal to a constant C. The proof of the
first implication is finished.
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Now, we shall prove that (2.4) implies A+
1 (Z). Let r and s be such that r ≤ s.

Choosing k = s in (2.4) we have

(
A1+α

s−r

)−1




s∑

j=r

v(j)




1+α

1
v(s)

[v(s)]−α ≤ C.

Since A1+α
s−r is essentially equivalent to (s− r + 1)1+α we have that

1
s− r + 1

s∑

j=r

v(j) ≤ Cv(s),

which means that v satisfies A+
1 (Z).

Remark 2.7. For α = 0, the operator m+
1+α is the Hardy-Littlewood maximal op-

erator on Z and the equivalence between the statement v ∈ A+
1 (Z) and the weak

type (1,1) inequality for m+
1 with respect to v was previously proved in [1] (see also

[15]).

3. Proofs of Theorems 1.4 and 1.5

In order to prove Theorem 1.4 we need to study the maximal operator M1+α,T f =
supn≥0 |Rn,1+αf |. We shall prove that M1+α,T applies L 1

1+α ,1(µ) into weak-L
1

1+α (µ).
It suffices to prove this fact for positive operators, since M1+α,T f ≤ M1+α,|T ||f |.
Theorem 3.1. Let (X,F , µ), α and T be as in Theorem 1.4. Assume also that T
is positive. (Therefore |T | = T ). Then, there exists a constant C such that

µ({x : M1+α,T f(x) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;µ
,

for all λ > 0 and all f ∈ L 1
1+α ,1(µ).

Proof. Let f be a nonnegative function and let L ∈ N, L > 0. Let us define

ML
1+αf = ML

1+α,T f = sup
0≤n≤L

Rn,1+αf.

Now, given N ∈ N, by the properties of the Lamperti operator T and Proposition
2.1 we get that

µ({x : ML
1+αf(x) > λ}) =

1
N + 1

N∑

i=0

∫

X

χ{ML
1+αf>λ}(x) dµ(x)

=
1

N + 1

N∑

i=0

∫

X

[
T i

(
χ{ML

1+αf>λ}
)

(x)
] 1

1+α

wi(x) dµ(x)

≤ M
1

1+α∞
N + 1

∫

X

∑

{0≤i≤N : x∈Φi({ML
1+αf>λ})}

wi(x) dµ(x).

(3.1)
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Now, applying again Proposition 2.1 and the properties of T we have

χΦi({ML
1+αf>λ})(x) ≤ M∞T i

(
χ{ML

1+αf>λ}
)

(x)

≤ M∞
λ

T i
([

ML
1+αf

]
χ{ML

1+αf>λ}
)

(x)

≤ M∞
λ

T i
(
ML

1+αf
)
(x).

(3.2)

On the other hand, by the definition of ML
1+α, there exist pairwise disjoint measur-

able subsets of X, E0, E1, . . . , EL, such that ML
1+αf =

∑L
j=0 χEj

Rj,1+αf . Since
T separates supports, we have, for every i with 0 ≤ i ≤ N and all x ∈ X, that

T i(ML
1+αf)(x) =

L∑

j=0

T i(χEj Rj,1+αf)(x) =
L∑

j=0

χΦi(Ej)(x)T i (Rj,1+αf) (x)

≤
L∑

j=0

χΦi(Ej)(x)ML
1+α(T if)(x) ≤ ML

1+α(T if)(x)

≤ m+
1+α(gxχ[0,N+L])(i)

(3.3)

where gx(j) = T jf(x). Now, putting together (3.2) and (3.3) we obtain that
{0 ≤ i ≤ N : x ∈ Φi({ML

1+αf > λ})} ⊂ {i : m+
1+α(gxχ[0,N+L])(i) > λ

M∞
}. Then,

by (3.1) we have

µ({x : ML
1+αf(x) > λ}) ≤ M

1
1+α∞

N + 1

∫

X

∑

{i: m+
1+α(gxχ[0,N+L])(i)>

λ
M∞ }

wi(x) dµ(x).

(3.4)
If α = 0, by Proposition 2.3 (i), Lemma 2.6, Theorem 2.5 and the property (2.2)
we obtain that

µ({x : ML
1 f(x) > λ}) ≤ CM2

∞
λ(N + 1)

N+L∑

i=0

∫

X

T if(x)wi(x) dµ

=
CM2

∞(N + L + 1)
λ(N + 1)

||f ||1,

and letting N and then L tend to ∞ the proof is completed in this case.
On the other hand, if −1 < α < 0, then L 1

1+α ,∞;µ is a Banach space, since
1

1+α > 1. Therefore applying Theorem 3.13 in [16, p.195], which also holds for
the sublinear operator M1+α,T , it suffices to prove the theorem for characteristic
functions, i.e, to prove that

µ({x : M1+αχE(x) > λ}) ≤ C

λ
1

1+α

∫

X

χE dµ

for all λ > 0 and all measurable sets E. Taking f = χE in (3.4), applying Proposi-
tion 2.3 (i), Lemma 2.6 and Theorem 2.5 we get that

µ({x : ML
1+αχE(x) > λ}) ≤

CM
2

1+α∞
(N + 1)λ

1
1+α

∫

X




∫ ∞

0


 ∑

{0≤i≤N+L: gx(i)>t}
wi(x)




1+α

dt




1
1+α

dµ(x).
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Now, since the integral on t is zero if t > M∞, by the Hölder inequality and the
properties of the Lamperti operators we have that

µ({x : ML
1+αχE(x) > λ}) ≤ CM

2−α
1+α∞

(N + 1)λ
1

1+α

∫

X

∫ M∞

0


 ∑

{0≤i≤N+L: gx(i)>t}
wi(x)


 dt dµ(x)

=
CM

2−α
1+α∞

(N + 1)λ
1

1+α

N+L∑

i=0

∫

X

T i(χE)(x)wi(x) dµ(x)

=
CM

2−α
1+α∞

(N + 1)λ
1

1+α

N+L∑

i=0

∫

X

[
T i(χE)(x)

] 1
1+α (hi(x))1−

1
1+α wi(x) dµ(x)

≤ CM
2(1−α)
1+α∞ (N + L + 1)

(N + 1)λ
1

1+α

µ(E).

Letting N and then L tend to ∞ we are done.

Proof of Theorem 1.4. If T verifies the hypothesis of Theorem 1.4 then it is easy
to see that T is an invertible Lamperti operator on Lp(µ) with 1

1+α < p < ∞ and
verifies condition (1.2) in Theorem 1.2. In fact,

∥∥∥∥∥
1

n + 1

n∑

k=0

|T |k1+α (f)

∥∥∥∥∥
p(1+α)

≤
∥∥∥∥∥

1
n + 1

n∑

k=0

|hk|pΦk
(
|f |p(1+α)

)∥∥∥∥∥

1
p(1+α)

1

≤ M
p(1+α)−1
p(1+α)2∞

∥∥∥∥∥
1

n + 1

n∑

k=0

|T |k1+α

(
|f |p(1+α)

)∥∥∥∥∥

1
p(1+α)

1

≤ M
p(1+α)−1
p(1+α)2∞ M

1
p(1+α)
1 ||f ||p(1+α).

So that, by Theorem 1.2 there exists the limit limn→∞Rn,1+αf for all f ∈ Lp(µ)∩
L 1

1+α ,1(µ) for 1
1+α < p < ∞. Therefore, Theorem 1.4 follows from Theorem 3.1 and

the Banach’s Principle, since f ∈ Lp(µ)∩L 1
1+α ,1(µ) is a dense subset of L 1

1+α ,1(µ).

Now, we shall prove Theorem 1.5. Acting as in the proof of Theorem 1.4, but
using Theorem 1.1, we see that in order to prove Theorem 1.5 we only need to
establish the boundednees of the maximal operator H∗

αf = supn≥1 |Hn,αf |.
In [2], it was proved the pointwise estimate

H∗
αf(x) ≤ C

[
H∗f(x) + M1+α,|T | (|f |) (x) + M1+α,|T |−1 (|f |) (x)

]
,

where H∗f = H∗
0f is the maximal ergodic Hilbert transform. This result was proved

for an invertible Lamperti operator on Lp(µ) with 1
1+α < p < ∞ and −1 < α ≤ 0,

but it is easy to see that also holds for invertible Lamperti operators on L
1

1+α (µ)
(see the proof of Lemma 2.1 in [2]). In the following theorem we shall prove that the
maximal operator H∗ is of weak type ( 1

1+α , 1
1+α ). This fact together with Theorem

3.1 gives the desired boundedness of H∗
α:

µ({x : H∗
αf(x) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α ,1;µ
,

for all λ > 0 and all f ∈ L 1
1+α ,1(µ).
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Theorem 3.2. Let (X,F , µ), α and T be as in Theorem 1.5. Then, there exists a
constant C such that

µ({x : H∗f(x) > λ}) ≤ C

λ
1

1+α

||f ||1/1+α
1

1+α

,

for all λ > 0 and all f ∈ L
1

1+α (µ).

Proof. If −1 < α < 0, the result follows from a Sato’s result (see Lemma in [13]);
actually Sato proved the strong type ( 1

1+α , 1
1+α ) inequality for H∗.

Now we sketch the proof for α = 0. As in the proof of Theorem 3.1, we write
H∗

Lf = sup1≤n≤L |Hnf | = ∑L
j=1 |Hjf |χEj

, for L ∈ N, L > 0, where the sets Ej are
pairwise disjoint measurable subsets of X. Then, we obtain as in (3.1) with α = 0
that

µ({x : H∗
Lf(x) > λ}) ≤ M∞

N + 1

∫

X

∑

{0≤i≤N : x∈Φi({H∗
Lf>λ})}

wi(x) dµ(x)

On the other hand,

λ

M∞
χΦi({H∗

Lf>λ})(x) ≤ |T |i(H∗
Lf)(x)

≤ H∗
L(T if)(x) ≤ h∗(gxχ[−L,N+L])(i)

for all integers i, with 0 ≤ i ≤ N and where h∗ is the discrete maximal Hilbert
transform. The proof finishes as in the proof of Theorem 3.1 with α = 0 but using
now Proposition 2.3 (ii) and Theorem 2.4.

4. Final remarks

Remark 4.1. Theorem 1.4 does not hold if we omit the assumption (1.6). In order
to see this, we consider a positive invertible isometry S on L1([0, 1]) such that
Sn1/n does not converge a.e. to zero (the existence of S is guaranteed in the
proof of Theorem 3 in [7]). Since S is a positive invertible isometry then S is a
Lamperti operator and therefore it is of the form Sf = hΦf . Then Tf = h1+αΦf

is a Lamperti operator which is an isometry on L
1

1+α (dx) and it satisfies (1.5). We
shall see by contradiction that the conclusion of Theorem 1.4 does not hold. In fact,
if there exists the limit limn→∞Rn,1+αf a.e. for all f ∈ L 1

1+α ,1(dx) then, argueing

as in Theorem 1.22 in [17], limn→∞
T nf
n1+α = 0 a.e. for all f ∈ L 1

1+α ,1(dx) (this was
pointed out and shown to us by M. D. Sarrión). In particular, for f = 1, we have
0 = limn→∞ T n1

n1+α = limn→∞(Sn1
n )1+α a.e. which is a contradiction.

Remark 4.2. In [13], Sato proves that Theorem 1.5 does not hold in the case α = 0
if we omit (1.6).
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ergodiques fractionnaires, Ann. Inst. Fourier, Grenoble 39 (1989), no. 3, 689–714.
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