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ABSTRACT. Recently, M. D. Sarrién and the authors gave a sufficient condition on
invertible Lamperti operators on LP which guarantees the convergence in the Cesaro-
« sense of the ergodic averages and the ergodic Hilbert transform for all f € LP with

1
p > H-% and —1 < a < 0. The result does not hold for the space LT+ . In this

paper we give a positive result for the smaller Lorentz space L _1 ;.
T+a’

1. INTRODUCTION.

Let (X, F, 1) be a o-finite measure space. In [14], R. Sato studied the almost ev-
erywhere and the LP-norm convergence of the ergodic averages R, f = % Z;é Tk f
and the ergodic partial sums H,, f = ,_, w corresponding to the ergodic
Hilbert transform. This study was done for invertible Lamperti operators on LP(u),
1 < p < oo, (see [9] for the definition and the properties) such that the linear mod-

1 k
31 2ohe—n | T Hp <

ulus |T'| of T satisfies the following norm condition: sup,,> ‘

0.

The convergence of {R,, f} is the Cesaro-1 (C,1) convergence of the sequence
{T™f} and the convergence of the partial sums {H,, f} is the (C,0) summability of
the ergodic Hilbert transform, i.e., of the series Y ,- | ka_Tm The general aim
of this paper is to continue the study of the Cesaro-a convergence of {T" f} with
0<a<land {H,f} with —1 < a < 0, which was initiated in [3], [4] and [8].

Recently the authors and M. D. Sarrién studied in [2], in the setting of Lamperti
operators (see also [10]), the convergence in the Cesaro-a sense (see [17] or [5])
of the sequences {T"f} and {H,f}. In fact, for —1 < a < 0, it was studied the
(C,1+ «) convergence of {T" f} and the (C, «) summability of the ergodic Hilbert
transform, i.e., the limits of the following sequences

n n+1 k —k
1 N 1 o Tf-=T7%F
Rpitaf = yies DAY TFf and Hpof = e > AT (T)
" k=0 " k=1

where the Cesaro numbers A are defined by AS = Ml)ﬁ& and A§ = 1. More
precisely, in [2] it was proved the following theorem.
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Theorem 1.1 [2]. Let (X,F,u) be a o-finite measure space, —1 < a < 0, 1+a <

p < oo and T an invertible Lamperti operator on LP(u) such that the linear modulus
|T| of T satisfies

sup < 00, (1.1)

n>0

n
k=—n

where Tp is the linear operator given by Tgf = [T(f*)]*/? for f > 0. Then, for all
f € LP(u), there exist the limits

lim Rn71_|_af and lim Hn,af

p(l+a)

almost everywhere and in the strong operator topology.

The study of the averages R,, 14 f in Theorem 1.1 is a simple modification of
the corresponding result proved in [10] in the setting of the positive linear operators
with positive inverse. It is clear from the proofs of Theorem 1.1 in [2] or Theorem
3.1 in [10] that for the convergence of the averages R, 11.f we actually need a
weaker condition than the assumption (1.1).

Theorem 1.2 ([10] or [2]). Let (X,F,u), a and p be as in Theorem 1.1. Let T
be an invertible Lamperti operator on LP(u) such that

n -+ 1 Z |T|1—|—a

< 0. (1.2)
p(1+a)

sup
n>0

Then, for all f € LP(u), there exist the limits lim, oo Ry 140 f almost everywhere
and in the strong operator topology.

Theorems 1.1 and 1.2 do not hold in the limit case p = . Y Deniel proved
in [4] this fact for the averages R, 14, and the correspondmg result for H,, o was
proved in [2].

On the other hand, in [12], R. Sato studied the limit case p = 1 of his result,
mentioned at the beginning of the introduction. He studied the ergodic Hilbert
transform but it is worth noting that the result also holds for the averages R, f.
The theorem proved by Sato is the following.

Theorem 1.3 [12]. Let T be an invertible Lamperti operator on L*(u) such that

sup ||T"||1 < oo (1.3)
nez

and
sup ||T"] 0o < 00. (1.4)
nez

Then the limit lim,, .o H, f exists almost everywhere for all f € L*(u).

The goal of this paper is to give a positive result of Theorems 1.1 and 1.2 in
the the limit case p = HLO‘ In both cases we shall obtain almost everywhere
convergence for functions f in the Lorentz space L#’l(,u) ={f |Ifll "

IS (A )1+a dt < oo}, where A\¢(t) = p({z = |f(z)| > t}) is the distribution
functlon of f. More precisely, we prove the following theorems.
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Theorem 1.4. Let (X, F,pu) be a o-finite measure space, —1 < a < 0 and T an
invertible Lamperti operator on LT+= (1) such that

1 n
— > Tla| =M <o (1.5)
k=0

1

sup
n>0

and

sup ||7" || oo = Moo < 0. (1.6)
nez

Then the limit lim,,—,oc Ry, 140 f exists almost everywhere, for any f in Lﬁ,l(“)'

Theorem 1.5. Let (X, F,pu) be a o-finite measure space, —1 < o < 0 and T an
invertible Lamperti operator on LT+= (1) such that

n

1 k
k

=—N

= M>; < (17)
1

sup
n>0

and

sup ||7" || oo = Moo < 00. (1.6)
nez

Then the limit lim,,—.oc Hy, o f exists almost everywhere, for any f in L%J(,u).

Notice that, Theorem 1.4 generalizes Corollary 1 in [3]. We have also that
Theorem 1.3 is obtained from Theorem 1.5 when a = 0, since condition (1.3)
implies condition (1.7).

Throughout this paper a will be a number such that —1 < o < 0 and the letter
C will mean a positive constant non necessarily the same at each ocurrence.

2. PRELIMINARY RESULTS.

This section is devoted to establish some results and several properties of the
Lamperti operators that we shall need in the proof of the theorems.
Let (X,F,u) be a o-finite measure space, —1 < a < 0 and 7" an invertible

Lamperti operator on LT+a (n). T is called a Lamperti operator on L= (p) if T is

a bounded linear operator on L= (1) such that T separates supports. It follows [9]
that there exists a positive linear operator ® on the space of measurable functions,
induced by a g-endomorphism of the g-algebra F, also denoted by ®, such that

® (xE) = Xo(B)
and a measurable function h on X, with 0 < |h(z)| < oo a.e. on X, such that
Tf(z) = h(z)®f(z), for all f € LT (p).

The operator ® verifies that ®1 = 1 and ®(|f|") = |®(f)|", for any positive . On
the other hand, since T~ is also an invertible Lamperti operator, it is clear that if
hi(z) = h(z) then the powers of T and T—! are of the form

T? f(x) = h;(2)® f(z), for all j € Z,
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where the functions h; verify also that 0 < |h;(z)| < oo a.e. on X and hjip =
h;®7 (hy), for all j, k € Z. It is easy to see that

T |0 = ||hjl|oo, for all j € Z. (2.1)

Other important property is the existence of a sequence of positive measurable
functions {w,} such that w;®’/(w_;) =1 and

ST = [ 1517 d (2.2)

For such an operator T', there exists a positive linear operator |T'| on Lﬁ(u)

such that |Tf| = |T||f|, for every f € Ll%a(/uo). |T| is also an invertible Lamperti
operator, called the linear modulus of 7. We can easily see that |T'|f = |h|®f and

for each integer j, |T}7 f = |h;|®7 f. Observe that [T|1, , f = |h;| T &I (f).

From (2.1) and the relation h;®7(h_;) = 1 we can prove easily the following
proposition that we will use in the proof of the theorems.

Proposition 2.1. Let (X, F,u) be a o-finite measure space, —1 < a < 0 and T

an invertible Lamperti operator on Lﬂ%a(,u) such that T wverifies (1.6). Then, for
all j € Z and almost every x € X

1
Mo < [hj(z)] £ Mo

A key fact in the proof of the theorems is the relation between the assumptions
on the operator and the classes of weights A;(Z) and A7 (Z).

Definition 2.2. Let v be a nonnegative function on the integers.
(i) v € A1(Z) if there exists a constant C such that

Z v(i+ k) <Cu(i), for alliecZ.

=—n

1
su
7121:()) 2n+ 1 A

(ii) v € AT (Z) if there exists a constant C such that

n

Zv(i — k) < Cw(i), for alli e Z.
k=0

1
sup
n>0 N+

The next proposition establishes the relations between the assumptions (1.5) and
(1.7) and the classes A;(Z) and A} (Z).

Proposition 2.3. Let (X, F,u) be a o-finite measure space, —1 < a < 0 and T
an invertible Lamperti operator on LT+s ().

(i) If T verifies (1.5) then, for almost every x € X, the functions w, (i) = w;(x) €
AT (Z), with a constant independent of x.

(11) If T wverifies (1.7) then, for almost every x € X, the functions w, (i) = w;(x) €
A1(Z), with a constant independent of x.
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Proof. (i) By the assumption (1.5) applied to a function f = |T|{,,(g) with g > 0,
g € LY(p) and i € Z, we have

! Y ' THa ; 1
n+1 Z/ (71 (g7 )] 7 du < Ml/ (T (g" )] ™ du,
k=0YX X

for all n € N. On the other hand, the property (2.2) of T" for f > 0 can be written

as [ [|T|9(f)}”% dp = fflv%awfj dp for all j € Z. Then, applying this equality
in both integrals of the above inequality we have

/X g9(z)

for all g > 0, g € L*(u) and all n € N. Now (i) follows immediately with constant
M.
The proof of (ii) is similar. Thus, we omit it.

dp(z) < M, / g(@)w_i(x) dp(x),

1 n
W_;j—\T

In the proofs of the theorems we shall use weighted inequalities for the discrete
maximal Hilbert transform

“ali+k)—ali—k
Z(+)k( )

h*a(i) = sup
n>1

k=1

and the maximal operator m{’, , associated with the Cesaro averages of functions
defined on the integers

. 1 ¢ .
mi,,a(i) = sup o Z AL pla(i 4+ k).
n>0 An k=0

For the operator h* we have the following result (see [6]).

Theorem 2.4 [6]. Let v be a positive measurable function on the integers. Then,
v € A1(Z), if and only if, there exists a constant C' such that

Y w@sS Y

{i:h*a(i)>A} i=—00
for all X > 0 and all functions a on Z.

On the other hand, for the operator maa, we have the following result which
is Theorem 2.7 proved in [11] applied in our setting (see Proposition 2.4, Example
2.5 (3) and Remark 2.8 in [11]).

Theorem 2.5 [11]. Let —1 < a < 0 and v be a positive function on the integers.

Then, the following statements are equivalent.

(i) The operator m{, , applies the space Ll%a,l(v) into the space Ll%a,oo(v), that
is, there exists a constant C such that

1+o 1/14«

> v(z’)gq /OOO > () dt : (2.3)

{i:mﬁ_aa(i)>)\} {iza(i)>t}
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for all functions a on 7.
(ii) There exists a constant C' such that

Ay
—- < A1—|—a
U(') X[S,k)] — C k—r>

Xt sl |
—E,Ooﬂ)

for all integer numbers r,s and k with r < s < k, i.e., there exists a constant C

such that
1+« @
sup (Alfe -1 v(j supt v(j] <oo. (24
s (AT D) | s > ) (2:4)

j=r

Ag
: . —J
{i€ls:kl: =5 >t}

An important result that we shall need in the proof of Theorem 1.4 is the equiv-
alence between condition (2.4) and the class of weights A

Lemma 2.6. Let v be a positive measurable function on the integers. Then, v €
AT (Z), if and only if, v verifies (2.4).

Proof. We start proving that A} (Z) implies (2.4). For fixed t,7,s and k, let E =
{j:j <k, % >t} and Es, = EN{s,...,k}. Let £ be the number of elements
of Es k. We may assume that ¢ > 0. Since v satisfies A (Z) then we have for all

1€ Es,k:

S Aa |
> v() < Ok —r+ Doi) < Clk—r+1) ==L
Jj=r
Therefore
- Clk—r+1 .
o) < BT S g 25)
J=r ieEs,k

By (2.5) and the definition of E; j, we get that

14+« —«
a\ —1 > . .
(AF Do v0) tl D o) <
j:r ’LIEES‘;c
14+« —a
o1 |C(k—r+1) o 1 N
< (Allci—r) t0 Z Ak—i t Z Z Ak—i
iEES,k Z‘EEs’k
Ok —r4+ 1) Yiep, , AR
— Aita Kl-{-a

Observe that ZleEk A < Zi;% A since the possible terms to add are Af, . .. Ag_sl
and we know [17] that Af > A¢ > --- > Af__. Now, keeping in mind that

f;_:t AY = A;TY and ALFY is essentially equivalent to n'*® [17], the right hand-
side of the above inequality is less than or equal to a constant C'. The proof of the
first implication is finished.
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Now, we shall prove that (2.4) implies A (Z). Let r and s be such that r < s.
Choosing k = s in (2.4) we have

1+«

()7 (e | et <o

2 o(s)

A1+a

+T% is essentially equivalent to (s —r + 1)+ we have that

1 .
PR ZU(J) < Cu(s),
j=r

Since

which means that v satisfies A} (Z).

Remark 2.7. For a = 0, the operator mﬁa is the Hardy-Littlewood maximal op-

erator on Z and the equivalence between the statement v € A} (Z) and the weak
type (1,1) inequality for m] with respect to v was previously proved in [1] (see also

[15]).
3. PROOFS OF THEOREMS 1.4 AND 1.5

In order to prove Theorem 1.4 we need to study the maximal operator Mo 7f =}
SUp,, >0 | Rn,14af|- We shall prove that M; . 7 applies Lﬁ@(ﬂ) into weak-LT+= (u)l
It suffices to prove this fact for positive operators, since M1y, 7f < My 1| f]-

Theorem 3.1. Let (X, F,pu), o and T be as in Theorem 1.4. Assume also that T
is positive. (Therefore |T| =T ). Then, there exists a constant C such that

p{z: Mijarf(z)>A}) < ||f||1/ e

71“

for all X >0 and all f € Lﬁ,l(“)‘

Proof. Let f be a nonnegative function and let L € N, L > 0. Let us define

L L
M1+af = M1+a,Tf - OEHEL Rn,H—af-
7n7

Now, given N € N, by the properties of the Lamperti operator 7" and Proposition
2.1 we get that

ul{e s My f(@) > A)) = N+IZ [ Xty o (@) )

1

T N+1 Z/ X{M1+af>x}> (w)] U () du(x)

]]\VI{{&I /X Z w;(x) dp(x).

{0<i<N: ze®i({ME,_, f>A}}

IN

(3.1)
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Now, applying again Proposition 2.1 and the properties of T' we have

Xai((mf,  oap (7)) < MooT <X{M1L+af>>\}> ()

Moo,
< TTl <[M1L+aﬂ X{M1+af>/\}) (z) (3.2)

M,
< TTl (M1L+af) (z).

On the other hand, by the definition of M. 1L+a, there exist pairwise disjoint measur-

able subsets of X, Fy, E1, ..., Er, such that M1L+af = 25:0 XE; Rj1vaf. Since
T separates supports we have, for every ¢ with 0 <7 < N and all z € X, that

T (M o f)( ZT X Rj1vaf)(x ZX@ g (@) T (Rj11af) ()
7=0
L (3.3)
< ZX@’(E (@) Mo (T f) () < Mo (T f) (@)

< m1+a (ng[O,NJrL])(i)
where g,(j) = T7f(x). Now, putting together (3.2) and (3.3) we obtain that
{0<i<N: zed({M-, f> )} C{i: mi,(9axpo,n+0))(E) > 57—} Then,
by (3.1) we have

_1
14+

plle s Mbaf@) > M) < 5757 [ > wil) du(z).

{i: mir+a(9zX[o,N+L])(i)>ﬁ}
(3.4)
If a = 0, by Proposition 2.3 (i), Lemma 2.6, Theorem 2.5 and the property (2.2)
we obtain that
N+L

e MEF@) >0 < 5072 P | 7@ du
_CMgo(N+L+1)

and letting N and then L tend to oo the proof is completed in this case.
On the other hand, if —1 < a < 0, then Lﬁ,oow is a Banach space, since

H%a > 1. Therefore applying Theorem 3.13 in [16, p.195]|, which also holds for

the sublinear operator M, 7, it suffices to prove the theorem for characteristic
functions, i.e, to prove that

pl{e Mpaxele) > M) <~ [ xpdu

for all A > 0 and all measurable sets . Taking f = yg in (3.4), applying Proposi-
tion 2.3 (i), Lemma 2.6 and Theorem 2.5 we get that

p({z = M oxe(@) > A}) <

1
1+ 1+a

M /X /O . 3 wi@) | dt| dula).

(N + 1A {0<i<N+L: g,(i)>t}
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Now, since the integral on t is zero if ¢ > M., by the Holder inequality and the
properties of the Lamperti operators we have that

p({z: M xe(x) > A}) < CMH& / / w;(z) | dtdu(z)

AT T {0<Z<N+L 9o (i) >t}

272 N+L ‘
::ngfgﬁijgg > [ 7)) duto
1=0

N+L

:ﬁ%%zzﬂﬂwmm@@wﬁﬂw@wﬂ
1=0

2(1—a)

CM Y (N+L+1)
(N + 1))\1+a
Letting N and then L tend to oo we are done.

Proof of Theorem 1.4. If T verifies the hypothesis of Theorem 1. 4 then it is easy
to see that 7' is an invertible Lamperti operator on LP(u) with 1+_a < p < oo and
verifies condition (1.2) in Theorem 1.2. In fact,

R N
1 kZ:O|hk|p(I)k <|f|p(1+ )>

n(E).

1
n p(1+a)

1
= > Tl ()

k=0 p(l+a) 1
1
p(1+a)—21 1 n . ( ) p(1+c)
< M| STk (110
>~ o0 n —+ 1 | ’1—1—04 |f|
p(l1+a)—1

< M2 p(1+a)? Mp<1+a) ||pr(1+a)

So that, by Theorem 1.2 there exists the limit lim,, .o Ry 14qf for all f € LP(p) N
L . 1(p) for 5= < p < oo. Therefore, Theorem 1.4 follows from Theorem 3.1 and

the Banach’s Prmmple, since f € LP(pu)N Lﬁg(ﬂ) is a dense subset of Lﬁ@(ﬂ)-

Now, we shall prove Theorem 1.5. Acting as in the proof of Theorem 1.4, but
using Theorem 1.1, we see that in order to prove Theorem 1.5 we only need to
establish the boundednees of the maximal operator H} f = sup,~; |Hn.af|-

In [2], it was proved the pointwise estimate -

H f(x) < C[H" f(2) + Myya, 7 (|f]) (@) + Myyori- (If]) (@)]

where H* f = Hj f is the maximal ergodic Hilbert transform. This result was proved
for an invertible Lamperti operator on LP(u) with p%a <p<ooand -1 <a<0,

but it is easy to see that also holds for invertible Lamperti operators on le%a(,u)
(see the proof of Lemma 2.1 in [2]). In the following theorem we shall prove that the
maximal operator H* is of weak type (1 o T +a) This fact together with Theorem
3.1 gives the desired boundedness of H}:

1/1+a
L

plfe s Hyf(z) > A}) <

for all A > 0 and all f € Lf@(#)
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Theorem 3.2. Let (X,F,u), o and T be as in Theorem 1.5. Then, there exists a
constant C' such that

* C @
p({: H f(z) > A}) < ——||f]1"0*,
)\1+a 1+«

for all A >0 and all f € LT+ (y1).

Proof. If —1 < a < 0, the result follows from a Sato’s result (see Lemma in [13]);
actually Sato proved the strong type (+— o 1}ra) inequality for H*.

Now we sketch the proof for &« = 0. As in the proof of Theorem 3.1, we write
H} f =supy<,<p [Haf| = Zle |H; f|xE,, for L € N, L > 0, where the sets E; are
pairwise disjoint measurable subsets of X. Then, we obtain as in (3.1) with & =0
that

(e Hif(z) > A}) < 3 wil®) d(z)

N+1Jx {0<i<N: ze®i({H: f>A})}
On the other hand,

A P
M_OOX<1>i({HZf>>\})(x) < [T["(HLf)(z)

< H(T'f)(z) < h* (g X[—r,n+1)) (%)

for all integers i, with 0 < ¢ < N and where h* is the discrete maximal Hilbert
transform. The proof finishes as in the proof of Theorem 3.1 with a = 0 but using
now Proposition 2.3 (ii) and Theorem 2.4.

4. FINAL REMARKS

Remark 4.1. Theorem 1.4 does not hold if we omit the assumption (1.6). In order
to see this, we consider a positive invertible isometry S on L'([0,1]) such that
S™1/n does not converge a.e. to zero (the existence of S is guaranteed in the
proof of Theorem 3 in [7]). Since S is a positive invertible isometry then S is a
Lamperti operator and therefore it is of the form Sf = h®f. Then Tf = h'Tdf
is a Lamperti operator which is an isometry on L= (dx) and it satisfies (1.5). We
shall see by contradiction that the conclusion of Theorem 1.4 does not hold. In fact,
if there exists the limit lim,,_, - R, 1+af a.e. for all f € L S 1(dz) then, argueing

as in Theorem 1.22 in [17], lim,,— o — 1+a =0 a.e. for all f 6 Lo,y 1(dz) (this was

pointed out and shown to us by M. D. Sarrién). In particular, for f =1, we have
0 =lim, oo gHQ llmnﬁoo(szl)“ra a.e. which is a contradiction.

Remark 4.2. In [13], Sato proves that Theorem 1.5 does not hold in the case o = 0
if we omit (1.6).
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