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a b s t r a c t

In this work we extend an inequality of Nehari to the eigenvalues of weighted quasilinear
problems involving the p-Laplacian when the weight is a monotonic function. We apply it
to different eigenvalue problems.
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1. Introduction

In thisworkwe give a lower bound for the first eigenvalue of the following quasilinear problem involving the p-Laplacian,

−(|u′|p−2u′)′ = λg(x)|u|p−2u x ∈ (a, b)
u(a) = 0
u(b) = 0.

(1.1)

Here, 1 < p <∞, λ is a real parameter, and g ∈ L1([a, b]) is a monotonic function.
Let λg and ug be the first eigenvalue and the corresponding eigenfunction. Our main result is the following:

Theorem 1.1. Let g ∈ L1([a, b]) be a non-negative monotonic function, and let λg be the first eigenvalue of problem (1.1). Then,

πp

2
≤ λ1/pg

∫ b

a
g1/p(x)dx. (1.2)

Here, πp is defined in terms of the first positive zero of the generalized sine function sinp, see [1] or [2] for details.
Inequality (1.2) was obtained first in the linear case p = 2 by Nehari in [3]. His proof follows by using an integral

equation and Green functions. Herewe give a different proof, based in the variational characterization of the first eigenvalue
of problem (1.1). Let us recall from [4] this variational characterization,

λ−1g = max
{u∈W1,p0 :‖u

′‖p=1}

∫ b

a
g(x)up(x)dx.
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As a direct consequence, we have

λ−1g =

∫ b

a
g(x)upg(x)dx ≥

∫ b

a
g(x)upr (x)dx (1.3)

for any normalized eigenfunction corresponding to a different weight r , a fact that we will use several times in Section 2 in
the proof of Theorem 1.1.
Since the(∫ b

a
g1/p(x)dx

)p
≤ (b− a)p−1

∫ b

a
g(x)dx,

inequality (1.2) is related to the Lyapunov inequality, which was extended to nonlinear problems in the last years, with
applications to inequalities, oscillation theory, and eigenvalue estimates (see [5–9] and the references therein). For problem
(1.1), the Lyapunov inequality gives

2pnp

(b− a)p−1
∫ b
a g(x)dx

≤ λn, (1.4)

and we show in Section 3 some examples where inequality (1.2) improves the eigenvalue bounds obtained by using a
Lyapunov inequality.
Then, we apply it to a singular problem in (0,∞) studied by Kusano and Naito [2]:

− (|u′|p−2u′)′ = λg(x)|u|p−2u, x ∈ (0,∞), (1.5)

with the boundary conditions

u(0) = 0, lim
x→∞

u(x)
√
x
= 0, (1.6)

where 2 ≤ p <∞ and the weight g is a positive continuous function satisfying

(H1)
∫
∞

0
g(x)dx <∞, lim

t→∞
tp−1

∫
∞

t
g(x)dx = 0.

This problem goes back to Einar Hille in the linear case [10], and there are several works devoted to its variants. He
obtained the asymptotic behavior of the eigenvalues for p = 2 and decreasing weights g with g1/2 ∈ L1(0,∞), and a
different derivation was given in [11]. Remarkably, in both proofs the monotonicity of g plays a key role. We give here a
lower bound of the eigenvalues using inequality (1.2).
We close the paper with some comments about future work and related problems.

2. The proof of Theorem 1.1

Proof of Theorem 1.1. We divide the proof in several steps.
Step 1: Let us show first that given rj → g in L1([a, b]), we have as j→∞,

(i) λrj → λg ,

(ii)
∫ b

a
r1/pj (x)dx→

∫ b

a
g1/p(x)dx.

Let us prove both claims.
(i) We have

λ−1g =

∫ b

a
g(x)upg(x)dx =

∫ b

a
rj(x)upg(x)dx+

∫ b

a
(g(x)− rj(x))upg(x)dx.

Now, the first integral is bounded above by λ−1rj , due to inequality (1.3).
Since the eigenfunctions are normalized such that ‖u′g‖p = ‖u

′
rj‖p = 1, from Poincare’s inequality and the embedding

W 1,p0 ↪→ L∞([a, b]), we get that these eigenfunctions are uniformly bounded in L∞ by a certain positive constant C .
Then, the second integral can be bounded as∫ b

a
|g(x)− rj(x)|‖ug‖p∞dx ≤ C

∫ b

a
|g(x)− rj(x)|dx = O(‖g − rj‖1).
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Interchanging the roles of g and rj, we obtain∣∣∣λ−1rj − λ−1g ∣∣∣ = O(‖g − rj‖1),
and (i) is proved, since both are bounded away from zero.
(ii) From Minkowski’s and Holder inequalities we get:∫ b

a
|r1/pj (x)− g1/p(x)|dx ≤

∫ b

a
|rj(x)− g(x)|1/pdx ≤ (b− a)1/p

′

‖rj − g‖
1/p
1 ,

and the convergence is proved.
Step 1 is finished.
Step 2: Let us now show that given any non-negative simple function r , there exists a non-negative simple function s

with at most one discontinuity, such that∫ b

a
r1/p(x)dx =

∫ b

a
s1/p(x)dx, and λs ≤ λr .

Let us take r such that
∫ b
a r
1/p(x)dx = 1 (the general case follows by scaling). We write r1/p =

∑n
i=1 ciσi, where each σi

is a simple function with at most one discontinuity,
∫ b
a σi(x)dx = 1, and

∑n
i ci = 1.

We have

λ−1r =

∫ b

a
r(x)upr (x)dx =

∫ b

a

(
n∑
i=1

ciσi(x)

)p
upr (x)dx.

By using Jensen’s inequality,∫ b

a

(
n∑
i=1

ciσi(x)

)p
upr (x)dx ≤

∫ b

a

n∑
i=1

ciσ
p
i (x)u

p
r (x)dx,

we obtain

λ−1r ≤

n∑
i=1

ci

∫ b

a
σ
p
i (x)u

p
r (x)dx ≤

n∑
i=1

ciλ−1σi ≤ max1≤i≤n
{λ−1σi } = λ

−1
σ ,

where σ is the one which gives the maximum eigenvalue. So, for s = σ p we get

λ1/ps

∫ b

a
s1/p(x) ≤ λ1/pr

∫ b

a
r1/p(x)dx,

and Step 2 is finished.
Step 3: Let us bound the first eigenvalue λs when s is given by

s(t) =
{
αp if t ∈ [a, t1]
βp if t ∈ (t1, b],

with α, β non-negatives, not both equal to zero.
Multiplying by us and integrating by parts we get∫ b

a
u′ps (x)dx− λsα

p
∫ t1

a
ups (x)dx− λsβ

p
∫ b

t1
ups (x)dx = 0,

and we can write it as[∫ t1

a
u′ps (x)dx− λsα

p
∫ t1

a
ups (x)dx

]
+

[∫ b

t1
u′ps (x)dx− λsβ

p
∫ b

t1
ups (x)dx

]
= 0.

Now, one of those terms must be non-positive. Suppose that∫ t1

a
u′ps (x)dx− λsα

p
∫ t1

a
ups (x)dx ≤ 0,

the other case is similar. Then,

λ−1s α
−p
≤

∫ t1
a u

p
s (x)dx∫ t1

a u
′p
s (x)dx

.
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Since us belongs to the Sobolev space

W = {u ∈ W 1,p([a, t1]) : u(a) = 0},

it is admissible in the variational characterization of the first eigenvalue of the following mixed problem

−(|u′|p−2u′)′ = λg(x)|u|p−2u
u(a) = 0
u′(b) = 0,

and we obtain

λ−1s α
−p
≤ max
u∈W

∫ t1
a u

p(x)dx∫ t1
a u
′p(x)dx

=
2p(t1 − a)p

π
p
p

.

Finally,

λ1/ps

∫ b

a
s1/p(x)dx ≥ λ1/ps

∫ t1

a
αdx >

πp

2
.

Step 4: From Steps 1 and 2, and the density of simple functions in L1, given any ε > 0 arbitrary small, and a non-negative
monotonic function g ∈ L1([a, b]), there exists a non-negative simple function swith a single discontinuity such that

λ1/ps

∫ b

a
s1/p(x)dx ≤ λ1/pg

∫ b

a
g1/p(x)dx+ ε,

and the bound of Step 3 finishes the proof. �

3. Eigenvalue problems

3.1. A comparison with Lyapunov inequality

Let us consider problem (1.1) with a = 0 and b = 1.
When g(x) = eαx, α > 0, from the Lyapunov inequality (1.4) and inequality (1.2) we get, respectively,

λ1 ≥
2pα

(eα − 1)
, λ1 ≥

(
πpα

2p(eα/p − 1)

)p
,

and the inequality (1.2) is better for α large.
When g(x) = xα , α > −1, we get

λ1 ≥ 2p(α + 1), λ1 ≥

(
πp(α + p)
2p

)p
,

andweobserve that the growthof the secondbound is superlinear inα. Inequality (1.2) is better forα large, and the Lyapunov
inequality is better for α close to zero. Moreover, for α close to−1, we have:

• If p ≤ 2, inequality (1.2) is better for

α + 1 ≤ (p− 1)p+1
(π
4

)p
.

• If p ≥ 2, inequality (1.2) is better for

α + 1 ≤
(p− 1)p+1

p2p

(π
2

)p
.

Both can be proved in the same way, by using that

πp = 2(p− 1)1/p
π/p

sin(π/p)
,

(see [1]), and

(α + p)pπpp
2ppp

=
(α + p)p(p− 1)πp

p2p sinp(π/p)
≥
(p− 1)p+1πp

p2p
.
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3.2. A singular problem

It was proved in [2] there exists that a sequence {λn}n≥1 of eigenvalues of problem (1.5), with the boundary conditions
(1.6), and g a continuous and positive function satisfying (H1). The eigenfunction un corresponding to λn has exactly n zeros
0 = t1 < t2 < · · · < tn.

Remark 3.1. We cannot apply the Lyapunov inequality to this problem, since the location of the zeros {tj}j is unknown.

We also need to assume that g1/p ∈ L1(0,∞), and we have the following result:

Theorem 3.1. Let {λn}n be the sequence of eigenvalues of problem (1.5)–(1.6), with g1/p ∈ L1(0,∞) satisfying (H1). Then,

πp(n− 1)
2
∫
∞

0 g
1/p(x)dx

≤ λ1/pn .

Proof. Although this eigenvalue problem has no variational form, for any λn and the eigenfunction un, we can use the
inequality (1.2) in the following way: given two consecutive zeros tj−1, tj, the restriction of un to [tj−1, tj] is the first
eigenfunction of the problem

−(|u′|p−2u′)′ = µg(x)|u|p−2u,
u(tj−1) = 0 = u(tj),

and µ1 = λn, since un is a solution of one sign.
Now, for 2 ≤ j ≤ nwe have

πp

2
≤ λ1/pn

∫ tj

tj−1
g1/p(x)dx,

which gives

πp(n− 1)
2

≤

n∑
j=2

λ1/pn

∫ tj

tj−1
g1/p(x)dx < λ1/pn

∫
∞

0
g1/p(x)dx,

and the Theorem is proved. �

4. Final remarks

Remark 4.1. The asymptotic behavior of the eigenvalues of problem (1.5)–(1.6) can be obtained now as in [11]. The case
g1/p 6∈ L1(0,∞) is more subtle, although it is possible to obtain some lower bounds.

Remark 4.2. It would be interesting to extend the inequality (1.2) to more general weights. It is not clear that the
convergence of eigenvalues in Step 1 can be obtained by using only that r1/pj → g1/p in L1(a, b). The case g(x) = x−1 is
specially important due to the Kolodner result about rotating strings.

Remark 4.3. For unbounded intervals, the Lyapunov inequality needs some information on the location of zeros, since the
separation between two of them appears in the lower bound. Here, Inequality (1.2) seems to be useful to derive a priori
bounds on the location of zeros. Also, it can be reformulated to derive non-oscillation conditions or disconjugacy criteria.
We have not explored this line of research.
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