
Prepared for submission to JCAP

Vector Fuzzy Dark Matter, Fifth
Forces, and Binary Pulsars
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Abstract. We study the secular effects that an oscillating background ultralight (fuzzy)
cosmological vector field has on the dynamics of binary systems; such effects appear when the
field and the binary are in resonance. We first consider the gravitational interaction between
the field and the systems, and quantify the main differences with an oscillating background
scalar field. If the energy density of such a field is sufficiently large, as required if it is supposed
to be all of the dark matter, we show that the secular effects could yield potentially observable
signatures in high precision time of arrival measurements of binary pulsars. We then analyse
the secular effects that arise when the field is directly coupled to the bodies in the binary. We
show that this study is particularly relevant for models where fuzzy dark matter mediates a
baryonic force B (or B−L, with L the lepton number), due to the stellar amount of nucleons
present in the stars. The constraints we obtain from current data are already competitive
with (or even more constraining than) laboratory tests of the equivalence principle.
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1 Motivation

Cosmological Dark Matter (DM) is one of the standard ingredients in models of the Universe:
accounting for roughly 27% of the total energy density, it is more than five times in density
than visible baryonic matter [1]. All observational evidence for DM is due to its direct
or indirect gravitational effects [2]. While alternatives exist [3–6], most efforts so far have
focussed on particle DM, in which one (or more) new fields are introduced as extensions of the
Standard Model, to account for the missing matter density. However, so far all DM production
or detection experiments have yielded null results, and the nature of this field remains as
elusive as ever [7–9]. With the traditional candidates nearly ruled out by non-detection,
before turning to the implausible, it is important to explore all plausible possibilities.

One such option is that DM is in the form of an extremely light (fuzzy) particle, which
during the late-time evolution of the Universe behaves as an oscillating classical field; such
oscillations make the energy momentum tensor of the field look like dust, hence DM, in a
cosmological setting, see [10–15]. In this paper we explore the possibility that fuzzy DM is
a vector, and we will show that, in the range of masses 10−23eV . m . 10−18eV1, precision
timing measurements of binary pulsars offer a unique possibility to test the properties of such
DM candidate, as was observed in [21] for the case of scalar fuzzy DM. Indeed, when the DM
oscillations are in resonance with the binary system, the former causes a secular variation of
the orbital parameters of the latter.

Here we obtain two separate results. First, based on gravitational interactions alone, we
derive the qualitative differences in the peculiar distortions imprinted on binary systems by
vector DM compared to scalar DM. If measured, these differences would allow one to infer the

1Lower masses are excluded due to their effect on structure formation, and in fact the lower end of the
range we consider could be in tension with data, see [16–18]. Complementary tests (which apply even if the
field is not the DM) can be obtained from rotating Black Holes systems (with current data already disfavoring
fields with m ∼ 5× 10−14 − 2× 10−11eV [19] or binary Black Holes [20].
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spin of the hypothetical fuzzy DM field. Second, already with current data, if vectorial fuzzy
DM is a carrier of a baryonic force, we can place bounds on its strength which are competitive
with (or even more restrictive than) those obtained by equivalence principle laboratory tests.

The paper is organised as follows. In Section 2 we describe the model and its cosmology.
We then proceed to the study of binary systems in the case in which DM and the binary
interact only gravitationally (Section 3), and to the case when a fifth force is present due to
direct interactions (Section 4). We discuss our results and perspectives in Section 5. The
Appendix contains a brief review of the osculating orbits method to discuss secular variations
of keplerian orbits, the full system of secular variations of orbital parameters, and the list of
the binary systems we analysed (with their properties).

2 Vector fuzzy DM

The main ingredient of the model is a Proca vector described by the action:

S := −
∫

d4x
√
−g
[

1

4
FµνFµν −

1

2
m2AµAµ

]
, (2.1)

where Fµν = 2∂[µAν] is the Aµ vector field strength and m its mass; we use the mostly
negative signature for the metric, and we define symmetrisation and antisymmetrisation as
2T(µν) := Tµν + Tνµ and 2T[µν] := Tµν − Tνµ, respectively. The energy momentum tensor
(EMT) is defined by

δS :=

∫
d4x
√
−gτµνδgµν , (2.2)

which explicitly reads

τµν = − F λ
µ Fλν +

1

4
gµνF

αβFαβ +m2(AµAν −
1

2
gµνA

λAλ) . (2.3)

To study the cosmology of this theory we choose the Lorenz gauge ∂iAi = 0 = A0, and
focus on the Friedmann-Lemâıtre-Robertson-Walker metric: ds2 = dt2 − a(t)2|d~x|2 with a(t)
the scale factor of the Universe. The equations of motion for the homogeneous (zero) mode
~A = ~A(t) are

Äi +HȦi +m2Ai = 0 , (2.4)

Äi + 5HȦi + 2(Ḣ + 3H2)Ai +m2Ai = 0 , (2.5)

where H := d log a/dt is the Hubble parameter, and an overdot stands for cosmic time partial
derivative.

The solutions to a differential equation of the type

f̈ + pHḟ +m2f = 0

with H = H0a
−q = 1/qt and p and q numerical constants, is

f(t) = a(q−p)/2
[
CJJ p

2q
− 1

2
(mt) + CY Y p

2q
− 1

2
(mt)

]
,

with J and Y Bessel functions and CJ and CY arbitrary constants. In the case of fuzzy vector
DM we obtain, upon expanding for a rapidly oscillating vector mt� 1

Ai(t) = a−1/2
[
ČJ sin(mt) + ČY cos(mt)

]
:= Âia

−1/2 cos(mt+ Υ) , (2.6)
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in matter domination (here ČJ , ČY and Υ are arbitrary constants)2.
In the cartesian orbital (x, y, z) frame associated to a given binary system (see Fig. 1),

the vector field can be written in terms of spherical coordinates (ϑ, ϕ)

Âi := Â(sϑcϕ, sϑsϕ, cϑ) , (2.7)

where we employ the shortcut notation

sx := sinx , (2.8a)
cx := cosx ; (2.8b)

the EMT then becomes

τ0
0 =

1

2
Â2m2a−3

[
1 + O

(
H

m

)]
, (2.9a)

τ0
j = 0 , (2.9b)

τ ij =
1

2
Â2m2a−3

[
c2(mt+Υ) + O

(
H

m

)]
X̂i

j , (2.9c)

where X̂i
j := δij − 2Xi

j and Xi
j := ÂiÂTj /Â

2 := aiaTj . In the late-time Universe, when
m/H � 1, the field oscillates rapidly, and upon averaging over a Hubble time the EMT
reduces to 〈τµν 〉 := diag(ρDM,~0), with ρDM := Â2m2/2a3 the energy density of the vector zero
mode3. The pressure term is therefore suppressed, and can be seen as a small perturbation
on the background governed by ρDM:

τ
(1)i
j = ρDMc2(mt+Υ)X̂

i
j := δijp+ Πi

j , (2.10)

where p = ρDMc2(mt+Υ)/3 is the isotropic pressure and Πi
j = −2ρDMc2(mt+Υ)(X

i
j − δij/3)

the traceless anisotropic stress Πi
i = 0; both of them are (first order) perturbations compared

to ρDM.

3 Gravitational interaction

3.1 Gravitational perturbations

The effect of the oscillating background perturbation Eq. (2.10) on the binary system is
encoded in the force per unit mass

F i := δ̈r
i

= R
(1)i

0j0r
j , (3.1)

in Fermi normal coordinates associated with the centre of mass of the system ri. To derive
the perturbed Riemann tensor we expand the metric around a Minkowski background as
gµν := ηµν + g

(1)
µν and

g
(1)
00 := 2Φ , (3.2a)

g
(1)
0i := − ∂iB + Si , (3.2b)

g
(1)
ij := 2δijΨ− 2∂i∂jE + ∂(iFj) + hij , (3.2c)

2Notice that we have Ai = −Âia−5/2 cos(mt+ Υ), that is, the Âi := Âi are not components of a vector.
3From this point onward we will not need the scale factor a as pulsar timing measurements are obviously

taken at a ≈ 1; we will use this symbol for the orbital semimajor axis from now on, see Fig. 1.
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with, as usual, ∂iSi = 0 = ∂iFi and ∂ihij = 0 = hii. In the Poisson gauge4 B = E = 0 = Fi
the perturbed Einstein equations

G
(1) i

j = 8πGT
(1) i

j

⇓

−2δijΨ̈− ∂(iṠj) −
1

2
ḧij = 8πG

[
δijp+ Πi

j

]
, (3.3)

where G is the Newton’s constant, give Ψ̈ = −4πGp and ∂(iṠj) + 1
2 ḧ

i
j = −8πGΠi

j (we have
neglected scalar and tensor gradients). Therefore, the Riemann tensor turns out to be

R
(1)i

0j0 = − δijΨ̈ + ∂(iṠj) +
1

2
ḧij = 4πGρDM

[
4Xi

j − δij
]
c2(mt+Υ) . (3.4)

3.2 Results

The binary Keplerian orbits are described by the Lagrange planetary equations (see the
Appendix), which are given directly in terms of the force per unit mass Eq. (3.1). We
focus here on the variation of the orbital period, Ṗb, as it is the parameter that gives the
stronger constraints, and we refer to the Appendix for the full system of the six independent
parameters. The orbital period can be directly obtained from the (variation of the) semi-major
axis a thanks to

Pb :=
2π

ω0
= 2π

√
a3

GMT
,

where ω0 is the orbital frequency, and MT := M1 +M2 is the total mass of the system.
The variation of a is given by

ȧ

a
=

2

ω0

{
e sin θ

aә
Fr +

ә
r
Fθ

}
, (3.5)

where we have decomposed the vector ~F in the reference frame of the binary system with
polar coordinates (r, θ, z) as ~F = Frr̂ + Fθθ̂ + Fz ẑ, see Fig. 1, and we defined ә :=

√
1− e2.

Explicitly, in terms of the perturbation in Eq. (3.4) we obtain

Fr = 4πGρDMc2(mt+Υ) r
[
c2(θ−ϕ) − 2c2ϑc

2
θ−ϕ
]
, (3.6a)

Fθ = − 8πGρDMc2(mt+Υ) r s
2
ϑs2(θ−ϕ) , (3.6b)

Fz = 8πGρDMc2(mt+Υ) r s2ϑc(θ−ϕ) . (3.6c)

As we show next, we obtain secular variations of the orbital parameters when the binary
system is in resonance with the oscillating background. The first step is to express the orbit
in terms of Bessel series in sin[nω0(t− t0)] and cos[nω0(t− t0)], with t0 the time of periastron.
If we parametrise the (small) gap between the two frequencies as δω := 2m − Nω0, where
N is the resonance harmonic number, then, upon averaging over a long time ∆t for which
Pb � ∆t� 2π/δω:

〈f(t)〉 :=
1

∆t

∫ t+∆t

t
dt f(t) ,

4Clearly our results are gauge-independent.
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Figure 1. Description of Keplerian orbits in terms of the orbital elements viewed in the fundamental
(X,Y, Z) reference frame. The cartesian orbital (x, y, z) frame and the polar one (r, θ, z) are also
shown (centered at M2 for convenience). Here ~A stands for the vector background field describing
DM, n̂ is the unit vector pointing towards the ascending node.

we have 〈
snω0(t−t0)c2(mt+Υ)

〉
≈ −1

2
δ(n−N)sγg(t) ,〈

cnω0(t−t0)c2(mt+Υ)

〉
≈ 1

2
δ(n−N)cγg(t) ,

with

γg(t) := δω(t− t0) + 2mt0 + 2Υ . (3.7)

Therefore, the δ(n − N) selects the n = N term in the Bessel series, and this is the
secular contribution to the variation of the orbital parameters. Keeping only this dominant
secular term, we then obtain:〈

Ṗb

〉
=

3

2
GρDMP

2
b

{
[Qxx(Ne) +Qyy(Ne)] sγg(t) +Qxy(Ne)cγg(t)

}
, (3.8)

where 
Qxx(Ne) =

(
4s2
ϑc

2
ϕ − 1

)
Nqxx(Ne)

Qyy(Ne) =
(
4s2
ϑs

2
ϕ − 1

)
Nqyy(Ne)

Qxy(Ne) = 4s2
ϑs2ϕNqxy(Ne)

, (3.9)

and the q(Ne) are defined in Eq. (A.3) in the Appendix.

3.3 Phenomenology

As expected from the symmetry of the system, when the vector is directed along ẑ we recover
exactly the scalar result; however, the vector case has a much richer phenomenology. For
instance, the difference with the scalar is most evident if the orbits are exactly circular: in
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this case the scalar secular drift disappears, whereas the vector gives a non-zero effect, since
qxx(0) = −qyy(0) = qxy(0) = 1/2 (when N = 2 only). We can write Eq. (3.8) in this case as

〈
Ṗb

〉
→ 6GρDMP

2
b s

2
ϑsγg(t)+2ϕ ' 1.6× 10−21

(
Pb
d

)2

s s−1 , (3.10)

where d stands for days, we have assumed s2
ϑsγg(t)+2ϕ = 1 and used ρDM = 0.3GeV/cm3 as a

typical value for the local DM density.
For known binary systems, as can be seen in Table 1, the typical errors on Ṗb are at best of

O
(
10−15

)5. Therefore, the effect described above is too small to affect current measurements
of Ṗb. In the future, one can expect the error on Ṗb to improve roughly as∼ (T0/T )5/2 (δt/δt0),
where T (T0) is the future (current) observational time and δt (δt0) the future (current) time
of arrival (TOA) precision [23, 24]. For instance, if recently discovered, a factor 105/2 of
improvement can be expected after observing the system for 10 years. The TOA precision
can be improved by an order of magnitude, δt/δt0 ∼ 10, with the next generation of radio
telescopes, such as the Square Kilometre Array (SKA)6, see for instance [25].

Improvements by more than an order of magnitude, while possible, are in general very
difficult to achieve. Notice that while the effect increases for systems with long orbital periods,
scaling as P 2

b , the precision worsens according to P 4/3
b . Therefore, measuring this effect will

be challenging even for future experiments. Lastly, better chances can be had in denser
environments such as closer to the Galactic centre, where ρDM could be a factor 10 or more
higher, so that the effect would be boosted and measureable.

Before closing this section, note that, in order for the secular drift to appear, the res-
onance should be sustained across many binary periods. Since all expected (theoretical)
General Relativity effects, as well as all empirically measured Ṗb are minuscule Ṗb � 1, this
assumption is accurately satisfied. Lastly, the vector field should also retain its direction and
phase for many binary periods. Given that the expected coherence time is or order v2/m and
that the typical velocity of a virialised halo is v ∼ 10−3, we expect this to be true for roughly
106 periods — for a period of Pb ≈ 1d this means almost 3000 years.

4 Direct coupling and fifth forces

4.1 Theory

In addition to the unavoidable gravitational coupling, the vector fuzzy DM could interact
non-gravitationally to the binary. There are two possibilities. In the first case the fuzzy DM
field mixes with the standard U(1) photon [13, 26–29]; this essentially amounts to assigning a
(very) small electric charge to the DM, and, as we will see, since a neutron star is practically
electrically neutral, this effect is unobservable.

The second option is that DM carries a tiny charge associated with the nucleons of the
star, for example baryon number B, or (B − L) (L is the lepton number) [30–32].

In all cases we can capture the dynamics by introducing an interaction term

Lq := q1~v1 · ~A+ q2~v2 · ~A , (4.1)

5For the double pulsar PSR J0737-3039, although work on this system is still ongoing, an accuracy of
O
(
10−16

)
is expected already from current data [22].

6https://www.skatelescope.org
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where qk with k ∈ {1, 2} are the effective charges of the two binary bodies, and ~vk are their
velocities in the usual (x, y, z) cartesian orbital reference system. From the Euler-Lagrange
equations we derive the force per unit mass F iq :

F iq = − q

M�
Ȧi = − q

M�

√
2ρDMsmt+Υ a

i , (4.2)

where we have defined q/M� := (q1M2 − q2M1)/M1M2 with M� the mass of the Sun.
The calculation proceeds in much the same way as for the previous section, except that

the perturbation is now given by Eq. (4.2). The result for the change in the semi-major axis
is 〈

ȧ

a

〉
=
q
√

2ρDMN

aω0M�
sϑ
{
qysϕsγl(t) − qxcϕcγl(t)

}
, (4.3)

where the frequency gap is defined as δω′ := m−Nω0 (notice the factor of 2 difference from
δω), and the time averaging picks up the n = N terms only:〈

snω0(t−t0)smt+Υ

〉
≈ 1

2
δ(n−N)cγl(t) ,〈

cnω0(t−t0)smt+Υ

〉
≈ 1

2
δ(n−N)sγl(t) ,

with

γl(t) := δω′(t− t0) +mt0 + Υ . (4.4)

We focus now on the B and (B−L) fifth forces and comment on the (unobservable) dark
photon case below. We parametrise the B or (B − L) number of the k-th binary member as
Nk := ckMk/mn with mn the mass of the neutron7; here ck is a phenomenological parameter
that depends on several factors, most importantly the actual baryonic to gravitational mass
ratio, and the proton content of the star [33]; other factors are the compactness of the star
and its equation of state, and its gravitational mass itself. Since here we are interested in
an order of magnitude estimate, we employ a typical value of ∆c := c1 − c2 ∼ 0.1, in what
follows. The overall effective coupling can be written as qk := gNk, where g is the fifth force
strength8.

4.2 Results and discussion

We start by considering the secular variation of the orbital period from Eq. (4.3) for nearly
circular orbits. Using the expressions for qx and qy given in the Appendix as Eqs. (A.6a)
and (A.6b), it is immediate to see that in the limit e → 0, only the first resonance N = 1
survives, qx ∼ qy → 1 and Eq. (4.3) reduces to

Ṗb → −
3g
√

2ρDM

2mn (2πGMT )1/3
∆c P

4/3
b sϑcγl(t)+ϕ

' 6.3× 1011g∆c

(
M�
MT

)1/3(Pb
d

)4/3

s s−1 , (4.5)

7In order for this expression to be valid we need to ensure that the fifth force has a long enough range to
“see” the entire system, which means that m� 10−16eV; this is easily satisfied for all the systems we consider.

8If the DM is not the mediator of fifth baryonic force itself, but is instead coupled to it indirectly through,
e.g., a Z′ portal, we can write qk := gqAZ′Nk, with qAZ′ the coupling to the portal.
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where in the second line we have assumed sϑcγl(t)+ϕ = −1 and ρDM = 0.3GeV/cm3. Higher
harmonics (N ≥ 2) are therefore only relevant for eccentric systems e ≥ 0.1.

In Fig. 2 we show the limits on the fifth force coupling g versus the vector fuzzy DM mass
m that we obtain from the systems in Table 1, assuming ∆c = 0.1, and ignoring an eventual
suppression of the effect due to a coincidence in the values of the phase of the low-frequency
modulation and the direction of the DM field9. The limits are obtained by requiring that the
magnitude of the effect of DM on Ṗb, be smaller than the error, δṖb, up to which it is known
such effect is absent for those systems. For systems for which Ṗb was measured, the value of
δṖb listed in Table 1 corresponds to the error on the intrinsic Ṗb (that is, the measured value
minus all the contributions of known effects), while for the others δṖb represents an upper
bound on Ṗb.

The dark, largest coloured symbols refer to the first harmonic N = 1; we include the
N = 2 to N = 5 higher harmonics which are displayed in progressively smaller copies of
the same symbol10. The symbols in lighter colours show what the constraints would be
if the precision on the Ṗb measurement improves by a factor of 10. The numerical labels
give the eccentricity for systems where e ≥ 0.1. Included in the figure are also: (1) the
constraints from torsion balance experiments [34] (solid black line, the excluded region is the
shaded region above it); (2) the forecasted constraints from atom interferometry experiments
with sensitivities of 10−13g/Hz1/2 (dotted dark red line) and 10−15g/Hz1/2 (dotted light red
line) [31]; (3) the forecasted constraints from the reanalysis of torsion pendulum data (dashed
dark blue line) and the next experimental run (dashed light blue line) [31]; (4) the sensitivities
of the future European Pulsar Timing Array (EPTA, dot-dashed dark green line) and Square
Kilometer Array (SKA, dot-dashed light green line) [31].

The main result of this section is that current pulsar timing data, for a wide range of
masses, can already place the most stringent constraints on a B or (B − L) fifth force if this
fifth force is carried by (fuzzy) DM.

As we already noticed, the typical measured values for the secular change in Pb can
reach Ṗb . 10−15s s−1, and are expected to go down an order of magnitude with future data.
This means that fifth force couplings of the order g ∼ 10−26 are within reach of current data,
and will improve significantly in the near O (year) future. Ideally, if Ṗb . 10−16s s−1 were
achievable for long-period systems (Pb & 100d), corresponding to m . 10−21, we would be
able to push the limit on g all the way down to g ∼ 10−29 or even further. Notice that both
the effect in Eq. (4.5) and the expected statistical uncertainty of Ṗb scale with the orbital
period as P 4/3

b [23, 24]. Moreover, with the next generation of radio telescopes the number
of binary systems suitable for timing analysis is expected to increase by a factor of ∼ 10,
significantly covering the fuzzy DM mass range [35]. Finally, we have the chance of detecting
pulsar-black-hole binary systems (e.g., [36, 37]), which would be ideal systems for testing the
secular effect imprinted by the coupling between the DM field and the neutron star.

The same interaction Lagrangian Eq. (4.1) can be used to describe the case of a dark
photon; in this case either the photon is charged under a new U(1) which is carried by Ai,
or the Ai itself carries a very small electric charge. This causes the two vector fields to mix
and potentially generate a fifth force just as before. However it is easy to see that this effect
is unobservable since the binary members are practically electrically neutral. This is so even

9More precisely, we take the sum of the coefficient proportional to −sϑ cos(γl(t)+ϕ) and −sϑ cos(γl(t)−ϕ).
For near circular orbits, this is equivalent to assuming sϑ cos(γl(t) + ϕ) = −1.

10Note that for systems with small eccentricity the constraints from higher harmonics are too weak and,
therefore, the corresponding symbols fall out of the range of the plot.
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Figure 2. Limits on the fifth force coupling g versus the vector fuzzy DM mass m. Dark coloured
symbols are the current bounds obtained from the corresponding systems with parameters given in
Table 1. The same symbols in lighter colours show the constraints that would be obtained for the same
systems were the precision on Ṗb a factor of 10 higher. The numerical labels give the eccentricity for
eccentric, e ≥ 0.1, systems. The largest symbols refer to the first resonance N = 1, and the constraints
for higher resonances (up to N = 5) are shown with the same symbols but progressively smaller sizes.
The shaded region above the solid black line is excluded by torsion balance experiments [34]. For
comparison, the plot includes the forecasted constraints obtained in [31] from two different setups,
using torsion pendulum (dashed dark blue line, and dashed light blue line), atom interferometry
(dotted dark red line, and dotted light red line), and pulsar timing arrays (European Pulsar Timing
Array, dot-dashed dark green line and Square Kilometer Array dot-dashed light green line).

ignoring any suppression due to plasma environment and assuming that qk can be as large as
O (1) for the masses we are interested in [29].

A further possibility is to couple directly the vector field with the mass term via

Mk →Mk(A) := Mk

(
1 +

A2

Λ2

)
,

with Λ a mass scale that regulates the strength of the coupling. In this case however vector
fuzzy DM is in no way different from scalar fuzzy DM, which has been discussed in [21, 38]
for the quadratic coupling between scalar field and mass.
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5 Discussion and conclusion

Even though in previous sections we have focussed on the secular variation of the orbital
period, from the results we provide in the Appendix it is possible to work out the effects on
all orbital parameters. As emphasised in [38], it would be worth to perform such analysis to
assess whether the constrains obtained only from Ṗb can be improved. In particular, as for
the scalar field case, there are situations in which the secular variation of Ṗb is negligible, but
the secular drift for other parameters is not.

For instance, for the direct coupling of Eq. (4.1), from the knowledge of Ṗb, we cannot
obtain constrains on masses in resonance with any N ≥ 2 if the system has e� 1, see Fig. 2.
However, as we show next, there is an effect on other orbital parameters that could be useful.
Indeed, using the definitions in Eq. (A.3) and the properties in Eqs. (A.5a) and (A.5b), we
have that in the limit e→ 0,

qx(2e) ∼ qy(2e) ∼
e

2
, (5.1a)

qxy(2e) ∼ qxx(2e) ∼ 1

2
. (5.1b)

Then, the results collected in Panel 2 for the secular variation of the orbital parameters reduce
to

〈ė〉 = − q
√

2ρDM

4aω0M�
sϑcγl(t)+ϕ :=

3

2

FSEP,effy

aω0
, (5.2a)

〈ω̇〉 =
q
√

2ρDM

4aeω0M�
sϑsγl(t)+ϕ := −3

2

FSEP,effx

aω0
, (5.2b)

with 〈ȧ/a〉 =
〈

Ω̇
〉

= 〈ι̇〉 = 〈ε̇1〉 = 0. This effect is equivalent to the one obtained in [39],
which arises when the strong equivalence principle (SEP) is violated11, but with an effective
~FSEP , given by12

~FSEP,eff = − q
√

2ρDM

6M�
sϑ
[
sγl(t)+ϕx̂+ cγl(t)+ϕŷ

]
. (5.3)

Analogously to what we have done with Ṗb, using now that the secular contribution to
ė should be smaller than the error δė, we obtain (assuming sϑ = 1)

g
∆c

0.1
. δė

40mnaω0√
2ρDM

∼ 8.2× 10−6s δė

(
MT

M�

)1/3( d
Pb

)1/3

, (5.4)

where in the numerical estimate we assumed ρDM = 0.3GeV/cm3. The J1713+0747 system
has ė = (−3± 4)× 10−18s−1 [40], which gives

g
∆c

0.1
. 8× 10−24 , for m ∼ 1.4× 10−21eV . (5.5)

11The effect discovered in [39] is produced because the accelerations of the bodies in the gravitational field
of the Galaxy are different from the acceleration ~g of test bodies due to violations of the SEP. It can be written
as in Eqs. (5.2a) and (5.2b), with ~FSEP = (∆1 −∆2)~g, where ∆k is the gravitational-to-inertial mass ratio.

12Notice that the magnitude of ~FSEP,eff is independent of time: |~FSEP,eff | = q
√

2ρDMsϑ/(6M�).
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This upper bound is already competitive with the ones in Fig. 2 and, according to the analysis
presented in [41], with an improvement in the TOA precision by a factor of 2, the bound is
expected to be an order of magnitude smaller by 2030. It is worth to recall here the advantages
of using ė in comparison with Ṗb for the purpose of constraining the fifth force [24, 41]: while
for many systems the error on Ṗb is already dominated by the uncertainties in the value of
the different contributions (mainly, the kinematic effect due to proper motion), the measured
quantity ė is more robust since known contributions are expected to be subdominant with
respect to the error of the timing measurement (which is expected to decrease with the time of
observation, as T−3/2). Notice that the amplitude of the effect on Ṗb decreases with the orbital
period as P 4/3

b while for ė it depletes only as P 1/3
b (see Eq. (4.5) and Eq. (5.4), respectively).

Notice also that while the scaling of the expected statistical uncertainty of Ṗb is the same as
the effect, P 4/3

b , the one of ė decreases faster, as P 2/3
b [23, 24]. Therefore, the bounds on ė

could become more relevant for systems with shorter periods.
It is interesting to see that, with this kind of systems, that is, when e � 1, the con-

straints obtained from Ṗb refer to resonances with N = 1, while the ones derived here from ė
correspond to N = 2. This means that the different orbital parameters of the same system
are probing, in a non-trivial way, different masses of the DM field.

We can compare the effective perturbation of Eq. (5.3) with the effect obtained in [38]
for a scalar DM field Φ. The latter is present if the field is directly coupled to the bodies
via the mass term, Mk → Mk(Φ) := Mk (1 + αkΦ), and the field gradient amounts to an
effective DM velocity ~V with respect to the barycenter of the binary. The comparison is
straightforward: after writing the contribution to the scalar interaction that is linear in ~V ,
one can immediately see that the result is identical to that in Eq. (4.1) if one defines an
effective vector field ~Aeff := −Φ~V /|~V |, and effective charges qeffk := αk|~V |Mk. Of course,
the absence of any observation of a residual secular drift allows us to constrain both effects,
but discriminating between them (which is considerably more challenging) would involve a
combination of independent constrains on the different quantities.

Alongside scalars and vectors, fuzzy DM can potentially exist in the form of a spin-2
field, see [14, 42]. We plan to perform a careful evaluation of the distinctive features of the
spin-2 fuzzy DM in pulsar timing observations in an upcoming work [43].
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A Appendix

We collect here the useful formulas of Keplerian mechanics and the osculating orbits formal-
ism. More details can be found in [44]. Following the same notation as in [38] we write down
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the Lagrange planetary equations,

ȧ

a
=

2

ω0

{
e sin θ

aә
Fr +

ә
r
Fθ

}
, (A.1a)

ė =
ә
aω0
{(cos θ + cosE)Fθ + sin θFr} , (A.1b)

Ω̇ =
r sin(θ + ω)

a2ω0ә sin ι
Fz , (A.1c)

ι̇ =
r cos(θ + ω)

a2ω0ә
Fz , (A.1d)

$̇ =
ә

aeω0

{[
1 +

r

aә2

]
sin θFθ − cos θFr

}
+ 2 sin2 (ι/2) Ω̇ , (A.1e)

ε̇1 = − 2r

a2ω0
Fr + (1− ә) $̇ + 2ә sin2 (ι/2) Ω̇ , (A.1f)

in terms of the following six independent orbital elements: the semimajor axis a (not to be
confused with the scale factor of the Universe), the orbital eccentricity e, the longitude of the
ascending node Ω, the longitude of the periastron $ = ω + Ω (with ω the argument of the
periastron, not to be confused with the orbital frequency ω0), the time of periastron t0, and
the inclination angle ι of the orbital plane with respect to the reference plane of the sky. Here
ε1 = ω0(t− t0) +$ −

∫
dt ω0, ω0 =

√
GMT /a3 = 2π/Pb, E is the eccentric anomaly that is

defined by ω0(t − t0) = E − e sinE. We have also defined ә :=
√

1− e2. We use cartesian
(x, y, z) and cylindric (r, θ, z) coordinates in the orbital plane, and the overdot stands for
a derivative with respect to time t. Therefore, ~r := r̂ = r cos θx̂ + r sin θŷ, with θ (not to
be confused with the angle ϑ) the angular position of M1 with respect to the direction of
the pericentre, x̂, and we have decomposed the perturbation as ~F = Frr̂ + Fθθ̂ + Fz ẑ. The
expressions of the components of ~F or a generic vector in the (X,Y, Z) coordinates can be
found in [45].

The orbit can be expanded in a series as:



x/a = (x0/a) +
∑
qx(ne) cos(nωt)

y/a = (y0/a) +
∑
qy(ne) sin(nωt)

r/a = (r0/a)−
∑
qr(ne) cos(nωt)

(x/a)2 = (x0/a)2 +
∑
qxx(ne) cos(nωt)

(y/a)2 = (y0/a)2 +
∑
qyy(ne) cos(nωt)

xy/a2 = (x0y0/a)2 +
∑
qxy(ne) sin(nωt)

(r/a)2 = (r0/a)2 −
∑
qrr(ne) cos(nωt)

, (A.2)

where the sums run over n ∈ [1,∞) and the zeroth terms are not necessary as in the end only

– 12 –



the resonant harmonics will be relevant. The expansion coefficients are

qx(ne) := 2J ′n(ne)/n

qy(ne) := 2
√

1− e2/eJn(ne)/n

qr(ne) := 2eJ ′n(ne)/n

nqxx(ne) := Jn−2(ne)− Jn+2(ne)− 2e [Jn−1(ne)− Jn+1(ne)]

= 4J ′n(ne) (1−e2)
e − 4Jn(ne)

ne2

nqyy(ne) := (1− e2) [Jn+2(ne)− Jn−2(ne)]

= −nqxx(ne)− 4Jn(ne)/n

nqxy(ne) :=
√

1− e2 [−2Jn(ne) + Jn+2(ne) + Jn−2(ne)]

= 4
√

1− e2
[
Jn(ne) (1−e2)

e2
− J ′n(ne)

ne

]
nqrr(ne) := 4Jn(ne)/n2

= −n2 (qxx(ne) + qyy(ne))

, (A.3)

where the Jn(z) are Bessel functions of the first kind. Some useful relations can be found
among expansion coefficients:

qx(ne) = − 1

2eә2

[
ә2qxx(ne)− qyy(ne)

]
,

qy(ne) = − әn
2e

[qxx(ne) + qyy(ne)] .

With the use of the expansion of the Bessel function and its derivative for small values of e,

JN (Ne) =
(Ne/2)N

Γ[N + 1]

[
1 + O

(
e2
)]
, (A.5a)

J ′N (Ne) =
JN (Ne)

e

[
1 + O

(
e2
)]
, (A.5b)

where Γ[x] is the Gamma function, we obtain that for nearly circular orbits

qy(ne) =
(Ne/2)N−1

Γ[N + 1]

[
1 + O

(
e2
)]
, (A.6a)

qx(ne) = qy(ne)
[
1 + O

(
e2
)]
. (A.6b)

In the Panels 1 and 2 we collect the secular changes of all orbital parameters for the
cases of the gravitational force Eq. (3.1) and the direct coupling case Eq. (4.2), respectively.

Table 1 lists all the binary systems that we have used in this study, alongside their
relevant properties.
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Panel 1. Secular changes of all six orbital parameters for the gravitational force Eq. (3.1). All the
qij are functions of Ne, and the frequency gap is defined as δω := 2m − Nω0, and we are using the
notation defined in Eq. (2.8).

〈
ȧ

a

〉
=

2πGρDMN

ω0

{[(
4s2
ϑc

2
ϕ − 1

)
qxx +

(
4s2
ϑs

2
ϕ − 1

)
qyy
]
sγg(t) + 4s2

ϑs2ϕqxycγg(t)

}
(A.7a)

〈ė〉 =
πGρDMә
eω0

{[(
4s2
ϑc

2
ϕ − 1

)
әNqxx +

(
4s2
ϑs

2
ϕ − 1

)
әNqyy − 8s2

ϑc2ϕqxy
]
sγg(t)

−4s2
ϑs2ϕ [qxx − qyy − әNqxy] cγg(t)

}
(A.7b)〈

Ω̇
〉

=
4πGρDM cscι

әω0
s2ϑ

{
−cϕ−ωqxysγg(t) + [sωcϕqxx + cωsϕqyy] cγg(t)

}
(A.7c)

〈ι̇〉 =
4πGρDM

әω0
s2ϑ

{
sω−ϕqxysγg(t) + [cωcϕqxx − sωsϕqyy] cγg(t)

}
(A.7d)

〈$̇〉 = 2 sin2 (ι/2)
〈

Ω̇
〉

+
πGρDM

e2әω0

{
4s2
ϑs2ϕ

[
(1 + ә2)qxy − ә3N (2qxx + qyy)

]
sγg(t)

+
[(

4s2
ϑc

2
ϕ − 1

)
ә2qxx +

(
4s2
ϑ(c2

ϕ + 2c2ϕ)− 1
)
qyy − 4s2

ϑc2ϕә3Nqxy
]
cγg(t)

}
(A.7e)

〈ε̇1〉 =
4πGρDM

ω0

{
2s2
ϑs2ϕqxysγg(t) −

[(
4s2
ϑc

2
ϕ − 1

)
qxx +

(
4s2
ϑs

2
ϕ − 1

)
qyy
]
cγg(t)

}
+ (1− ә) 〈$̇〉+ 2ә sin2 (ι/2)

〈
Ω̇
〉

(A.7f)

Panel 2. Secular changes of all six orbital parameters for the direct coupling case, where the per-
turbation is given by Eq. (4.2). All the qij are functions of Ne, and the frequency gap is defined as
δω′ := m−Nω0 (notice the factor of 2 difference from δω), and we are using the notation defined in
Eq. (2.8).

〈
ȧ

a

〉
=
q
√

2ρDMN

aω0M�
sϑ
{
qysϕsγl(t) − qxcϕcγl(t)

}
(A.8a)

〈ė〉 = − q
√

2ρDMә
2aeω0M�

sϑ
{

[qx − әNqy] sϕsγl(t) − [qy − әNqx] cϕcγl(t)
}

(A.8b)〈
Ω̇
〉

=
q
√

2ρDM cscι

2aәω0M�
cϑ
{
sωqxsγl(t) + cωqycγl(t)

}
(A.8c)

〈ι̇〉 =
q
√

2ρDM

2aәω0M�
cϑ
{
cωqxsγl(t) − sωqycγl(t)

}
(A.8d)

〈$̇〉 =
q
√

2ρDMN

4aeω0M�
sϑ
{
cϕqxysγl(t) + sϕqxxcγl(t)

}
+ 2 sin2 (ι/2)

〈
Ω̇
〉

(A.8e)

〈ε̇1〉 = − q
√

2ρDM

aω0M�
sϑ
{
cϕqxsγl(t) + sϕqycγl(t)

}
+ (1− ә) 〈$̇〉+ 2ә sin2 (ι/2)

〈
Ω̇
〉

(A.8f)
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Name M1 [M�] M2 [M�] e Pb [d] Ṗb [s s−1] δṖb [s s−1] References

J1903+0327 1.03 1.67 0.44 95 -6.4e-11 3.1e-11 [46]
J1740-3052 20 1.4 0.58 231 3e-9 3e-9 [47]
J0737-3039 1.249 1.338 0.088 0.1022 -1.252e-12 0.017e-12 [48]
B1913+16 1.39 1.44 0.62 0.32 -2.423e-12 0.001e-12 [48]
B1259-63 24 30 0.87 1237 1.4e-8 0.7e-8 [49]
J1012+5307 0.10† 1.2‡ 1.3e-6 0.60 8.1e-14 2.0e-14 [50, 51]
J1614-2230 0.49 1.9 NA 8.7 1.7e-12 0.2e-12 [50]
J1909-3744 0.21 1.5 1.2e-7 1.5 5.02e-13 0.13e-13 [50, 51]
J0636+5128 0.007† 1.4‡ 2.2e-5 0.67 2.5e-12 0.3e-12 [50, 52]
J0751+1807 0.16 1.6 3.3e-6 0.26 -3.50e-14 0.25e-14 [51]
J1910+1256 0.3 1.6 2.3e-4 58 -2e-11 4e-11 [53]
J2016+1948 0.45 1.0 1.5e-3 635 -1e-9 2e-9 [53]
J0348+0432 0.17 2.0 2.4e-6 0.1024 -2.73e-13 0.45e-13 [54]
J1713+0747 0.29 1.33 7.5e-5 68 3.4e-13 1.5e-13 [40]
J0613-0200 0.12† 1.2‡ 5.4e-6 1.2 5.4e-14 1.8e-14 [50, 51]
J1738+0333 0.18 1.46 3.4e-7 0.35 -1.7e-14 0.3e-14 [55]
J1751-2857 0.18† 1.2‡ 1.3e-4 111 1.8e-11 1.8e-11 [51, 56]
J1857+0943 0.27† 1.2‡ 2.2e-4 12 1.2e-13 1.2e-13 [51, 56]

Table 1. List of binary systems used in this study. The columns are: (1) the name of the binary;
(2) the mass of the companion in M� units (if only the minimum value is available we denote this
with a †); (3) the mass of the pulsar in M� units (assumed values are indicated with a ‡); (4) the
orbital eccentricity; (5) the binary period in days; (6) the period derivative in s s−1; (7) the upper
limit or error on the period derivative, also in s s−1; (8) the references. In Fig. 2 we have assumed
zero eccentricity e = 0 for J1614-2230.
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