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In a previous work we found that size-matched Chasmagnathus crabs establish winner–loser relationships that
were stable over successive encounters but no evidence of escalation was revealed through fights. Here, we
evaluated the hypothesis that size-matched fights between these crabs would be resolved according to the
contestants' level of aggressiveness.Moreover,we aim at analysing the proximate roots of aggression, addressing
the influence of the biogenic amines serotonin (5HT) and octopamine (OA) in crab's agonistic behaviour. To
achieve these purposes, the following experiments were carried out. First, we performed successive fight
encounters between the same opponents, varying the number of encounters and the interval between them, to
assess the stability and progression of thewinner–loser relationship. Then, we analysed dominance relationships
in groups of three crabs, evaluating the emergence of linearity. Thirdly, we examined the effects of 5HT and OA
injections over the fight dynamics and its result. Our findings show that contest outcome is persistent even
through four encounters separated by 24 h, but a comparison between encounters does not reveal any saving in
fight time or increase in the opponent disparity. Within a group of crabs, a rank-order of dominance is revealed
which is reflected in their fight dynamics. Interestingly, these results would not be due towinner or loser effects,
suggesting that fight outcome could be mainly explained as resulting from differences in the level of
aggressiveness of each opponent. Moreover, this individual aggressiveness can be modulated in opposite
directions by the biogenic amines 5HT and OA, being increased by 5HT and decreased by OA.
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1. Introduction

Aggressive interactions between conspecifics are found in a wide
range of animal taxa, serving in the acquisition or defense of vital
resources such as food, shelter, or access tomates [1–3]. Afight can lead to
a dominance relationship which, in some animal species, is stable and
becomes more pronounced through successive encounters, up to the
point of formingpart of a social hierarchy [4].Dominance relationships are
basedondifferencesbetween thecontenders either in intrinsic factors, i.e.,
individual attributes that modify fighting ability; or in extrinsic factors,
suchaspreviousagonistic experience that includewinner and loser effects
[5–9]. Moreover, within a group, dominance relationships can lead to a
linear structure where one individual dominates all the others; a second
dominates all but the first; and so on. It is suggested that such linearity
would be accounted either by differences in prior attributes or instead by
the dynamics of social interaction among group members [4]. Individual
attributes that influence fight result are of varied sorts, depending on
study and species, but body size, age, sex, reproductive state, and the level
of aggressiveness are among the most recurrent [10–12]. While most of
80
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these factors can be assessed by the experimenter, the level of
aggressiveness is usually obscured by other traits, making it difficult to
determine its relative contribution to the fight outcome.

Crustacean species represent excellent study systems to explore the
structure of aggression and its causation [13–18]. In a typical fight
between a size-matched pair of animals, they exchange stereotypical
behaviours that escalate until one of the contestants withdraws,
resulting in dominant and subordinate individuals. Subsequent fights
between the same contenders become shorter, until fighting is avoided
altogether by the retreat of the subordinate in the face of the dominant's
advance [19]. That is,fightgenerates anagonistic status,which is kept by
individual or status recognition [16,20–22].

We started to explore the agonistic behaviour of the crab Chasmag-
nathus granulatus, a species that has been extensively studied in our
laboratory with respect to learning and memory processes [23–25]. In a
previous work, we found that size-matched male crabs display a
conspicuous agonistic behaviour and establishwinner–loser relationships
that were stable over successive encounters [26]. However, no ritualized
aggressionwas shown throughout thefights, and our prior results did not
suggest any changes in the contest intensity from a first to a second
encounter, which contrastswith a typical case of dominance status. These
findings led us to propose the hypothesis that size-matched fights in
Chasmagnathus would be resolved according to the contestants' level of
thus: Influence in fight outcome and modulation by
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aggressiveness. Moreover, this would offer unique vistas for a search for
the proximate roots of aggression.

Serotonin (5HT) and octopamine (OA) are considered key physio-
logical regulators of agonistic behaviour in crustaceans, where 5HT is
generally associated with a dominant role and OA with a subordinate
one [27]. When injected into the hemolymph of lobsters, crayfishes and
squat lobsters, 5HT produces a characteristic posture resembling that of
dominants, whereas OA causes a posture typical of subordinate
individuals [28–30]. Besides, an infusion of 5HT was proposed to affect
the aggressivemotivation in crayfish,with subordinates becomingmore
likely to initiate encounters and less likely to withdraw [31–33].

Here, three lines of experiments with the crab Chasmagnathus are
shown. Firstly, we performed successive fight encounters between the
same opponents, varying the number of encounters and the interval
between them, to assess the stability and progression of the dominance
relationship. Secondly, we analysed dominance relationships in groups
of three crabs staging dyadic encounters between all members of the
group. By performing fight encounters between unfamiliar opponents
we could evaluate the influence of winner and loser effects over the
outcome of a fight. Besides, the analysis of all the fights of each triad
allowed us to evaluate the emergence of linearity and its expression in
the agonistic performance of each member of the triad. Finally, we
analysed the influence of the biogenic amines 5HT andOAover thefight
outcome and its dynamics. Our results suggest that fight outcome in
Chasmagnathus could be mainly explained as resulting from differences
in the level of aggressiveness of each opponent in a size-matched
contest. Furthermore,we showthat this individual aggressiveness could
bemodulated in opposite directionsby thebiogenic amines 5HT andOA,
being increased by 5HT and decreased by OA.

2. Material and methods

2.1. Animal housing conditions

Animals were adult male crabs C. granulatus (Dana, 1851), of
2.7–3.0 cm across the carapace, weighing around 17.0 g, collected from
water less than 1 m deep in narrow coastal inlets of San Clemente del
Tuyú, Argentina, and transported to the laboratory. They were lodged
initially in plastic tanks (35×48×27 cm) filled to 2-cm depth with
diluted marine water, to a density of 20 crabs per tank. When isolated,
animals were kept in individual opaque containers (12 cm diameter,
15 cm height). Water used in tanks and containers during experiments
was prepared using hw-Marinex (Winex-Germany), salinity 10–14‰,
pH 7.4–7.6, andmaintainedwithin a range of 22–24 °C. The holding and
experimental rooms were maintained on a 12 h light–dark cycle
(light on 07:00–19:00 h). Animals received no food until experiments
were concluded; afterwards theywere fed rabbit food pellets ad libitum.
None of the crabs was harmed during the course of this investigation,
and at the conclusion of the study they were returned to their original
place of capture. Principles of laboratory animal carewere followed in all
cases (NIH publication no. 85-23, revised in 1985).

2.2. Animal selection

Weselectedonlymature intermoultmales in pristine conditions, i.e.,
hard exoskeleton, no epifaunal growth, no missing or recently
regenerated limbs, no obvious shell disease or carapace punctures,
and no apparent asymmetry of chelipeds [34]. Thus, animals were
uniform in these characteristics that could otherwise influence their
fight performance [35].

2.3. General experimental procedure

Animals were isolated in individual opaque containers for 6 days
(unless otherwise noted) before the experiment. Previous works have
shown that this isolation period can increase aggressiveness [36–38]
Please cite this article as: Pedetta S, et al, Individual aggressiveness in the
serotonin and octopamine, Physiol Behav (2010), doi:10.1016/j.physbe
and also remove any prior social effects [16,39]. We staged dyadic
encounters between male crabs matched to within 1 mm for both
carapace width and claw length. One member of the dyad was marked
with a small dot ofWhiteOut (BIC) on its carapace. Each animal of a pair
wasmoved from its respective individual container to theopposite sides
of an experimental arena, where the encounter took place. The arena
consists of an opaque plastic box (12.5×25×15 cm), illuminated from
above. Previous results [26] demonstrated that Chasmagnathus crabs
fight readily in these laboratory conditions, with an agonistic repertoire
comparable to the one observed in the field (Fathala M.V., personal
communication). The encounter duration was 10 min, since limited
interactions were shown after such time period. When the encounter
finished, crabs were moved from the arena back to their respective
individual opaque containers. We recorded the encounters by means of
a Sony digital camcorder DCR-TRV22. When watching the films, the
observer was blind to the experimental conditions of the contestants. A
computer was used as an event recorder and custom designed software
allowed us to record the time each animal spent in each category of
agonistic behaviour.

2.4. Categories of agonistic behaviour

We defined the following categories of agonistic behaviour to
evaluate the animal's performance during the encounters. See
Supplementary material (Movie 1 SM) for a brief extract of a fight
encounter, indicating all these behavioural categories.

Approach stands for a walk of the animal towards the opponent,
either facing it or not, either leading or not to contact it.

Attack stands for suddenmovements of one animal towards another
that lead to physical contact. It includes diverse kinds of physical contact
between the chela (e) and the opponent body, as jabbing (vigorous and
rapid touching), pushing or enveloping (a movement of one or both
chelae to partially or totally embrace a conspecific).

Retreat stands for the movement of one animal away from the
other in response to an attack or approach; including escapes, i.e.,
quick retreats.

Approaches and attacks are considered as “dominant acts”, while
retreats as “submissive acts”.

Apart from these three items of behaviour,we distinguished a fourth
category of acts, the “non-agonistic behaviours”, that includes wander-
ing (i.e., movements not oriented towards its opponent) and resting.

Preliminary observations revealed that fight initiation did not
predict fight outcome in Chasmagnathus size-matched fights. Thus, we
did not include this variable in the current study.

2.5. Evaluation of agonistic performance

We coined diverse indexes for assessing the agonistic performance
of each opponent during the encounter, to establish which is the
winner and which is the loser and to compare fight intensity and
duration between encounters.

The individual dominance level (IDL) for each opponent is the
difference between the total time of dominant acts (approaches plus
attacks) and the total time of submissive acts (retreats), during the
whole encounter period. The contender with the higher IDL is termed
the winner and the other the loser.

In contrast with the IDL, all the following estimations involve
measurements corresponding to both contenders.

The total interaction time (TIT) adds up the total time both
contenders spend in performing agonist acts, either dominant or
submissive acts, during the encounter.

The disparity index (DI) stands for the asymmetry in the behaviour
of the contenders during the time they interact. We distinguished
between “positive” or “negative” agonistic acts, according to their
consistence with the agonistic condition of each animal of the dyad
(loser or winner). The DI is the difference between the total time of the
crab Chasmagnathus: Influence in fight outcome and modulation by
h.2010.07.008
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“positive” acts (dominant acts of the winner plus submissive acts of the
loser) and the “negative” acts (dominant acts of the loser plus
submissive acts of the winner), over TIT×100. This value is a
dimensionless measure that ranges from 0 to 100. A 100% would
represent a case where the winner only performed dominant acts, and
the loser only submissive acts, that is, only “positive” acts that reinforce
the dyadic asymmetry.We only included in our analysis the encounters
where the winner and loser roles could be clearly differentiated
(a DI higher than 20%).

2.6. Experimental protocols

2.6.1. Successive fight encounters between the same opponents
In this series of experiments we analysed the course of a dyadic

relationship through successive fight encounters between the same
opponents, assessing its stability and progression. Animals remained
isolated for 6 days (except in experiment D), after which they were
staged in a fight arena with a sized-matched contestant. Then, crabs
were re-isolated and after an interval of at least 24 h they were staged
again with the same contestant. The following experimental variables
were modified in each case (Table 1, Experimental procedure): 1 —

between-encounters interval: 24, 48 or 72 h was used between two
fight encounters (exp. A, B, C, respectively); 2— isolation time: animals
were isolated for 14 days before the first fight took place (exp. D); 3 —

number of fight encounters: animals underwent four encounters, each
separated by 24 h (exp. E).

2.6.2. Dominance relationships in groups of three crabs
In this experiment we used 37 groups of three individuals each

(triads), staging dyadic encounters between all members of the group
(round-robin competition [4]) separated by a 24 h interval. Unlike the
previous series of experiments, in this case animals confront a new
opponent in each encounter. The encounterswereprecededby6 days of
isolation andwere separatedby a 24 h interval fromeach other. Thefirst
fight was staged between a randomly selected pair; the second one
included one of the former opponents (named focal crab, randomly
chosen) and theother crabof the triad;finally a thirdfightwas staged, in
such a way that all the crabs have met one another. The rationale for
using separate dyadic encounters is that it allows individual qualities
(such as the level of aggressiveness) to control the outcome of the
contests, and prohibits all the other interactions that might occur
normally in a group context and affect the results of the fights [4].

2.6.3. Influence of 5HT and OA on crab's agonistic behaviour
We examined the effect of OA and 5HT over the dynamics and the

outcome of the fights. Two experiments were performed. In the first
Table 1
Experimental procedure and between-encounters comparison for the first series of experim
interval and number of pairs for each experiment are indicated. Between-encounters comparis
expected by chance (50%) by a chi-square test; progression of the dominance relationship is
(one-tailed paired t-test). Data are expressed as mean±SE. Significant differences are show

Experimental procedure Between-encounters comparison

Fight outcome To

Exp. Isolation # of fight
encounters

Inter-fight
interval

N
(pairs)

Persistence Statistics
(chi-square)

TIT
(m

A 6 days 2 24 h 41 83% χ2=17.68
pb0.0001

22

B 6 days 2 48 h 80 72% χ2=16.2
pb0.0001

32

C 6 days 2 72 h 32 75% χ2=8.00
pb0.005

25

D 14 days 2 48 h 85 80% χ2=30.60
pb0.0001

31

E 6 days 4 (#) 24 h 37 70% χ2=6.08
pb0.05

21

Please cite this article as: Pedetta S, et al, Individual aggressiveness in the
serotonin and octopamine, Physiol Behav (2010), doi:10.1016/j.physbe
one, one of the animals of the dyad received an injection of 5HT 1 mM
(5HT group, N=66), or OA 4 mM (OA group, N=51), whereas its
opponent received a saline injection. Besides, we included a control
group (SAL, N=60) where both animals received a vehicle admin-
istration. In the second experiment, both opponents received the
same treatment: OA 4 mM (OA group, N=36), or saline (SAL group,
N=32). In all cases, the injections were applied 15 min before the
fights took place. The fighting period in these experiments was
extended to 15 min.

2.7. Drugs and injection procedure

Crustacean saline solution [40] was used as a vehicle. Fifty microliters
of saline or drug solution was given through the right side of the dorsal
cephalothoraxic-abdominal membrane, bymeans of a syringe fitted with
a sleeve to control the depth of penetration to 4 mm, thus ensuring that
the injected solution was released in the pericardial sac. The lack of an
endothelial blood–brain barrier in crabs [41], together with the fact that
blood is distributed throughout an extensive capillary system [42] makes
it possible for the injected drugs to reach the various neuropil areas of the
brain. Drug solutions were 4 mM for OA (2.24 μg/g) and 1 mM for 5HT
(0.6 μg/g). However, the final hemolymph drug concentrations were
1:100 fold diluted, considering that the hemolymph volume is approx-
imately 5 ml [43]. Ascorbic acid 0.1 mM was included in all solutions to
prevent oxidation of the amines. Solutions were freshly prepared each
time. The amine concentrations used in the presentwork did not produce
any noticeable changes in the animal's posture, exploratory activity or
escape response, as demonstrated in a large series of previous experi-
ments [44, Pedetta and Maldonado, in preparation]. Octopamine and
serotonin were purchased from Sigma (USA).

2.8. Data analysis

In the first series of experiments, persistence in fight outcome was
estimated using a chi-square test, contrasting the obtained values with
the 50% expected by chance. The comparison of fighting parameters
between encounters was performed by a one-tailed paired t-test or a
Wilcoxon matched-pairs test when normality was not met. Only dyads
with a persistent outcome were included in this analysis.

In the experiment using groups of three crabs, winner and loser
effects were evaluated with a chi-square test, contrasting the
persistence in fight outcome of the focal crab with the 50% expected
by chance. Fight dynamics of the top animal's two encounters (top-
second vs. top-last) was compared with a one-tailed paired t-test.

In the pharmacological experiments, the amines' effect on fight
outcome was evaluated by a chi-square test. Agonistic performances
ents. Experimental procedure: isolation period, number of fight encounters, inter-fight
on: persistence in fight result, expressed as the % of persistent dyads, is compared to that
evaluated by comparing total interaction time and disparity index between E1 and E2
n in bold. #: In this case comparisons are performed between E1 and E4.

tal interaction time (s) Disparity index (%)

1
ean±SE)

TIT 2
(mean±SE)

Statistics
(t-test)

DI 1
(mean±SE)

DI 2
(mean±SE)

Statistics
(t-test)

9.2±28.22 257.7±27.71 t=−0.73
p=0.5

55.1±5.11 51.3±5.43 t=0.53
p=0.6

4.3±17.78 333.5±14.03 t=−0.44
p=0.6

56.7±3.73 60.6±3.2 t=−1.06
p=0.3

7.0±36.67 287.3±27.93 t=−0.80
p=0.4

54.5±5.99 44.2±6.97 t=1.19
p=0.2

2.0±37.83 285.1±34.57 t=1.36
p=0.18

58.8±3.56 66.3±3.84 t=−1.65
p=0.1

2.7±28.72 256.2±33.35 t=−0.96
p=0.3

47.4±5.72 53.1±6.2 t=−0.66
p=0.5

crab Chasmagnathus: Influence in fight outcome and modulation by
h.2010.07.008
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within each pair were compared by a one-tailed paired t-test. Fighting
parameters of 5HT, OA and SAL groups were compared using a one-
tailed t-test for independent samples. We normalized all data with
respect to the total interaction time of the SAL group, in order to
combine experiments from different capture efforts.

In all cases, normality of the data was determined by the
Kolmogorov–Smirnov test, and equality of variance by the F-test.

3. Results

3.1. Dominance relationships persist through successive encounters
without saving in fight time or increasing dominance disparity

We analysed fight dynamics in a first encounter between size-
matched crabs and compared it with a successive one. We modified
three different experimental conditions in order to see whether we
could disclose an improvement in the dominance relationship between
encounters. All procedures, results and statistics of this section are
displayed in Table 1 and Table 1 SM (Supplementary material).

Initially, we performed three experiments using 24, 48 or 72 h
between encounters. Results show, in all cases, a significantly greater
number of persistent dyads than expected by chance. In neither case
were there any significant differences between encounters for the
total interaction time (TIT) or the disparity index (DI). Secondly, we
performed an experiment with 14 days of isolation in the individual
containers. The rationale for this procedure is that isolation time is
considered to increase the level of aggression [36]; then, if this period
were extended, a more intense fight at the first encounter (E1) would
be obtained and a progression in the W–L disparity could be found at
the second encounter (E2). Results contradict this production,
showing values of DI and TIT for the first encounter similar to those
shown in the previous experiment with 6 days of isolation. Thus, a
longer isolation period previous to E1 induces no higher level of fight
during such encounter. Besides, no significant differences were found
for DI or for TIT between the two encounters, consistently with
findings of the previous experiments. Thirdly, animals underwent
four fight encounters separated by 24 h, based on the proposal that a
larger number of confrontations between the same animals could
result in a change in aggressive behaviour during the last fight [45].
The comparison between the first and the fourth encounters revealed
a significant persistence in the fight outcome. However, no significant
difference was shown in the fight dynamics between encounters.

Additionally, we performed a detailed analysis of all individuals'
performances from this series of experiments (Table 1 SM), comparing
approaches, attacks and retreats of winners and losers, in their first and
second encounters. No significant differences were shown in any case.
Besides, no recurrent trends in dominance disparity through encounters
were revealed, supporting our previousfindings using a dyadic analysis.

Results of this first series of experiments show, firstly, that the
dominance disparity is kept through encounters, even when separat-
ed by 72 h. Secondly, that the dyadic dominance is rebuilt during a
successive encounter, in similar qualitative and quantitative terms.

3.2. Linearity in the rank-order would be supported by differences in prior
attributes between group members

In this experiment we used groups of three individuals, staging
dyadic encounters between all members of the group, in a way that
animals confront a new opponent in each encounter.

Firstly, we asked whether there is an influence of the previous
agonistic experience in the outcome of a new contest. In order to
standardize the animals' previous agonistic experience, we restricted
our analysis to thefirst twoencounters of oneanimal (i.e., the focal crab)
of each triad. The procedure was as follows: on the first encounter both
contestantswerenaïve,while in the secondone, 24 h later, the focal crab
(randomly chosen, either a previous winner or loser) was faced with a
Please cite this article as: Pedetta S, et al, Individual aggressiveness in the
serotonin and octopamine, Physiol Behav (2010), doi:10.1016/j.physbe
naïf opponent. Four possible arrangements can be obtained. In two of
these cases, the focal crab wins (or loses) both fights with a different
opponent in each combat (role persistence); while in the other two, the
focal crab wins (or loses) the first encounter and loses (or wins) the
second one (role change). If past experience influences the outcomeof a
second fight, we should expect the former two arrangements to
outnumber the two latter combinations. Results contradict such
prediction. Nineteen focal crabs exhibited role persistence (51.30%) vs.
18 showing role change (48.60%), which does not differ significantly
froma chancedistribution (χ2=0.027; p=0.87). This result shows that
the dyadic dominance in afightwould not be biased by the outcome of a
previous one.

Secondly, to determine whether linearity can be disclosed in a
group of three animals, we analysed the entire sequence of combats of
each triad. That is, we determined the emergent group structure from
the analysis of the three dyadic relationships. Results show 30 out of
37 triads with a linear rank-order where the top animal won both
encounters, the second-rank crab won just one and the last one none.
Fig. 1A displays all IDL values according to each animal's position in
the ranking. Results reveal a wide variety in animals' performances,
both within and between rank-positions, which would correlate with
the existing differences in individuals' aggressiveness that account for
the emergent triadic rank-order.

Finally, to analyse whether this linearity is reflected on the fight
dynamicswe compared the twoencounters of the top animal (Etop-second
vs. Etop-last). The DI of the encounter between the top animal and the last
one, Etop-last, was significantly higher than that between the top animal
and the second one, Etop-second, (Fig. 1B, t=−2.11, pb0.05, N=30).
A closer analysis disclosed the factors that are mainly weighing on the
dominance disparity. The total interaction time (TIT) was significantly
lower for Etop-last than for Etop-second (Fig. 1C, t=4.32, pb0.0005), aswell
as the “negative” acts (i.e., the time allocated to dominant acts by the
loser, plus that allocated to retreats by the winner, t=2.93, pb0.01,
N=30). That is, the higher the distance in the rank-order of the triad,
the higher the dominance disparity, the shorter the time dedicated to
the agonist interaction and the smaller theweight of the “negative” acts.

3.3. Serotonin extends the agonistic interaction, while OA decreases it

Initially, we analysed whether 5HT or OA couldmodify the outcome
of a fight and its dynamics. Thus, we performed an experiment where
one of the animals of the dyad received an injection of 5HT, OA, or
vehicle, while its respective opponent received vehicle in all cases.
Results showed that neither amine has a noticeable effect over the
outcomeof thefights [5HT:χ2=0.25, p=0.62;OA:χ2=0.02;p=0.88].
That is, neither OAnor 5HT increases the tendency to be loser orwinner,
respectively. Similarly, no differences were found in the time of
approaches, attacks and retreats performed by the amine-injected
animals with respect to their vehicle-injected opponents (data not
shown). However, when combining the performance of both con-
tenders (Fig. 2), results demonstrate that the fight episodeswere longer
in the 5HT-group with respect from both the SAL group [TIT, t-test:
t=1.68; pb0.05] and the OA group [t=2.11; pb0.05] (Fig. 2A). Amore
detailed analysis of these results revealed that the increase in the fight
duration of the 5HT group was due to an intensification of the time
dedicated by both opponents to dominant acts [t=1.82; pb0.05 with
respect to SAL, and t=1.97; pb0.05with respect to OA] (Fig. 2B). Thus,
our findings suggest that 5-HT administration would enhance an
animal's aggressive state,which in turnwould evokemore aggression in
its vehicle-injected opponent, leading to prolonged agonistic
interactions.

As the previous experimental design did not allow us to reveal a net
effect of OA over fight dynamics, we performed another experiment to
analyse if OA could have a modulatory role on aggressiveness. In this
case both animals received an OA injection and were compared with a
SAL group. Results (Fig. 3A) showed that the total interaction time of the
crab Chasmagnathus: Influence in fight outcome and modulation by
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OA group was significantly lower than the SAL group [TIT: t=2.09,
pb0.05]. This difference in the fight duration was due to a decrease in
the time allocated to dominant acts of the OA group (Fig. 3B), in
particular the attacks [t=2.39; pb0.01].

Thus, although neither amine could modify the outcome of the
fights, they were able to modulate the fight dynamics: while 5HT
increased the time allocated to dominant acts, OA decreased it.

4. Discussion

4.1. Aggressiveness as a determinant of fight outcome

When two animals engage in a fight, an observer could usually
predict which is going to win based on their differences in attributes
such as body size, sex, or weapon size [34,46]. However, if these
individuals are paired in a large series of measurable attributes, as was
the case in our study, which factor would be determining fight
outcome? Some authors argue that extrinsic factors, such as winner
and loser effects, have a main influence in the fight success [47,48].
We propose here that a contest between Chasmagnathus crabs could be
defined by unmeasured dominance-related asymmetries between
members [6,35,49]. In particular, our suggestion is that the intrinsic
level of aggressiveness could be a key factor determining fight outcome.
Our conclusion stemmed from a series of results.

Firstly, we showed that fight outcome was persistent through
encounters, even when separated by 72 h (Table 1). In spite of this
constancy in the W–L relationship, a comparison between encounters
Fig. 2. Serotonin enhances aggression when administrated to one of the contestants. Indexe
5HT (grey bar, N=66) and OA (black bar, N=51). The combined performance of both conte
episodes from the 5HT group are longer than those of the SAL and OA groups (one-tailed t-tes
an increase in dominant acts of the 5HT group (one-tailed t-test; *: pb0.05).

Please cite this article as: Pedetta S, et al, Individual aggressiveness in the
serotonin and octopamine, Physiol Behav (2010), doi:10.1016/j.physbe
did not reveal any differences in the fight dynamics. This result would
imply that every time the same contestants meet, they fight in a similar
way, reconstructing the W–L roles according to their individual
aggressiveness. However, it could be argued that it is the past agonistic
experience that determines the result of a subsequent fight encounter.
We showed that this would not be the case in our study. Our results did
not reveal any winner or loser effects when animals met a new
opponent in each encounter, indicating that previous agonistic
experience has no evident influence in the outcome of a successive
one. Finally, we found a rank-order of dominance (i.e., linearity) in
groups of three crabs that is reflected in its fight dynamics. That is, when
the top animal faces the last-ranked crab, the disparity between them is
more pronounced, and the interaction time is reduced, with respect to a
fight against the second-ranked animal (Fig. 1). Therefore, there would
be a pre-existent ranking between these individuals, based on the level
of aggressiveness of each opponent, ready to be revealed when they
meet. Our results open the possibility of disclosing the level of
aggressiveness of each individual within a group of size-matched
crabs, through the systematic assessment of dominance in a sequence of
paired contests. This would allow us, in turn, to study correlates
between this intrinsic factor and other attributes of the same animal, as
its memory ability [26].

An intriguing finding of the present work is that we found no
evidence of an increase in the dominance disparity through successive
encounters. That is, the winner–loser relationship would be fully
rebuilt each time, without saving fight time or reducing the number of
negative acts. Such scenario is at variance with that described for
s of agonistic performance for the three experimental groups: SAL (white bar, N=60),
stants is displayed. Data are expressed as mean±SE. A. Total interaction time. Agonistic
t; *: pb0.05). B. Dominant acts. The intensification of the agonistic interactions is due to

crab Chasmagnathus: Influence in fight outcome and modulation by
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several other animal species, where fights on subsequent combats
appear to be resolved more rapidly (time saving), at lower intensity,
and with increased polarity [13,15,16,47,50–52]. It is worthwhile to
consider these results in relation to the crab's life in its natural habitat.
Chasmagnathus build their burrows in the mudflat and live in highly
dense populations, with up to 60 burrows per m2 [53,54], exposed to
daily tidal fluctuations that may imply rearrangements in burrow
ownership. Field observations reveal that these crabs are solitary
animals and their limited interactions with conspecifics are of
aggressive nature, mainly occurring in the context of burrow disputes
between a resident and a wondering crab [55]. In such scenario, the
selective pressure towards a recognition mechanism is probably
weak, because animals have a very low chance to be engaged in a fight
repeatedly with the same opponent. Therefore, our results showing
that the fight generates a W–L relationship and not a long lasting
agonistic status seem to be consistent with their natural conditions.
524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553
4.2. Proximate roots of aggression: modulation by biogenic amines

A comprehensive understanding of the causation of aggressive
behaviour requires behavioural variability to be mapped onto its
underlying proximate mechanisms. Monoamine systems are attractive
candidates as they modify neural function at multiple levels and may
thereby bring a coherent behavioural response when the animal
interacts with conspecifics or intruders [56–58]. In particular, serotonin
(5HT) is strongly implicated in the control of agonistic behaviour and
social dominance across a wide variety of invertebrate and vertebrate
taxa, including humans [59–62]. Increased 5HT function is often
considered to lower aggression in vertebrates, while the opposite
scenario seems to hold true for invertebrate taxa [63,64]. From this
divergence, it is possible to consider the hypothesis that the role of 5HT
systems underlying aggression could have undergone a sign change
during early vertebrate evolution [65]. Alternatively, this discrepancy
could be attributed to the differences in behavioural paradigms used,
manipulation of serotonergic levels, as well as to the diverse connota-
tionsof the terms “aggression” and “dominance”. Regardingoctopamine
(OA), which is considered the invertebrate's counterpart of noradren-
aline [66], it was repeatedly associatedwith the regulation of aggressive
behaviour in arthropods [57]. In insects like crickets and fruit flies, OA
was found to increase the motivation to fight [67–70]. Conversely, in
decapod crustaceans an injection of OA was shown to decrease
aggression and lead to a posture typical of subordinate individuals
[28–30]. All in all, beyond the existing differences across taxa, 5HT and
OA are recognized as key physiological regulators of agonistic
behaviour, and particularly in decapod crustaceans these amines appear
Please cite this article as: Pedetta S, et al, Individual aggressiveness in the
serotonin and octopamine, Physiol Behav (2010), doi:10.1016/j.physbe
to play opposite roles in the control of aggressiveness and the
establishment of dominant and subordinate roles [57,58,63,71].

By using a pharmacological approach we aimed to determine the
role of these amines in Chasmagnathus agonistic behaviour. Our results
show that 5HT and OA modulate crabs' aggressiveness in opposite
directions: while 5HT tends to increase it, OA would lead to a reduction
in the aggressive drive. This assertion is based on the following set of
results. On the one hand, 5HT treatment produces an increase in the
time allocated to dominant acts, leading to extended agonistic episodes
and to a longer interaction timewith respect to the saline group (Fig. 2).
In contrast, OA decreases the time devoted to attacks and subsequently,
the total interaction time, compared to the saline group (Fig. 3). In spite
of these changes infightdynamics, neither aminealtered theprobability
of becoming winner or loser. At first, this may seem inconsistent with
our previous assertion that these amines modulate crabs' aggressive-
ness. However, it should be noticed that injections of 5HT and OA are
applied blindly, without knowing the intrinsic aggressiveness of each
opponent. Thus, the amine administration may alter the animal's
internal state, and thusmodify its behavioural output, butwe should not
expect it to convert forthcoming winners into losers, or vice versa.
Therefore, it seems more appropriate to look for differences in the fight
dynamics regardless of the outcome of the confrontation. In this sense,
we found that both amines modified the time dedicated to dominant
acts, leading to a change in the intensity of the agonistic interactions.

Our results are in accordance with previous studies in crustaceans.
Subordinate lobsters injected with 5HT exhibited an enhanced
aggressive motivation [31] and in crayfish, OA and 5HT were proposed
to modulate aggressiveness without affecting the hierarchal rank of the
individuals [30]. There are, nevertheless, alternative visions regarding
the effect of 5HT on aggression. Some authors have found a decrease in
aggression in crayfish injectedwith5HT [72]while others proposed that
the prolonged fights of the subordinates injected with 5HT could be
attributed to amotor inhibition thatmakes ananimal less able to retreat,
instead of an enhanced aggression [73]. Such argument does not apply
to our study, since the doses used in this paper do not produce any
postural changes, and do not have any effects on the animal's
exploratory activity or escape response [44, Pedetta and Maldonado in
preparation].

In the present study it is proposed that an intrinsic level of
aggressivenesswoulddeterminefightoutcome in symmetrical contests.
We hypothesize that during a fight encounter this individual's
aggressiveness would be translated from an internal state into a proper
behavioural output, via the action of a number of mediator signals,
including serotonin and octopamine. These substances are thought to
alter the activity of specific neural decision-making centres [74]. In this
way, they could modulate the decision of whether to continue fighting
crab Chasmagnathus: Influence in fight outcome and modulation by
h.2010.07.008
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or to retreat in front of the contestant's advance, contributing greatly to
an individual's fitness.
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