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a b s t r a c t

Regression MM estimates require the estimation of the error scale, and the determination
of a constant that controls the efficiency. These two steps are based on the asymptotic
results that are derived assuming that the number of predictors p remains fixed while
the number of observations n tends to infinity, which means assuming that the ratio p/n
is ‘‘small’’. However, many high-dimensional data sets have a ‘‘large’’ value of p/n (say,
≥0.2). It is shown that the standard asymptotic results do not hold if p/n is large; namely
that (a) the estimated scale underestimates the true error scale, and (b) that even if the
scale is correctly estimated, the actual efficiency can be much lower than the nominal
one. To overcome these drawbacks simple corrections for the scale and for the efficiency
controlling constant are proposed, and it is demonstrated that these corrections improve
on the estimate’s performance under both normal and contaminated data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

An important issue in robust estimation is the balance between robustness (as measured by the contamination bias) and
efficiency at a central model. Regression MM estimates require the estimation of the error scale, and the determination of a
constant that controls the efficiency. Thepertinentmethodology is based on the asymptotic results that are derived assuming
that the number of predictors p remains fixed while the number of observations n tends to infinity, which in practical terms
means that they will hold approximately if p/n is sufficiently small. However, many modern data sets are ‘‘fat’’in the sense
that p/n is ‘‘large’’(say,≥0.2). In these cases the standard asymptotic theory does not adequately take into account the loss
of residual degrees of freedom due to parameter estimation. We shall demonstrate that the pertinent asymptotic results do
not hold if p/n is large; namely that the estimated scale underestimates the true error scale, and even if the scale is correctly
estimated, the actual efficiency can be much lower than the nominal one. To overcome these drawbacks we shall propose
simple corrections for the scale and for the efficiency controlling constant, and we shall demonstrate that these corrections
do not affect the estimate’s robustness.
An asymptotic analysis of these situations would require the study of the asymptotic distribution of the residuals from

robust estimates when both p and n tend to infinity with p/n remaining constant. Chen and Lockhart (2001) study the
least squares residuals when p3 log2 p/n → 0, a situation too restricted for our purposes. Mammen (1996) and Portnoy
(1986) derive important expansions for the asymptotic distribution of residuals when p tends to infinity with n, assuming
p2/n → ∞ and p2/n → c respectively. Their results imply that the residuals’ distribution may be very different from
the error distribution. Despite the importance of these results, they cannot be used to describe the situations we face. For
this reason our approach is based on heuristics and simulations. Rousseeuw and Leroy (1987, p. 44) propose an empirically
derived correction factor for the residual MAD of the Least Median of Squares estimate, of the form 1+ 5/(n− p). Another
possible approach, not explored here, to correct the asymptotic standard deviations of the robust regression estimates is the
use of techniques of ‘‘finite sample asymptotics’’. A review of this approach can be found in Ronchetti (1990).
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Section 2 gives the main definitions, Section 3 describes the correction for the scale, Section 4 deals with the efficiency,
and contains the conclusions. The Appendix contain the proofs.

2. S and MM estimates

We consider robust estimation in the linear model
yi = x′iβ+ei, i = 1, . . . , n (1)

with xi,β ∈ Rp and {ei} i.i.d. and ei independent of xi. An M estimate of scale (an M-scale for short) of the data vector
r = (r1, . . . ., rn) is defined as the solution S = S (r) of

1
n

n∑
i=1

ρ
( ri
S

)
= δ, (2)

where ρ is a bounded ρ-function in the sense of Maronna et al. (2006), i.e., ρ (r) is a nondecreasing function of |r|which is
increasing for ρ (r) < sup ρ = 1; here δ ∈ (0, 1) controls the breakdown point (BP) of the estimate.
A regression S estimate (Rousseeuw and Yohai, 1984) is defined as

β̂ = argmin
β
S (r (β)) , (3)

where r (β) is the residual vector with elements ri (β) = yi − x′iβ and S is an M-scale. It is known that for data in general
position the maximum BP is attained by putting in (2)

δ = δopt =: 0.5
(
1−

p
n

)
, (4)

which yields BP=δopt; see Maronna et al. (2006) for details. A popular choice for ρ is the bisquare function ρbis (r) =
min{1, 1−

(
1− r2

)3
}.

S estimates are known to have a low efficiency under normal errors. MM estimates (Yohai, 1987) allow to control the
efficiency while conserving a high BP. Let β̂0 be an initial estimate with high BP but possibly low efficiency (typically an S
estimate) with residual vector r0. Let ρ be a bounded ρ-function. Define the scale σ̂ by

1
n

n∑
i=1

ρ

(
r0i

h0 (δ) σ̂

)
= δ, (5)

where h0, defined by

Eρ
(
z

h0 (δ)

)
= δ; z ∼ N (0, 1) (6)

makes σ̂ consistent at the normal model.
Then the MM estimate β̂MM is defined as a local minimum of

n∑
i=1

ρ

(
ri (β)
h1σ̂

)
,

where the minimum is computed iteratively starting from β̂0, and h1 > h0 is chosen in order to attain a given asymptotic
efficiency at the normal model. It is shown that β̂MM has the BP of β̂0 and the given normal efficiency. We compute the
MM-estimator using the iterative reweighted least squares algorithm starting from an S-estimator; this procedure yields a
local minimum close to the starting estimator. As demonstrated in Maronna et al. (2006), the resulting estimator has the
desired efficiency, and its maximum bias is lower than that of the estimator which yields the global minimum of the loss
function.

3. Correcting the scale

It would be ideal (but impossible) to base the MM estimate on the actual scale of the errors S (e), while we actually have
the (possibly biased) residual scale σ̂r = S

(
r
(
β̂0

))
. To compare both we performed a simulation of model (1) with both

xij and ei i.i.d. standard normal, n = 50 and different values of p. Given the equivariance of the estimates, we can always
take β = 0 without loss of generality. For each case we generated 1000 samples and computed the bisquare S estimate and

q = median
(
S (e)
σ̂r

)
, M = MAD

(
S (e)
σ̂r

)
. (7)

Table 1 gives the values of q and the ‘‘coefficient of variation’’ M/q. It is seen that the underestimation can be serious.
Unfortunately, the expansions given in the references cited in the Introduction do not allow us a theoretical understanding
of this phenomenon. Since the ratios M/q are low, we may consider q to be a representative value. If we knew q we could
correct σ̂r by multiplying it by q. We propose two approaches to estimate q: one based on a Taylor expansion of S and the
other on an empirical fit of q.
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Table 1
Median q and ‘‘coefficient of variation’’ of scale ratios.

p 5 10 15 25
q 1.18 1.41 1.78 2.31
M/q 0.06 0.08 0.09 0.14

Fig. 1. 1− 1/q(n, p, F) vs. p/n for all configurations.

For the Taylor approach, the results in the Appendix suggest the estimate of q

q̂T = 1+
p
2n
â

b̂̂c
(8)

with

â =
1
n

n∑
i=1

ψ

(
ri
σ̂r

)2
, b̂ =

1
n

n∑
i=1

ψ ′
(
ri
σ̂r

)
, ĉ =

1
n

n∑
i=1

ψ

(
ri
σ̂r

)
ri
σ̂r
, (9)

where ψ = ρ ′. Note that â, b̂ and ĉ depend on h0.

The empirical approach is based on the fact that for the classical estimate S (r) =
√
n−1

∑n
i=1 r

2
i we have√

ES (e)2

ES (r)2
=

1
√
1− p/n

≈
1

1− 0.5p/n
.

This fact suggests to estimate q by an expression of the form 1/
√
1− Kp/n or the form 1/ (1− Kp/n) where K is some

constant. We deal first with the second form. For this purpose we undertook a simulation study. For each configuration we
generated 1000 samples frommodel (1) with xij and ei i.i.d. with the same distribution F . Five distributions were employed
representing different degrees of heavy-tailedness: Normal, Student with 1, 3 and 5 degrees of freedom, and the standard
normal distribution truncated at±1.65. The values of n were 25, 50, 100 and 400, and for each n the values of p were [an]
with a =1/10, 1/5, 1/3 and 1/2. For each configuration the median ratio q = q (n, p, F) was computed corresponding to
the S estimate with bisquare ρ and δ = δopt in (4). For given n and p, the results were remarkably stable on F .
The relationship q ≈ 1/ (1− Kp/n) (resp. 1/

√
1− Kp/n) implies an approximately proportionality between p/n and

1 − 1/q (resp. 1 − 1/q2). Fig. 1 supports the first relationship, while the corresponding plot for the second one does not
support it. For this reasonwe fitted our ‘‘data set’’with an expression of the form q (n, p, F) ≈ 1/ (1− Kp/n). More precisely,
K was determined by∑(

1−
1

q (n, p, F)
− K

p
n

)2
= min,

where the sum runs over all configurations of (n, p, F) .
The results were encouraging, but the quality of the fit worsened for small n. This fact suggested adding a ‘‘second order’’

term, and therefore we fit an expression of the form

q̂E =
1

1− (k1 + k2/n)p/n
, (10)
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Table 2
Relative errors with maximum absolute values.

p/n 0.05 0.10 0.20 0.33 0.5

q̂T 0.05 0.06 −0.17 −0.31 −0.46
q̂E 0.04 0.08 0.14 0.15 −0.35

Table 3
Efficiencies of MM estimate with nominal efficiency 0.85 for corrected and uncorrected scales, with n = 50.

Scale p
5 10 15 25

Uncorrected 0.75 0.55 0.49 0.52
Corrected with q̂T 0.86 0.76 0.69 0.59
Corrected with q̂E 0.82 0.76 0.74 0.73

Normal quantiles
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Fig. 2. QQ plot of residuals from S estimate of normal sample with n = 50 and p = 10.

which yielded k1 = 1.29 and k2 = −6.02. As to the other fit based on the form 1/
√
1− Kp/n, it turned out to be very

unsatisfactory, as was to be expected, and was therefore dropped.
For both q̂T and q̂E we computed the relative errors ( q̂− q) /q with q defined in (7). Table 2 gives the relative errors

with maximum (over n, p and F ) absolute values for each value of p/n. It is seen that q̂T and q̂E have similar behaviors for
p/n ≤ 0.2, with the latter being better for larger values.
The correction (9) can be applied to any estimate using smooth bounded ρ-functions; for the correction (10) the required

constants k1 and k2 must be recomputed for each ρ.

4. Correcting the efficiency

We then proceeded to assess the normal efficiency of the MM estimate using standard values of h1. For this purpose
we performed another simulation study with the normal model with β = 0, which entails no loss of generality due to
the estimates’ equivariance. The MM estimate was computed using as initial β̂0 the bisquare S estimate with maximal
breakdownpoint, and h1 = 3.44which under the standard theory ensures 85%normal asymptotic efficiency; and employing
both the uncorrected and corrected scales. The values of n and p were like in the former study. The criterion was the

mean squares error (MSE) defined as the Monte Carlo average of
∥∥∥β̂∥∥∥2. Since robust estimates may have heavy-tailed

distributions even under normal data, we also used a 10% upper trimmed mean. Both trimmed and non-trimmed means
yielded qualitatively similar results, but we consider the latter more representative since the former was in some cases
influenced by a few atypical values. The efficiency was therefore computed as the ratio of the (trimmed) MSEs of β̂MM and
of the least squares estimate. Table 3 reports the efficiencies for n = 50, the other cases being similar.
It is seen that using the uncorrected scale entails a serious loss of efficiency. Using the corrected ones brings a clear

improvement, with q̂E better than q̂T for larger p/n. However, the efficiency remains lower than the nominal one. A clue to
the reasons of this inefficiency may be given by Fig. 2, which is the normal Q–Q plot of the residuals from the S estimate
applied to a standard normal sample with n = 50 and p = 10.
It is seen that the tails are far from normal. This implies that using the standard value of h1 will result on a higher

proportion of observations being downweighted than is convenient for the desired efficiency. This heavy-tailedness of the
residuals might be hinted from the discussion in Section 3 of Mammen (1996).
The slope of the center part is about 0.58,which is nearmediani (|ri|) /0.675 = 0.53. Thismeans that the underestimation

of the scale is not a feature of the M-scale, but is due to the majority of residuals being ‘‘smaller’’than standard normal.
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Table 4
Corrected tuning constants for the bisquare family.

p/n <0.1 0.1 0.2 0.33

h1 3.5 3.7 4.0 4.2

Table 5
MaximumMSEs of estimates.

p/n n = 50 n = 200
S-E h1 = 3.44 h1 = 4.0 S-E h1 = 3.44 h1 = 4.0

0.1 0.94 0.66 0.65 1.14 0.59 0.59
0.2 1.78 0.98 0.90 2.10 1.11 1.06
0.3 2.79 1.44 1.34 9.78 5.36 4.57

It follows that attaining the desired efficiency requires a larger h1 than the one given by standard asymptotic theory. We
therefore performed further simulations of the normal model using different values of h1. The results were rather stable for
different n and p. The suggested values to be used are given in Table 4.
Using a larger h1 does not affect the BP, but it may be suspected that it will increase the contamination bias. To assess

this effect further simulations were performed for contaminated normal data with n = 50 and 100 and p/n = 0.1, 0.2 and
0.3. In each configuration 10% of the observations were replaced as follows, xi by (klev, 0, . . . , 0) and yi by klevkslo, where klev
and kslo regulate the leverage and slope of the contamination. Both trimmed and non-trimmed MSEs were computed. For
the reasons given above, we prefer the latter. The trimmedMSE was computed for the S estimate and for the MM estimates
using the scale corrected with q̂E, and the constants h1 =3.44 and h1 = 4. In all cases h1 = 4 yielded a smaller MSE than
h1 = 3.44. As a synthesis, Table 5 shows the maximum over kslo of the MSEs for n = 50 and 200, and klev = 5. The results
for klev = 10 were similar. Using the non-trimmed MSE yielded qualitatively similar results, but they were in some cases
unduly influenced by a few large atypical values.We see that the two versions ofMM are better than the S estimate, and that
h1 = 4 is better than 3.44. The likely reason is that when p/n is not small, the decrease in variability more than compensates
the increase in bias. Comparing Tables 3 and 5 suggests that increasing h1 from 3.44 to 4 increases the efficiency without
loss of robustness.

5. Conclusions

It has been demonstrated that unless the ratio p/n is small, the efficiency of an MM regression estimate can be much
lower than the nominal one for two reasons: (1) the usual estimate of the error scale is affected by an important downwards
bias, and (2) the tuning constant calibrated according to asymptotic theory is not large enough. For problem (1) twomethods
for correcting the scale are proposed: one based on a Taylor expansion, and the other on an empirical fit. For problem (2)
larger values of the tuning constants are proposed; and it is shown that their use does not decrease the robustness of the
regression estimate. According to the results of the simulations in the preceding sections, it is recommended to use either
the Taylor- or the Empirical-based scale correctionwhen p/n ≤ 0.1, and to use the Empirical one otherwise; and to increase
the tuning constant of the bisquare function to 4 when p/n > 0.1.
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Appendix. Justification of (8)

Let∆ = β̂0 − β where β is the true parameter vector and β̂0 is the S estimate. A Taylor expansion yields

S (e) = S (r (β)) ≈ S
(
r
(
β̂0

))
−∆′d

(
β̂0

)
+
1
2
∆′D

(
β̂0

)
∆, (11)

where d (β) = ∂S (β) /∂β and D (β) = ∂2S (β) /∂β2. It follows from (3) that d
(
β̂0

)
= 0 and

D
(
β̂0

)
= −

1
σ̂r̂ t3

A,

with t̂3 defined in (9) and A = n−1
∑n
i=1 ψ

′ (ri/σ̂r) xix′i . Call σ∞ the asymptotic value of σ̂r , and put

a = Eψ
(
e
σ∞

)2
, b = Eψ ′

(
e
σ∞

)
, c = Eψ ′

(
e
σ∞

)
e
σ∞

.
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When n→∞,D
(
β̂0

)
tends to (b/σ∞c)X′X, and the distribution of∆ is approximately

Np

(
0,
σ 2
∞
a

nb

(
X′X

)−1)
,

where X is the matrix having the xi’s as rows. Therefore∆′D
(
β̂0

)
∆ is approximately distributed as (σ∞a/nbc) times a χ2

variable with p degrees of freedom which has mean p. This suggests from (11)

S (e) ≈ σ̂r + σ̂r
pa
2nbc

,

which is approximated by (8).
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