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We perform a study on the evolution of helical quantum turbulence at different temperatures by
solving numerically the Gross-Pitaevskii and the Stochastic Ginzburg-Landau equations, using up
to 40963 grid points with a pseudospectral method. We show that for temperatures close to the
critical the fluid described by these equations can act as a classical viscous flow, with the decay of
the incompressible kinetic energy and the helicity becoming exponential. The transition from this
behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover,
the presence of strong thermal effects can inhibit the development of a proper turbulent cascade.
We provide anzats for the effective viscosity and friction as a function of the temperature.

I. INTRODUCTION

In experiments of superfluids and Bose-Einstein con-
densates (BECs) a highly disorganized and chaotic be-
havior, known as quantum turbulence, can be observed
[1–3]. At zero temperature quantum flows are charac-
terized by their lack of viscosity, and by having all of
their vorticity concentrated along vortex filaments with
quantized circulation [4, 5]. But at finite temperatures
dissipative effects creep in. Landau and Tisza’s two fluid
model [6], where a mixture of superfluid and normal fluid
coexist and interact (with the ratio between the two de-
termined by the temperature), is perhaps the most sim-
ple way to represent the finite temperature dynamics of
superfluids and BECs.

Based on the two fluid model, the Hall-Vinen-
Bekarevich-Khalatnikov (HVBK) model [7, 8] adds a
term accounting for the “mutual friction” between the
normal and superfluid components. This model has been
successful in, for example, explaining the Taylor-Couette
instability in liquid helium [9]. It has also been used
to study turbulent flows; for example, Roche et al. [10]
found that there is a strong locking between both fluid
components and that both develop a turbulent cascade,
Shukla et al. [11] found the existence of both an inverse
and a forward cascade in the two dimensional case, and
shell models based on the HVBK model were developed
and used to study the mutual friction terms [12, 13], in-
termittency [14], and scaling exponents [15]. An alterna-
tive to the HVBK model is the vortex filament model [16],
which, as the name implies, takes the vortex filaments
into account explicitly by modeling them as classical Eu-
lerian vortices of negligible width which evolve under the
Biot-Savart law. As mutual friction can also be added
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to this model, it has been used to study quantum turbu-
lence at finite temperatures [17, 18]. But two important
aspects of quantum turbulence are omitted in these two
models. One is the lack of compressibility effects, and
thus, of sound waves. The other is vortex reconnection.
While in the HVBK model the former is omitted com-
pletely, as the fluid is averaged over volumes larger than
the vortex width, in the vortex filament model it is in-
troduced phenomenologically.

There is another family of models to study finite
temperature effects based on extensions of the Gross-
Pitaevskii equation (GPE). At zero or near zero temper-
atures the GPE, for which quantized vortices are exact
solutions which can reconnect with no extra ad-hoc as-
sumptions, is a very succesful model for BECs [19]. More-
over, a hydrodynamic analogy can be easily obtained
from the GPE by means of the Madelung transforma-
tion, and it has been shown that at the larger scales its
turbulent solutions match those of classical turbulence
[20, 21]. There are various ways of generalizing the GPE
for studying finite-temperature effects [22]. These include
solving the spectrally truncated version of the equations
[23, 24], coupling them with a Boltzmann equation de-
scribing the evolution of the thermalized modes as in
the Zaremba-Nikuni-Griffin model [25], or simply adding
a phenomenological dissipation term [26, 27]. Previous
studies of these models have concentrated on understand-
ing the thermalization processes [23, 28–30], on investi-
gating single vortex decay [31–35], or on modelling traps
with several vortices [36, 37] in configurations similar to
experiments of BECs [38–41]. However, few studies have
focused on the properties of the turbulent motions and
on how finite temperature effects come into play in this
regime.

In this context, it is worth noting that the study of
quantum turbulence has garnered much interest in the
past years. Two of the main areas of work have been
establishing the differences between classical and quan-
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tum turbulence [3, 42], and understanding the dynamics
of Kelvin waves [43, 44]. The usual picture of quan-
tum turbulence (see, for example, [1]) goes by the fol-
lowing: while at the larger scales the nonlinear energy
transfer in quantum flows is mediated by the interac-
tion between vortices and reconnection processes [45],
and the turbulent flow resembles that of a classical fluid,
at scales smaller than the mean intervortex length Kelvin
waves are believed to be the ones responsible for the en-
ergy transfer, thus generating Kelvin wave turbulence
[13, 44, 46–48]. Nonlinear interaction of Kelvin waves
leads to the creation of phonons [49], which are finally
responsible for the depletion of incompressible kinetic
energy in quantum turbulence [21, 50]. Additionally,
recently it was shown that at zero temperature helical
quantum turbulence (i.e., for flows with non-zero large-
scale helicity) develops a dual cascade of energy and of
helicity reminiscent of the dual cascade observed in clas-
sical helical flows, and that the emission of phonons also
result in the depletion of helicity [21]. The presence of
such a dual cascade, where both energy and helicity are
being transferred from the larger to the smaller scales
to be finally dissipated, has a strong impact in the evo-
lution and decay of turbulence. In classical flows, this
dual cascade has received significant attention (see, e.g.,
[51–54]), as well as the effects of helicity in the evolu-
tion and statistical properties of turbulence. As a result,
understanding how helical flows and their dual cascade
are affected by the interaction with the effective thermal
dissipation in finite temperature models will be the first
main objective of the present work.

Indeed, the overall purpose of this paper is to study
finite temperature effects on a helical quantum flow in
high resolution numerical simulations of the truncated
Gross-Pitaesvkii equation, with the thermal states being
generated by the Stochastic Ginzburg Landau method
[22]. Our results show that for high temperatures the
quantum fluid described by this model can behave as a
classical viscous flow, with the decay of energy and of
helicity becoming exponential in time, and with the de-
velopment of the dual turbulent cascade being hindered.
The transition from the zero to the high temperature be-
havior is smooth as a function of the temperature, as
long as the temperature is smaller than the critical. As
a second objective, we will profit from the high spatial
resolution of our simulations to provide anzats for the
effective viscosity as a function of the temperature. The
structure of the paper is as follows. In Sec. II we outline
the physical model used, and describe the simulations we
performed. The main results are presented in Sec. III.
Finally, closing comments are presented in Sec. IV.

II. THE FINITE TEMPERATURE MODEL

In this section we first present a brief summary of
some key concepts and definitions of the zero temper-
ature model (the GPE), used in this work as the start-

ing point for the finite temperature model. Then, we
explain how to generate finite temperature states us-
ing the Stochastic Ginzburg Landau equation (SGLE),
following the method outlined in [28, 29], and how to
use these states in quantum turbulence simulations solv-
ing the GPE. Finally, we give details of a large number
of high resolution simulations performed for the present
study.

A. The Gross-Pitaevskii equation

At zero (or near zero) temperatures, a field of weakly
interacting bosons can be appropriately described by the
GPE,

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + g|Ψ|2Ψ, (1)

where Ψ is the wavefunction of the condensate, m is the
mass of the bosons, and g is proportional to the bosons
scattering length. The GPE conserves the total energy

E =

∫
V

dV

(
~2

2m
|∇Ψ|2 +

g

2
|Ψ|4

)
, (2)

the momentum

P =

∫
V

dV
i~
2

(
Ψ∇Ψ̄− Ψ̄∇Ψ

)
, (3)

(where the overbar denotes complex conjugate), and the
total number of particles

N =

∫
V

dV |Ψ|2. (4)

A hydrodynamical description of the flow can be re-
covered via the Madelung transformation

Ψ(r, t) =

√
ρ(r, t)

m
eimφ(r,t)/~, (5)

where ρ(r, t) is the fluid mass density, and φ(r, t) is the
velocity potential. Applying this transformation to the
GPE yields the equations for an ideal barotropic fluid
plus an extra term with the gradient of the so-called
quantum pressure. This hydrodynamical description is
useful to separate the total energy into different compo-
nents [50]. These are respectively the kinetic energy

Ek =

∫
V

dV
1

2
ρ|v|2, (6)

(which in turn can be separated into an incompress-
ible component Eik and a compressible one Eck using a
Helmholtz decomposition of the velocity field), the quan-
tum energy

Eq =

∫
V

dV
~2

2m2
(∇√ρ)2, (7)
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FIG. 1. (Color online) Condensate fraction N0/〈N〉 of con-
stant total density scans as a function of the temperature at
two different spatial resolutions. The simulations with N3

grid points, with N = 1024, are marked with (blue) circles,
while the simulations with N = 128 are marked with (green)
triangles. The solid black line indicates the usual ideal BEC
theory prediction for the condensate fraction as a function of
temperature.

and the internal (or potential) energy

Ep =

∫
V

dV
g

2m2
ρ2. (8)

By linearising Eq. (1) around Ψ = Ψ0 (constant), one
can obtain the Bogoliubov dispersion relation ωB(k) =
ck(1+ξ2k2/2)1/2, where c = [g|Ψ0|2/m]1/2 is the speed of
sound and ξ = [~2/(2m|Ψ0|2g)]1/2 is the healing length.
The GPE can also sustain Kelvin waves, which are heli-
cal perturbations that travel along the quantum vortices.
As stated in Sec. I, Kelvin waves play a major role in
zero temperature quantum turbulence, where they are
responsible for the energy transfer at scales smaller than
the intervortex distance.

One last aspect of the GPE dynamics of relevance for
this work is the concept of helicity. In classical fluids the
helicity is defined as

H =

∫
V

dV v · ω, (9)

where ω stands for the vorticity field. Helicity is a mea-
sure of the mean alignment between velocity and vortic-
ity (and thus, of the depletion of nonlinearities), of the
topological complexity of vorticity field lines, as well as a
measure of the departure of mirror-symmetry of the flow
[54–57]. In classical turbulence the presence of helicity
in a turbulent flow can have multiple consequences, such
as the depletion of the nonlinearities and energy trans-
fers [58], the slowing down of the onset of dissipation
[59], and it can even affect the evolution of convective
storms [60]. It has also been show that the helicity, just
like the energy, develops a turbulent cascade where it
is transferred from the larger to the smaller scales [51].
Moreover, the form of the cascade implies that it is a dual
cascade, meaning that both energy and helicity have si-
multaneously non-zero transfer rates in the inertial range.
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FIG. 2. (Color online) From top to bottom, spectra of mass
fluctuations, of the incompressible kinetic energy, and of the
compressible kinetic energy, for several initial conditions of
the GPE at different temperatures. All simulations have N =
1024 linear spatial resolution.

In quantum fluids, Kelvin waves are helical and thus H
could in principle be used as a proxy to quantify the ex-
citation of Kelvin waves at small scales. However, both
v and ω are singular along the vortex lines of a quantum
fluid, where all the vorticity is concentrated. To over-
come this problem, many authors have chosen to work
with a definition of helicity based on its topological in-
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FIG. 3. (Color online) Volume rendering of the density field
for the simulation with N = 4096 and T = 0.64Tλ. Similar
to the zero temperature ABC flow [21], large structures and
regions of quiescencenot present in the initial conditions are
spontaneously formed within the flow. At the large scales,
the flow resembles the structure of a classical ABC flow. The
possibility of seeing these large scale structures formed by the
quantized vortices (the smallest structures in the flow) in such
detail is in part due to the large scale separation, product of
the high resolution used in the simulation. At low resolution
there is not enough scale separation between the large scales
and the thermal fluctuations for such a structures to develop.

terpretation [61]. These geometric decompositions can
result in zero net helicity [62] but recover a classical non-
zero value at large-scales [63, 64]. Other authors have
chosen to work with filtered fields [65]. Here we will use
the regularized helicity introduced in [66], where the ve-
locity field is regularized before being used to compute H.
This method was shown to give results compatible with
other methods in the literature to estimate the helicity
of a quantum flow, and was used successfully to study
helical quantum turbulence at zero temperature in mas-
sive numerical simulations in [21], where the existence of
a dual cascade of energy and helicity was confirmed for
the quantum case.

B. The Stochastic Ginzburg Landau equation

The spatially truncated version of different conserva-
tive systems of partial differential equations can achive,
after long time integration, states of thermodynamic
equilibrium known as thermalized states where energy
is equipartitioned among all the possible spatial modes
[67, 68]. A common way to truncate a system is via a
Galerkin projector. Given a Fourier series expansion of

FIG. 4. (Color online) Isosurfaces of the density field for the
simulation with N = 4096 and T = 0.64Tλ. Contrary to the
zero temperature case [21], it is not possible to discern in-
dividual vortices now. But their presence in the flow is still
evident when looking at the fine-grain structures. Also, the
formation of the vortex bundles observed in the zero temper-
ature case is hampered in this case.

the wavefunction

Ψ(r, t) =

∞∑
k=−∞

Ψ̂k(t)eik·r, (10)

where Ψ̂k are the Fourier coefficients and k are the
wavevectors, the projector has the form

PkG [Ψ(r, t)] =
∑
|k|≤kG

Ψ̂k(t)eik·r. (11)

Applying it to Eq. (1) would give the so-called Fourier
(or Galerkin) truncated version of the GPE.

The studies of Davis et al. [23] and of Connaughton
et al. [24] showed that if the Fourier truncated version
of the GPE is integrated for long enough, the system in-
deed reaches a thermodynamic equilibrium. The statisti-
cal properties of this state are given by the microcanoni-
cal ensamble defined with fixed energy E, momentum P,
and number of particles N . Moreover, if E is varied, a
phase transition akin to that of BECs can be observed,
where the zero-wavenumber A0 = 〈Ψ〉 mode becomes
equal to zero for finite E. But there are two problems
with generating thermal states in this way. One is that
the truncated GPE takes a very long time to converge
to the equilibrium state, making it computationally ex-
pensive. The other is that the temperature is not easily
accessed nor controlled in this way, given the compli-
cated expression for the entropy in the microcanonical
state of the the system. In order to overcome these prob-
lems, Krstulovic and Brachet [28, 29] suggested using a
Langevin process to generate grand-canonical states with
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FIG. 5. (Color online) Mass density correlation function
C(d) = 〈(ρ(x + dx̂)− ρ0)(ρ(x)− ρ0)〉 for the simulation with
N = 4096 and T = 0.64Tλ at t ≈ 1, with the displacement
d normalized in units of the healing length ξ. Note the slow
decay of the correlation up to distances ≈ 103ξ.

distribution probability Pst given by a Boltzmann weight
Pst = e−βF /Z, where Z denotes the grand partition func-
tion and

F = E − µN −W ·P, (12)

is a free energy with β the inverse temperature, µ is the
chemical potential, and W is related to the counterflow
velocity. These grand-canonical states are faster to gen-
erate than microcanonical states, and give easy access
and control of the temperature in the equilibrium.

The Langevin process that generates these states has
a Ginzburg-Landau equation of the type

~
∂Ak

∂t
= − ∂F

∂A∗k
+

√
2~
β
ξ̂(k, t), (13)

〈ξ(r, t)ξ̄(r′, t′)〉 = δ(t− t′)δ(r− r′), (14)

where Ak are the Fourier modes of the wavefunction, and

ξ̂(k, t) is the Fourier transform of the Gaussian delta-
correlated noise ξ(r, t). In [29] it is shown that the sta-
tionary probability of the solutions of Eq. (13) is indeed
Pst. Thus, the grand-canonical states are simply gener-
ated by integrating the Langevin Eq. (13) in time until
statistical convergence is obtained.

In physical space, the Langevin equation reads

~
∂Ψ

∂t
=

[
~2

2m
∇2Ψ + µΨ− g|Ψ|2Ψ− i~W · ∇Ψ

]
+

√
2~
β
ξ. (15)

This equation will be referred to as the Stochastic
Ginzburg-Landau equation (SGLE). The chemical poten-
tial µ controls the total number of particles N . Different
solutions obtained by varying β will have different ratios
of condensed fraction |A0|2/N = N0/〈N〉, except below
a critical β (or, in terms of temperature, above the tran-
sition temperature Tλ) where this ratio will be equal to
zero.

The thermal states obtained from the SGLE can then
be fed to the GPE, in combination with an initial con-
dition for the large-scale flow, to simulate a quantum
turbulent flow at finite temperature. The total initial
condition for the GPE Ψ then has the form

Ψ = Ψflow ×ΨSGLE, (16)

where Ψflow is an initial wavefunction describing the flow,
and ΨSGLE is a thermal solution of the SGLE which gives
account of the occupation numbers of the different energy
levels in the thermal state at a given temperature.

Although for simplicity the projector defined in
Eq. (11) is not explicity written in Eqs. (1) and (15), in
the following we will indeed solve the truncated versions
of each equation. It is also worth noting that every time
one solves a system of partial differential equations nu-
merically, one is actually solving for truncated equations.
Depending on the numerical method used for spatial dis-
cretization, the integration can preserve the conservation
properties of the truncated system or not. The method
used here, and described next, preserves all quantities
conserved by the Galerkin truncated Eqs. (1) and (15) in
the continuum-time case (i.e., before time discretization).

C. Initial conditions and numerical simulations

To solve numerically Eqs. (1) and (15) in three dimen-
sions we used GHOST [69], which uses a pseudospec-
tral method combined with a fourth order Runge-Kutta
scheme to solve Eq. (1), and an implicit Euler scheme to
solve Eq. (15). Boundary conditions are periodic, each
side of the simulation box is of size 2πL (where L is a
characteristic scale of the flow), and the “2/3 rule” is used
for dealising. A hybrid OpenMP-MPI scheme is used for
the parallelization. Multiple simulations were done at
three different spatial resolutions N3, with linear resolu-
tions N = 128, N = 1024 and N = 4096. In all cases,
the speed of sound is chosen to be twice the characteristic
flow velocity. For the simulation at the largest resolution
(N = 4096), a total of 8192 processors were used with
4096 MPI jobs and 2 threads per MPI job, and over 16
million CPU hours were used for the integration of this
simulation.

All quantities are made dimensionless using a charac-
teristic length, a speed, and a mass. Quantities with units
can be determined at any time by doing L = L′/(2π),
U = c′/2, and M = M ′/(2π)3, where L′ is the charac-
teristic length of the physical system, c′ is the speed of
sound, and M ′ is the fluid or gas mass (note all primed
quantities have units). With this choice, the length of the
simulation domain is equal to 2πL, the speed of sound
c is equal to 2U , and the mean density ρ0 is equal to
1M/L3. The healing length ξ is such that kmaxξ = 1.5,
where kmax = N/3 (in units of 1/L) is the largest re-
solved wavenumber in each simulation (the equivalent of
kG in Eq. (11)). In the highest resolved simulation, the
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FIG. 6. (Color online) Evolution of the incompressible kinetic
energy (top) and of the helicity (bottom) as function of time
at different temperatures. All simulations have N = 1024
linear resolution, except the the one indicated with the solid
black line which has N = 4096. The early “inviscid-like” be-
havior seen at low temperature, in which energy and helicity
remain approximately constant, is lost as the temperature is
increased.

healing length then is ξ ≈ 0.0011L. As a referece, in su-
perfluid 4He experiments the characteric system size is
L′ ≈ 10−2 m, the speed of sound is c′ ≈ 230 m/s, the
fluid density is ≈ 125 kg/m3 (thus M ′ ≈ 1.25 × 10−4

kg), and the healing length is ξ′ ≈ 10−8 m ≈ 10−6L
[3]. The insufficient scale separation of our highest re-
solved simulation (even with the massive resolution con-
sidered) is however much better suited for comparisons
with BECs. In this case L′ ≈ 10−4 m, c′ ≈ 2 × 10−3

m/s, and ξ ≈ 5 × 10−7 m ≈ 0.005L [70]. For the sake
of simplicity, in the following all quantities are quoted
using L = M = U = 1, units can be added later using
the procedure explained above. Finally, temperatures in
the following will be always expressed explicitly in units
of the transition temperature Tλ. More details on how
units can be handled in GPE and SGLE simulations can
be found in [28, 29, 50].

Simulations with N = 128 and with N = 1024 were
performed at different temperatures, while only one simu-
lation at a fixed temperature was performed atN = 4096.
All simulations were performed with no counterflow, so

100
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FIG. 7. (Color online) Evolution of the incompressible kinetic
energy (top) and of the helicity (bottom) as a function of time
and at different temperatures in semi-logarithmic scale. All
simulations have N = 1024, except the one indicated with
the solid black line which has N = 4096. At the highest
temperatures quantities decay exponentially in time.

W in Eq. (15) is always set to zero, and the normal and
superfluid components are in all cases in perfect coflow.

In order to get a helical flow at large-scales, for the flow
initial conditions Ψflow we used a superposition of two
quantum Arnold-Beltrami-Childress (ABC) flows [21].
The velocity field is a superposition of an ABC flow
at k = 1 and of an ABC flow at k = 2: vABC =

v
(1)
ABC + v

(2)
ABC, with

v
(k)
ABC = [B cos(ky) + C sin(kz)] i + [C cos(kz)+

A sin(kx)] j + [A cos(kx) +B sin(ky)]k (17)

with (A,B,C) = (0.9, 1, 1.1)/
√

3, and where i, j, and
k are the three Cartesian vectors. The wavefunction
that generates this flow after a Madelung transforma-
tion is obtained by the following procedure, detailed

in [66]. First, we set Ψflow = Ψ
(1)
ABC × Ψ

(2)
ABC, with

Ψ
(k)
ABC = Ψx,y,z

A,k × Ψy,z,x
B,k × Ψz,x,y

C,k , and with Ψx,y,z
A,k =

exp{i[A sin(kx)m/~]y + i[A cos(kx)m/~]z}, where [a]
stands for the nearest integer to a. In order to minimize
the amount of energy in acoustic modes at the initial
condition, we then evolve Ψflow using the advected real
Ginzburg-Landau equation (ARGLE), whose stationary
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FIG. 8. (Color online) Confirmation of exponential decay
for the high temperature simulations, akin to that of a vis-
cous classical fluid: incompressible kinetic energy exponen-
tial decay rate −(1/Eik)dEik/dt for different temperatures in
N = 1024 runs (top), and same for the helicity −(1/H)dH/dt
(bottom). While simulations at low temperature display oscil-
lations at early times and growth at late times, at the highest
temperatures these quantities remain approximately constant
for long times, allowing us to estimate an exponential decay
rate.

solutions are solutions of the GPE with minimal amount
of phonons. The ARGLE explicitly reads

∂tΨ =
~

2m
∇2Ψ + (

gρ0

m
− g|Ψ|2 − mv2

ABC

2~
)Ψ

− ivABC · ∇Ψ. (18)

More information on the ARGLE can be found in [50],
while the details of the quantum ABC flow are discussed
in [21, 66]. The resulting flow has maximal helicity, and
was used in [21] to study helical quantum turbulence at
zero temperature.

Once Ψflow has been computed, we solve Eq. (15) to
obtain a thermal solution at a given temperature, and
finally we compute the initial conditions for the GPE
using Eq. (16).
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FIG. 9. (Color online) Estimation of the effective viscosity

from the energy decay rate, νeff = −(L̃2/Eik)dEik/dt in the
vicinity of t ≈ 1, as a function of the temperature. Two
choices for the characteristic scale are shown: the lengthscale
of the initial ABC flow L̃ = L0 (top), and the correlation

length of the incompressible velocity field L̃ = Li in the vicin-
ity of t ≈ 1 (bottom). The (blue) circles indicate the simula-
tions with N = 1024, and the (green) triangle the simulation
with N = 4096.
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FIG. 10. (Color online) Evolution of the total energy and its
different components for the simulation with T = 0.64Tλ and
N = 4096.

III. NUMERICAL RESULTS

A. Temperature scans

In order to characterize the system we first perform
a temperature scan solving the SGLE with the chemical
potential µ adjusted to keep the total density ρ0 = 1.
In Fig. 1 we show the condensate fraction N0/〈N〉 (with
N0 = |A0|2) at late times in the evolution, as a function
of the temperature T . As reported before in Krstulovic
and Brachet [28, 29], the typical behavior for second or-
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der transitions can be observed, with N0/〈N〉 ≈ 0 for
T > Tλ, and N0/〈N〉 growing as in a phase transition for
T < Tλ. The value of the critical temperature Tλ was de-
termined from this analysis. The scans were performed at
two different linear resolutions N = 128 and N = 1024.
The results from both coincide, showing the simulations
are well converged. Also shown in the figure is the usual
prediction for the condensate fraction coming from ideal
BEC theory [71] where N0/〈N〉 = 1 − (T/Tλ)3/2. This
prediction does not match our results exactly as it is de-
rived for non-interacting bosons, which is not our case.
Nonetheless, the behaviors are similar.

As explained above, these thermal states were cou-
pled to solutions of the ARGL to generate initial con-
ditions for the GPE at different temperatures. In Fig. 2
we show the spectrum of the mass fluctuations ρ(k) of
the initial condition for five different temperatures, as
well as the incompressible kinetic energy spectrum Eik(k),
and the compressible kinetic energy spectrum Eck(k). In
all cases, the increasing amplitude of high wavenumber
(small scale) modes as T is increased (but specially in
Eck(k), associated with phonon excitations) accounts for
the increasing thermal effects. Note however that the low
wavenumber (large scale) spectrum of Eik(k), associated
with the initial ABC flow, remains largely unaffected by
the thermal fluctuations, a result of the sufficient scale
separation in these runs.

B. Dynamical evolution

We now focus on understanding finite temperature ef-
fects on the evolution of the GPE. We thus show results
from six different simulations. Five of them were done at
a linear resolution of N = 1024, with temperatures rang-
ing from zero to T = 0.63Tλ, while the sixth simulation
was performed at a linear resolution of N = 4096 and at
T = 0.64Tλ.

1. Large-scale flow structure

We begin by showing two visualizations of the density
field for the simulation with N = 4096 and T = 0.64Tλ
at time t ≈ 1. In Fig. 3, a volumetric rendering of mass
density is shown using VAPOR [72]. Similarly to the
zero temperature quantum ABC flow [21], large vortex
bundles are formed within the flow, and regions of qui-
escence (with almost no vorticity) appear. At the larger
scales the structure of the flow looks similar to that of a
classical ABC flow, as expected. Moreover, although the
thermal fluctuations blur the small scales, the large scale
flow is clearly discernible. In Fig. 4 isosurfaces of the
density field are shown. As in Fig. 3, and contrary to the
zero temperature case where it is easy to spot individual
vortices (see [21]), the thermal noise lumps the vortices
inside the bundles, making it difficult to discern individ-
ual structures from visual inspection, although traces of

their presence are evident.
To further confirm the coexistence of large-scale corre-

lations (associated with the flow) with small-scale ther-
mal fluctuations and vortices, we show in Fig. 5 the spa-
tial correlation function of mass density fluctuations

C(d) = 〈(ρ(x + dx̂)− ρ0)(ρ(x)− ρ0)〉 /ρ2
0, (19)

for the simulation with N = 4096 and T = 0.64Tλ at
time t ≈ 1, where d is the spatial displacement (which
in Fig. 5 is normalized in units of the healing length ξ).
The function C(d) is also proportional, by the Wiener-
Khinchin theorem, to the Fourier transform of the inter-
nal energy spectrum. Note C(d) decays rapidly with d/ξ
in a distance proportional to the vortex core size, thus
further confirming the presence of quantized vortices in
the flow. Then, C(d) remains almost constant up to very
long-range distances (d ≈ 103ξ), confirming the presence
of a large-scale structure in the system.

2. Energy and helicity decay

In the zero temperature case nonlinear interactions of
Kelvin waves lead to the emission of phonons [1, 47],
which deplete the incompressible kinetic energy [50] and
the helicity [21]. The presence of thermal noise adds a
new depletion mechanism. In order to study it, we show
in Figs. 6 and 7 the evolution of the incompressible ki-
netic energy Eik and of the helicity H for five different
temperatures, in linear and in semi-logarithmic scales re-
spectively.

As expected, for all temperatures both Eik and H de-
cay in time. At very early times a short transient can
be seen (due to the system correcting frustration effects
coming from the initial conditions), after which the dif-
ferent dynamical mechanisms come into play. This tran-
sient is similar for all the runs, and almost independent
of the temperature. After this transient, at low temper-
atures both the incompressible energy and the helicity
decay very slowly or remain approximately constant (see
in particular the case with T = 0 in Fig. 7), up until t ≈ 3.
This is similar to what is observed in freely decaying clas-
sical turbulence: in that case the early “inviscid-like”
phase corresponds to the build up of the turbulent cas-
cade while dissipation remains negligible, and which (in
the classical case) ends when small scale excitations reach
the viscous dissipation scale. In classical turbulent flows,
the presence of helicity is known to extend the duration
of this “inviscid-like” phase (see, e.g., [53] and references
therein). As explained in [21], in the quantum case and
for T close to zero this inviscid phase corresponds to the
time during which vortices interact and the Kelvin wave
cascade builds up, so after t ≈ 4 the emission of phonons
becomes prominent and the incompressible kinetic energy
and the helicity start being depleted. Note that during
this phase both energy and helicity are transferred to-
wards smallers scales, as will be confirmed later by the
energy and helicity spectra.
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FIG. 11. (Color online) Spectra of incompressible kinetic energy, helicity, and compressible kinetic energy at different temper-

atures and at different times. All simulations have N = 1024 linear resolution. The thick dashed line indicates k−5/3 scaling,
predicted for the dual cascade of energy and helicity [51], and previously observed in zero temperature simulations [21]. This
scaling is compatible with the simulations at at low temperatures, but it is lost once the temperature is increased and viscous
effects become strong enough.

Unlike the simulations at low temperature, the simu-
lations at the highest temperatures go directly from the
short initial transient to a seemingly exponential decay,
without an inviscid-like phase in between (see Fig. 7).
At late times (t > 6), all simulations show similar expo-
nential decay rates (see Fig. 7) as a significant fraction
of the energy has already thermalized, with the excep-
tion of the simulation with T = 0.64Tλ and N = 1024,
which has a higher initial temperature and thus can reach
a thermal equilibrum faster. The exponential decay ob-
served in these runs is reminiscent of what is observed in
the free decay of low Reynolds classical flows. To further
verify this we show estimations of the exponential decay
rates −(1/Eik)dEik/dt and −(1/H)dH/dt in Fig. 8. For
the higher temperatures these magnitudes become close
to constant for long periods of time, confirming an expo-
nential decay. This is not the case for the lower tempera-
tures, where oscillations and a late growth of these quan-
tities are present at all times. Moreover, the exponential

decay behavior at high temperatures is compatible with
weak nonlinearities and can be used, as explained be-
low, to estimate an effective eddy viscosity of the flow
by assuming a governing equation for the velocity of the
Stokes form, ∂v/∂t ≈ νeff∇2v.

So far, these results indicate several things: The ef-
fects of the thermal states generated with the SGLE upon
the quantum turbulent flow can be modeled, at least for
global quantities and in the simplest scenario, using an
effective viscous dissipation. This effect can be, at the
highest temperatures considered, strong enough (even at
the highest resolution) that nonlinear interactions and
Kelvin wave turbulence cannot fully develop, such that
(pseudo) viscous effects dominate the dynamics. As ob-
served from Fig. 8, the rate of change of the energy at zero
temperature is almost negligible at t ≈ 1, but increases
and becomes considerable in the other cases. Thus, we
can draw from this fact to construct anzats for the ef-
fective viscosity as a function of temperature. In a freely
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FIG. 12. (Color online) Compensated version of the incompressible kinetic energy and helicity spectra shown in Fig. 11.

As seen in the figure, only at the smaller temperatures some range of wave numbers compatible with k−5/3 scaling (i.e., an
approximately flat compensated spectrum) is recovered.
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FIG. 13. (Color online) Spectra of the incompressible kinetic
energy and of the helicity at T = 0.64Tλ in the simulation
with N = 4096 at different times. A turbulent scaling law is
shown as a reference. Although nonlinear excitations develop,
the range of scales compatible with the turbulent scaling is
short and at late times the spectrum decays rapidly.

decaying classical flow an eddy viscosity can be estimated
as νeff = −(L̃2/Eik)dEik/dt, where L̃ is some large-scale
correlation length. Here we have several choices for a
characteristic length L̃: a fixed length L0 given by the

length scale of the large-scale flow at t = 0, the integral
scale (i.e., the correlation length) of the incompressible
velocity field

Li =
2π

Eik

∫
Eik(k)

k
dk, (20)

(where Eik(k) is the spectrum of the incompressible ki-
netic energy), the intervortex distance `, or the healing
length ξ. We verified that the behavior with tempera-
ture of νeff with all these choices for L̃ is qualitatively
similar, except for a prefactor, and thus show in Fig. 9
two estimations of νeff based on large-scale correlation
lengths: the fixed length L0 and the integral length Li.
The viscosity estimates are close to zero for T = 0, grow
linearly with temperature up to T/Tλ ≈ 0.3, and then
either keep growing at a lower rate or decrease for larger
temperatures, depending on the choice of L. Moreover,
the estimations of νeff for the N = 1024 and the 4096
runs at the highest temperature are similar.

These results can be interpreted as follows. The viscos-
ity of the normal fluid νn can be expected to be propor-
tional to mean free path λm times the sound velocity, i.e.,
νn ∼ λmc. When we increase the resolution fixing ξkmax

(as done here), c, and the temperature T , the mean free
path depending only on the temperature is constant (in
units of ξ), i.e.,

λm ∼ ξf(T/Tλ), (21)
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where f(T/Tλ) is a dimensionless function. Therefore
νn should scale as the inverse of the spatial resolution,
νn ∼ 1/N . But this argument holds as long as the mean
free path is smaller than the box size, λm < 2π, while
the mean free path diverges when T → 0. Thus, at a
given temperature the viscosity of the normal fluid should
first remain constant with resolution, and then after a
certain critical resolution go to zero as 1/N . This is for
the normal fluid alone, and its contribution to the total
flow should scale as ρn/ρ ∼ T . Thus, we can expect an
effective viscosity measured on the total fluid to scale as

νeff ∼ νnρn/ρ ∼ νnT/Tλ, (22)

which should first grow like T and then decrease when the
mean free path becomes less than the box size. Further
confirmation of this scaling would require a direct mea-
sure of the mean free path; we discuss possible methods
to achieve this goal in the conclusions.

Finally, it is important to note that, as in the zero
temperature case, the Galerking truncated GPE con-
serves the total energy, and that our spatial discretization
method is also conservative (although time discretization
introduces new errors as discussed next). So, while the
incompressible kinetic energy is depleted, the other com-
ponents of the energy can be expected to grow. As an
illustration, the evolution of the total energy, the incom-
pressible kinetic energy, the compressible kinetic energy,
the quantum energy, and the potential energy for the
simulation with N = 4096 and T = T0.64Tλ is shown in
Fig. 10. Note a fraction of the total energy is indeed lost
due to numerical errors, resulting from the fact that the
great cost of doing such a high resolution simulation did
not allow us to use a very small time step. Nonetheless,
energy is conserved up to 95% when t ≈ 1 (which is when
most of the physics we are interested occurs) and up to
82% at the very end of the simulation.

3. Spatial spectra

Finally, we study the effect of temperature on the evo-
lution of the spatial spectra of the two components of the
kinetic energy (compressible and incompressible), and of
the helicity. This should give further confirmation that
for large enough temperatures, the nonlinear cascade of
energy and of helicity is strongly arrested. The results for
the simulations with N = 1024 are shown in Fig. 11 (with
compensated versions of the spectra shown in Fig. 12),
while the results for the simulation with N = 4096 are
shown in Fig. 13. Note that the compensated spectra
stemming from the simulations with N = 1024 shown
in Fig. 12 are expected to be flat in regions that follow
Kolmogorov-like scaling; animations showing the evolu-
tion of each spectra can be also found in [73].

While, as shown in Fig. 2, the initial spectra at small
wavenumbers (large scales) are relatively similar for all
temperatures, differences can already be seen in Fig. 11 at
t = 2.5 for the simulations at different temperatures. In

particular, the simulations with the largest temperatures
have less power at small wavenumbers (for all quantities
Eik, H, and Eck), and more power at large wavenumbers
(specially for Eck), as can be expected from the larger
thermal fluctuations. As the flow evolves and nonlinear
interactions take place (see the spectra at t = 5), the low
temperature simulations develop a range of wavenum-
bers compatible with a Frisch-Brissaud dual cascade of
energy and of helicity towards small scales [51] (which
corresponds to Kolmogorov-like scaling for both spectra),
previously observed in zero temperature simulations [21].
However, the simulations with the highest temperatures
do not develop a broad spectrum, and although excita-
tions grow at intermediate and at small wavenumbers in
Eik(k) and H(k), the spectra drops faster confirming the
effect of damping discussed in the previous section, and
in agreement with the effect expected for a large effec-
tive viscosity. The compensated spectra shown in Fig. 12
confirm this. The N = 4096 simulation (see Fig. 13) also
shows this damped behavior, and as estimated from the
results in Fig. 9 has an effective viscosity of the same
order as the simulation with N = 1024 at a similar tem-
perature.

All spectra at all temperatures have a pronounced
change (or knee) at around k ≈ 10. At low tempera-
tures, this bump (which in the case of the spectrum of
Eik is followed by a range of wavenumbers with decreasing
amplitude as k increases) can be associated with a bot-
tleneck produced by the Kelvin wave cascade at scales
smaller than the mean intervortex distance [21]. This is
seen more clearly in the compressible kinetic energy spec-
tra. For the simulations at the highest temperatures this
second range is swallowed up by the presence of the ther-
malized modes. As it can be expected, the flat portion of
the spectra between the cascading part at small wavenu-
mers and the thermalized part at large wavenumbers is
wider in the N = 4096 (Fig. 13) simulation compared to
the ones at N = 1024 (Fig. 11). The spectra of the helic-
ity fluctuate around zero with fast changes in sign above
this wavenumber in all cases, a result of the depletion of
helicity by phonons (as the spectra are plotted in loga-
rithmic scale only positive values are shown, the missing
parts correspond to the negative values). The spectrum
of compressible kinetic energy grows as ∼ k2, which can
be expected for a thermalized state (and its amplitude
increases with increasing temperature).

IV. CONCLUSIONS

Modeling quantum flows at nonzero temperatures is
key to understand recent experimental results of quan-
tum turbulence. However, models for quantum flows at
finite temperature are limited, sometimes derived from
phenomenological models, in other cases obtained from
coarse approximations, and in many cases their dynam-
ics have not been fully characterized. Here we presented
a study of helical quantum turbulence at various tem-
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peratures using very large resolution simulations and
a model based on the Gross-Pitaevskii equation with
thermal states generated by the Stochastic Guinzburg-
Landau equation.

Our results show that in this model, under the pres-
ence of thermal noise, a quantum flow can behave as a
viscous classical flow, with exponential decay of the in-
compressible kinetic energy and of the helicity. A smooth
transition between the behavior at zero temperatures and
at large temperatures (for temperatures lower than the
critical) was reported. Moreover, the (pseudo) viscous
effects can strongly quench the formation of a turbulent
cascade, even at the largest spatial resolution considered.
However, when the temperature is not too high, a dual
cascade of energy and of helicity (as also observed in
classical turbulence and in quantum flows at zero tem-
perature) can be reobtained.

We presented a phenomenological estimation of the ef-
fective viscosity in this model, which shows linear scaling
with increasing temperature, and a saturation for very
high temperatures. An argument based on the mean free

path accounts for this behavior, and opens the door to
better estimations of the effective viscosity by measuring
directly this lengthscale. This can be done by studying
the spatio-temporal spectrum of the flow as a function
of the temperature, which gives access to the spectrum
of phonons in the system [44]. However, as computa-
tion of this spectrum is computationally intensive, it can
only be done at lower resolutions or using a different flow
configuration, and is thus left for future work.
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