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1. Introduction

Dispersive atom-surface interactions are ubiquitous in several applications involving

cold atoms in proximity of bulk surfaces, including atom chips for quantum information

processing, trapped neutral atoms and ions for precision measurements, and quantum

reflection of ultracold matter from surfaces [1]. Such interactions arise from optical

dipole forces due to spatial gradients of the electromagnetic field caused by the reshaping

of EM quantum vacuum fluctuations in the presence of material boundaries [2]. In

recent years degenerate bosonic [3] and fermionic [4] ultracold atomic gaseous systems

have been proposed as ideal probes of dispersive atom-surface interactions due to their

exquisite control and characterization. In particular, frequency shifts of the center-

of-mass of a Bose-Einstein condensate (BEC) have been used to measure equilibrium

and non-equilibrium Casimir-Polder forces [5]. Non trivial geometrical effects, such as

the lateral Casimir-Polder force, could also be measured with a BEC in proximity to a

corrugated surface [6].

In this work we propose a method for probing atom-surface Casimir dispersive

interactions based on the modification of the excitation spectrum of a BEC brought close

http://arxiv.org/abs/0904.0238v3
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to a corrugated material surface. The quantum Casimir interaction induced by such a

surface produces a periodic modulation of the trap potential that qualitatively changes

the condensate energy spectrum. For example, a quasi one-dimensional condensate

develops first order perturbation gaps in its energy spectrum. The Bogoliubov states

of the condensate which are significantly corrected have wavenumber commensurable

with the Fourier components of the Casimir potential, and thus the lateral Casimir-

Polder force can be inferred from the modified spectrum. The Casimir-modified energy

spectrum can be read out using two-photon Bragg spectroscopy techniques, which have

been used to reveal the low energy spectrum of BECs trapped in elongated potentials

[7] and optical lattices [8]. In contrast to other proposals [6] where the mechanical

properties of the atomic cloud play an essential role in the description, this method

relies on quantum properties of coherent matter such as the response of a many-body

coherent interacting system to laser light. As we shall see, this effect is directly related

to the low energy spectrum of the system and can be used to reveal lateral Casimir-

Polder interactions of atoms with a surface.

We stress that we do not mean this contribution as a proposal for an experiment to be

carried out in the immediate future. Our goal is to show how the distinctive features of a

BEC, as opposed, e.g. to an incoherent gas, allow for new ways to explore atom-surface

interactions. Indeed, we consider the novelty of transducing the Casimir lateral force

into a band gap as the strongest point in this paper.

The paper is organized as follows. In Section II we review the problem of a single atom

potential above a corrugated surface. We use this result in Section 3 to determine the

Casimir-Polder modified spectrum of an elongated BEC brought close to the surface.

In Section 4 we discussed how the Casimir-modified energy spectrum can be probed

by two-photon Bragg spectroscopy. Finally we give numerical estimates of the effect in

Section 5.

2. Casimir atom-surface interaction

A ground-state atom at position RA = (xA, yA, zA) in front of a corrugated surface

(with surface profile h(x, y) measured with respect to the plane z = 0, see Fig. 1), is

subjected to an atom-surface Casimir interaction energy U due to the electromagnetic

vacuum and thermal fluctuations that correlate the induced atomic electric dipole with

fluctuating charges and currents in the surface (Fig. 1). For example, for a uni-axial

corrugated surface with profile

h(x) =

∞
∑

j=1

hj cos(jkcx), (1)

where hj are the Fourier components of the profile and λc = 2π/kc is the corrugation

period, the interaction energy can be split as

U(x, y, z) = UN (z) + UL(x, z), (2)
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Figure 1. Set-up for probing Casimir atom-surface interactions by measuring the

energy spectrum via two-photon Bragg spectroscopy. The energy spectrum of an

elongated 3D Bose-Einstein condensate trapped parallel to a corrugated surface is

modified by the lateral component of the Casimir atom-surface interaction energy.

where UN (z) leads to a normal force (for flat surfaces it corresponds to the usual van

der Waals/Casimir-Polder forces) [2] and UL(x, z) leads to a lateral force that appears

only for non-planar surfaces [6]. The first-order expansion of UL in powers of h is

U
(1)
L (xA, zA) =

∞
∑

j=1

hj cos(jkcxA)g(jkc, zA), (3)

where g(k, z) is the response function [6] containing information about the atomic

response and about the geometry and optical response of the surface:

g(k, zA) =
~

ǫ0c2

∫

∞

0

dξ

2π
ξ2α(iξ)

∫

d2k′

(2π)2
ak′,k′−k

ak′,k′′ =
exp[−(κ′ + κ′′)zA]

2κ′′

∑

p′,p′′

ǫ̂
+
p′(k

′) · ǫ̂−p′′(k′′)R
(1)
p′p′′(k

′,k′′),

where κ =
√

ξ2/c2 + k2. We remark that this expansion is valid only when h(x) is the

smaller length scale in the problem; for non-perturbative results see [9]. In the last

expression α(iξ) is the dynamic polarizability of the atom along imaginary frequencies,

ǫ̂
±

p′(k
′) are polarization vectors for incoming and reflected EM fields on the surface, and

R
(1)
p′p′′(k

′,k′′) are first-order reflection matrices of EM fields impinging on the surface

(see [10, 6] for details). As discussed in [11], geometry and conductivity corrections are

approximately disentangled. The response function can be written as

g(k, z) = ρ(k, z)ηF (z)F
(0)
CP(z), (4)

where ρ(k, z) ≡ g(k, z)/g(0, z) contains geometry corrections, and is an exponentially

decaying function of the single variable Z = kzA (for Z ≫ 1). Real material corrections

are encapsulated in ηF (0 ≤ ηF ≤ 1), that is the conductivity correction to the normal

component of the Casimir-Polder force F
(0)
CP in the planar perfect reflector geometry.

In the limit of separations much larger than the corrugation period (kczA ≫ 1), the
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Figure 2. Modified energy spectrum of an elongated BEC trapped parallel to a surface

in the presence of a weak periodic lateral Casimir atom-surface interaction The inset

shows the function F (q) that modulates the energy gaps ∆Eqn = F (qn)|UL,nkc
| of the

unperturbed Bogoliubov spectrum.

exponential decrease of g implies that the j = 1 term dominates in (3), resulting in a

effectively sinusoidal potential

U
(1)
L = h1 cos(kcxA)g(kczA)(kczA ≫ 1) . (5)

Note that the same result holds for a height profile with a single Fourier component in a

decomposition such as equation (1), so for large enough separations (zA ≫ λc) different

corrugation profiles become indistinguishable.

3. Casimir-modified BEC energy spectrum

Instead of considering the effect on a single atom we now compute the low energy

spectrum of an interacting cloud of condensed atoms in presence of the corrugated

surface. Consider a cigar-shaped BEC trapped by an axially-symmetric harmonic

external potential, so that it is parallel to the corrugated surface, as shown in Fig.1.

The Casimir atom-surface interaction affects the mean-field dynamics of the condensate

[3], governed by the Gross-Pitaevskii equation (GPE)

i~∂tϕ = − (~2/2m)∇2ϕ+ [UN (z) + UL(x, z)]ϕ

+ (m/2)(ω2
rr

2 + ω2
xx

2)ϕ+ g|ϕ|2ϕ, (6)

where ϕ is the condensate wavefunction, m is the atomic mass, g = 4π~2a/m, a is the

s-wave scattering length, and ωr (ωx) is the radial (axial) trapping frequency, ωr ≫ ωx †.
† Although Casimir forces are known to be non-additive, the fact that the condensate is a dilute object

justifies the computation of the total Casimir BEC-surface force as a sum over the Casimir forces

between the surface and the individual atoms in the condensate.
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This interaction also modifies the structure of Bogoliubov fluctuations around the mean

field solution and the corresponding energy spectrum. Since the Casimir atom-surface

interaction is a small perturbation to the external trapping potential, we will calculate

the modifications to the BEC spectrum in first order perturbation theory.

In principle, one can start from the unperturbed Bogoliubov spectrum of the prolate

elongated BEC, which has been calculated numerically in [12]. In the small wavelength

limit 1/q ≪ L (where q is the axial quasi-particle momentum) the spectrum can be well

described by the discrete multibranch spectrum En,m(q) of an infinitely long cylindrical

condensate, where n = 0, 1, 2, . . . is the radial quantum number andm the radial angular

momentum [13]. Approximate analytical expressions for this spectrum can be found in

some limiting cases which we analyse in the following two subsections.

3.1. Low energy excitations and small chemical potential

We first consider the case

µ− ~ωr ≪ 8~ωr. (7)

In this situation the radial confinement is so tight that the dynamics of the BEC

wavefunction is effectively 1D, the radial dynamics being “frozen”. The Thomas-Fermi

(TF) approximation for the radial dynamics is not valid in this regime, so we describe

the effective dynamics writing the 3D wavefunction ϕ in a basis {fn(r)} of eigenfunctions
of the radial operator −(~2/2m)∆r +mω2

rr
2/2, namely

ϕ =
∑

n

fn(r)φn(x, t), (8)

(symmetry imposes no angular dependence). Projecting onto the fundamental radial

mode f0(r), it follows that the axial wavefunction φ0(x, t) satisfies a 1D GPE with an

effective potential

Veff(x) = ~ωr + UN(zcm) + UL(x, zcm), (9)

and an effective interaction geff = g/2πσ2, with σ2 = ~/mωr (note we have approximated

z by the BEC center-of-mass position zcm; in a typical situation UN(zcm) ≪ ~ωr).

The non-linear coupling of φ0 to higher order modes φn can be neglected when

µ − ~ωr ≪ 8~ωr, as can be seen when projecting the equation onto f0. When the

typical axial length l verifies l ≫ λc, the condensate behaves locally as an interacting

quasi 1D cold atomic gas in the presence of a weak Casimir atom-surface potential.

The effect of the slowly varying axial external potential mω2
xx

2/2 will be incorporated

in Section 4 using a local density approximation (LDA). In the absence of the surface,

the energy spectrum is given by the Bogoliubov spectrum for a quasi 1D homogeneous

BEC, namely

En,m(q) ≈ En=0,m=0(q) ≈ EB(q)

=
√

(~2q2/2m)(~2q2/2m+ 2µ̃), (10)
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where µ̃ = µ− ~ωr −UN (zcm). To study the Casimir-modified spectrum we express the

1D BEC wavefunction as

φ(x, t) = exp

(

−i
µt

~

)

[φTF(x) + δφ(x, t)], (11)

where

φTF(x) = {[µ̃− UL(x, zcm)]/geff}1/2 (12)

is the TF mean field solution to the GPE above (valid when µ̃ is greater than the typical

kinetic energy due to spatial gradients), and δφ(x, t) = u(x) exp(−iEt
~
) + v(x) exp(iEt

~
)

are the Casimir-modified Bogoliubov excitations. These are solutions to

Eu = − ~
2

2m

d2u

dx2
+ (µ̃− UL(x, zcm))(u+ v∗),

−Ev = − ~
2

2m

d2v

dx2
+ (µ̃− UL(x, zcm))(u

∗ + v). (13)

We now solve these equations to first order in powers of UL. We write the Casimir-

modified BEC energy spectrum as

E(q) = E(0)(q) + E(1)(q) + . . . . (14)

Zeroth-order eigenfunctions are plane waves, namely

u(0)(x) =
∑

q u
(0)
q exp(iqx) ,

v(0)(x) =
∑

q v
(0)
q exp(iqx) ,

(15)

and the corresponding spectrum E
(0)
q is equal to the Bogoliubov one, EB(q). Expressing

the Casimir energy UL(x, zcm) in a cosine Fourier series (e.g., as in the small-h limit,

Eq.(3)), it follows that this weak periodic perturbation opens gaps in the unperturbed

energy spectrum at momenta qn = ±nkc/2 (n = 0, 1, . . .). As long as each Fourier

component |UL,nkc| ≪ E
(0)
q (which is consistent with the perturbative expansion), modes

with different values of n are effectively uncoupled, and the gap for any fixed n is

obtained by solving the eigenvalue problem for degenerate unperturbed states nkc/2

and −nkc/2. Solving the two-state problem for almost degenerate states nkc/2 + ǫ and

−nkc/2+ ǫ, it is easy to find to first-order the energy branches (i.e. Bloch bands) E±(q)

and the energy gaps between them on the border of the first Brillouin zone:

∆Eqn = |UL,nkc| × F (qn) ; F (q) = Tq/E
(0)
q , (16)

where Tq is the free kinetic energy

Tq = ~
2q2/2m , (17)

and F (q) is a dimensionless suppression factor, plotted in Fig.2 together with the energy

branches. Note that F (q) → 1 for q ≫ kµ̃ = (2mµ̃/~2)1/2, corresponding to the particle-

like region of the spectrum. For q/kµ̃ ≪ 1, F (q) → 0 [14]. Note that x-independent

terms in the Casimir energy (like UN ) do not affect the energy gaps, and therefore

cannot be probed by Bragg spectroscopy. Our result (16) for the energy gaps due to the

Casimir-Polder interaction is equivalent to those derived in previous studies of BECs in

periodic potentials [14].
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3.2. Low energy excitations and large chemical potential

For systems with higher densities the typical situation becomes µ ≫ ~ωr. In this case

the radial dynamics can be described via the TF approximation, and the unperturbed

spectrum can be expanded in powers of qR (with R = (2µ/mω2
r)

1/2 the radial TF radius)

[15]

E2
n,m=0(q) = 2(~ωr)

2n(n+ 1) + (qR)2
(

~ωr

2

)2

+O((qR)4). (18)

The lowest mode (n = 0) corresponds to axially propagating phonons with a speed

of sound smaller by a factor
√
2 than the Bogoliubov speed of sound in the case

a). Proceeding as before, one can compute the first-order energy gaps produced by

the Casimir atom-surface interaction acting on the radially confined BEC in the high

density limit, which results in ∆Eqn = (3~ωr/4µ) × (kcR/2) × |UL,nkc|. Therefore,

for large chemical potentials the Casimir-induced energy gaps are so small that they

cannot be detected via Bragg spectroscopy (see below). It is thus convenient to consider

condensates with relatively small particle densities.

3.3. Beyond periodic corrugations

So far we have considered the simplest case of a uniaxial corrugated surface, with Fourier

spectrum H(kx) ∝ δ(kx − kc). A similar procedure to the one described above can be

followed for surfaces with more general corrugation profiles. For example, if the surface

may be described by two fundamental wavenumbers kc1 and kc2, namely

h(x) =
∑

j

h
(1)
j cos(jkc1x) +

∑

j

h
(2)
j cos(jkc2x), (19)

one can apply the same calculation as in the single uniaxial case provided the two-state

problem defined for each fundamental wavenumbers kc1 and kc2 result independent of

each other. This approach fails when the wavenumbers are close enough, because then

the two sets of states will mix through the Casimir-Polder interaction. Thus, there will

be a minimum separation in momentum space, say δkmin, such that if kc1 and kc2 satisfy

|kc1 − kc2| ≫ δkmin the two 2 × 2 problems are independent, but when this condition

is not satisfied the first order energy correction will have to be computed taking into

account that one is no longer dealing with two uncoupled systems. It is not difficult to

see that the latter case yields to a 6 × 6 problem; however, in such cases, the relation

between the energy gaps and the spatial Fourier components of the potentials may not

be invertible.

In fact, for certain surfaces, notably for those with stochastic roughness, this

uncoupling condition can easily break down, and the method proposed in this paper

does not work. One can estimate the width δkmin on dimensional grounds. Taking into

account that the perturbative parameter is UL/E
(0), the minimum width should be of

order δkmin ≈ kc1,2(UL/E
(0))kc1,2 . We have verified that this is a good estimate by a direct

diagonalization of the exact problem. Note also that this gives the minimum difference in
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q
kc/2

S−(q, ω)

ω (Hz)

S(q, ω)

S+(q, ω)

(a.u.)

∆ω

Figure 3. Dynamic structure factor (in arbitrary units) as a function of the detuning ω

and the wave vector q/(kc/2). The parameters are chosen for 87Rb such that µ̃ = ~ 3.1

kHz, U
(1)
L,kc

f(kc/2) = ~ 0.11Hz, and λc = 2π/kc = 9.75µm (see text).

momentum space that can be resolved when two fundamental wavenumbers kc1 and kc2
are present, and is the reason why Bragg spectroscopy of the low-energy BEC spectrum

cannot resolve the Fourier components of the Casimir potential UL(kx, ky) produced by

a rough surface. In the following, we will restrict ourselves to the simplest uniaxial

corrugated case.

4. Bragg spectroscopy of the Casimir potential

Consider two probe laser fields of frequency ω1 and ω2 and linear momentum k1 and k2

in the Bragg configuration of Fig. 1,

q = qx̂ = k1 − k2 ; ω = ω1 − ω2. (20)

Bragg spectroscopy is an ideal tool for probing the BEC energy spectrum via the

measurement of the dynamic structure factor (DSF) at zero temperature. The

homogeneous DSF is found to be [16]

S(q, ω) =
N~

2q2

2mEB(q)
δ(~ω − EB(q)), (21)

where N is the total number of BEC atoms. A similar expression is found for the

Casimir-modified energy spectrum (calculated above neglecting the effect of the axial

trapping potential∝ ω2
xx

2), and furthermore the effect of the axial trapping potential can

be incorporated via LDA averaging over the TF axial density profile [16]. The average

can be performed via the integration of the DSF for the Casimir-modified spectrum

using the local density profile given by [1 − (2x/l)2]. Performing the integral one finds

two branches for the DSF, denoted below by S±(q, ω),

S±(q, ω) ∝
[

∂E±(x, q)

∂x

∣

∣

∣

x∗

]−1

, (22)
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where each branch S±(q, ω) is associated with one energy branch through the relation

~ω = E±(x∗, q). This last equation determines implicitly x∗ = x∗(ω), that is to be used

in equation (22) together with the local spectrum, which is defined by

E±(x, q) = E(0)(x, q)± Tq

2E(0)(x, q)
UL,nkc,

E(0)(x, q) =

√

√

√

√T 2
q + 2Tqµ̃

[

1−
(

2x

L

)2
]

, (23)

where Tq is given by (17). This gives a function which is not proportional to a delta-

function but is still divergent when ~ω = E±(0, q), which means there is a resonance

when ~ω is the local energy at the origin. Fig. 3 shows the two branches of the dynamic

structure factor resulting from the Casimir atom-surface interaction for particular values

of the parameters.

The actual observable in Bragg spectroscopy is not S(q, ω) but the total momentum

PX transferred to the BEC, whose equation of motion is given by [17]

dPX

dt
= −mω2

xX +
∑

n,i

UL,nkc(nkc)〈sin(nkcxi)〉+

+
~qV 2

B

2

∫

dω′ [S(q, ω′)− S(−q,−ω′)]
sin([ω − ω′]t)

ω − ω′
. (24)

The first term is due to the trapping potential (X =
∑

i xi, with xi the x-coordinates of

the individual atoms in the BEC), the second term is the Casimir lateral energy UL, and

the last term is the response to the Bragg lasers which are assumed to have a Heaviside-

theta envelope (VB is the amplitude of the electric field of the superposed Bragg lasers).

The time derivative of PX(t) is proportional to S(q, ω) for long enough pulses, that is of

duration τ larger than the inverse of the typical energy scale E = EB(kc/2), provided

that ~ωx ≪ E and UL is negligible. This last condition is verified within our perturbative

expansion, UL,nkc ≪ E, which is further improved by partial cancellation of the sine

terms in the second term above. Thus, in the case we are considering, the resonances

of the dynamic structure factor at fixed q reveal the Casimir-modified energy spectrum.

This gives an indirect measure of the Casimir-Polder interaction because once the gap in

the spectrum (∆ω) has been measured, the Fourier coefficient of the CP potential can be

found using the relation (16). Note that this fact does not depend on the approximations

we have done to find an explicit expression for the CP lateral potential to first order in

the corrugation amplitude.

5. Numerical estimations and Discussion

Even if we do not mean this contribution as a blueprint for an experiment to be carried

out with present technology, it is relevant to discuss whether such an experiment would

be feasible in principle. In this Section we shall provide estimates for the strength

of the effect in a typical experimental configuration. We shall not go into matters of
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experimental technique, such as how to sustain an adequate alignment of the elongated

trap potential with respect to the surface, but rather focus on what can be said about

the achievable band gap based on fundamental physics.

On one hand, it is convenient to open gaps at large values of q (short wavelength

modes) in order to maximize F (q). However, on the other hand, this would imply

exponentially suppressed Fourier components of the Casimir-Polder lateral potential

|UL,q|. Therefore, the optimal parameters will result from a compromise between the

two factors in Eq.(16). Let us evaluate the Casimir atom-surface lateral potential and

the corresponding energy gaps in the BEC spectrum for a benchmark configuration.

Consider a sinusoidal uni-axial corrugated surface with corrugation wavelength λc =

2π/kc = 9.75µm and corrugation amplitude h = 1µm. In the following we will assume

that the surface is separated by zcm = 3µm from a cigar-shaped 87Rb condensate with

N = 104 atoms, trapped in an axially symmetric potential with trapping frequencies

ωx = 2π× 0.83 Hz and ωr = 2π× 2.7kHz. For this trapping frequency the radius of the

BEC is σ = 0.2µm. The chemical potential µ̃ and the TF axial length l are determined

by the relations

N =

∫

φ2
0,TF(x)dx ; µ̃ =

1

2
mω2

x(l/2)
2. (25)

That is, l/2 = (3geffN/2mω2
x)

1/3 = 408µm and µ̃ = (mω2
x/8)

1/3(3geffN/2)2/3 =

2π~ × 493Hz. For these parameters, µ̃ ≪ 8~ωr, so that we are under the conditions

of subsection A of section III. The Thomas-Fermi approximation in the axial direction

is also satisfied because the relevant kinetic energy is Tq1=kc/2 = 2π~ × 6.05Hz ≪ µ̃.

The typical Bogoliubov energy is EB(q1) = 2π~ × 77Hz, and the suppression factor is

F (q1) = 0.08.

In order to compute the order of magnitude of the dispersive atom-surface energy,

we first consider the ideal case of a perfectly reflecting corrugated surface (ηF = 1).

The Casimir potential is computed from Eq.(3) (note the caveat that, for the chosen

geometrical parameters h/zcm ≈ 0.33, we are at the border of the validity of the first

order approximation; the exact, non-perturbative expression can be found in [9]). In

the retarded Casimir-Polder limit, z ≫ λA (where λA is the typical atomic transition

wavelength), the atom lateral CP potential for the perfectly reflecting surface is given

to first order in h by U
(1)
L (x, z) = h cos(kcx)g

perf
CP (kc, z), where [6]

gperfCP (k, z) = −3~cα(0)

8π2ǫ0z5
e−Z(1 + Z + 16Z2/45 + Z3/45), (26)

with Z = kcz and α(0)/ǫ0 = 47.3 × 10−30m3 is the static polarizability of Rb atoms.

Therefore, the Fourier coefficient U
(1)
L,kc

= hgperfCP (kc, zcm) is approximately 2π~× 0.22Hz.

Corrections due to real material properties can be calculated from [11]. For the atom-

surface separations considered, the geometry correction factor ρ is well approximated by

the perfect reflector case (Fig. 3 of [11]), and the reduction factor is ηF ≈ 0.9 for gold

and ηF ≈ 0.7 for silicon (Fig. 4 of [11]). Therefore U
(1)
L,kc

is approximately 2π~× 0.2Hz

and 2π~× 0.16Hz for gold and silicon surfaces, respectively.
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So far we have dealt with the case of zero temperature Casimir atom-surface

interactions. Thermal corrections to these interactions can be easily computed replacing

the integral over frequencies by a sum over thermal Matsubara frequencies. Thermal

effects start to be important for distances zA larger than the thermal wavelength of

the photon, λT = ~c/kBT , where T is the temperature of the environment, T = TE

(assumed to be in thermal equilibrium with the surface at temperature TS = TE ; see

[18]). Other thermal effects may affect the coherence length of the BEC in the 1D

configuration, yielding an upper bound on the temperature of the thermal cloud around

the condensate, TBEC. Let us note that the surface and environment temperatures TS

and TE are very different from the BEC temperature (typically hundreds of K against

tenths of nK) and play completely different roles. In the quasi-1D regime considered

here it can be shown [16] that the typical decay length of the coherence is given by

2n1~
2/kBTBECm, where n1 is the one-dimensional density. Using the above parameters

one finds that the temperature of the BEC should be on the order of the nK to preserve

the axial coherence up to scales on the order of the size of the sample. However, we

note that a finite phase coherence length (shorter than the axial size but larger than

the corrugation period) is sufficient to probe lateral Casimir-Polder forces. Thus, such

extremely cold BEC temperatures for maintaining global axial coherence may not be

required.

Using the above estimations for the suppression factor and for the Casimir atom-

surface energy, the gap in the energy spectrum U
(1)
L,kc

F (kc/2) is of the order of 2π~×0.016

Hz, both for ideal and real surfaces. This shows that in order to measure the

lateral Casimir potential it is required to resolve a 2π~ × 0.016Hz gap in a spectrum

centered at 2π~ × 77Hz. This could be achieved by Bragg spectroscopy if ωx, which

limits the maximum resolution, is low enough ‡. For the typical value chosen before

(ωx = 2π×0.83Hz) the spectral resolution should reveal the sub-Hz structure. However,

it should be noted that such high sensitivities have not been experimentally achieved yet

§. Future improvements in cold atom technology could bring within reach the detection

of nontrivial geometry effects of quantum vacuum via Bragg spectroscopy of a Bose-

Einstein condensate.

Let us now compare our proposed setup for measuring lateral Casimir interactions

via Bragg spectroscopy with the method of frequency shifts of the center-of-mass

oscillations of the BEC, which was demonstrated in a measurement of the normal

Casimir-Polder force [5] and proposed as a suitable method for the detection of the

lateral Casimir-Polder interaction [6]. The frequency shift method applied to measuring

lateral forces has a limited spatial resolution due to the TF radii of the condensate.

‡ We assume that τωx < 1 in order for LDA to be valid along the axial direction, and to avoid possible

sloshing of the BEC.
§ A much larger signal can be attained when the BEC is placed closer to the surface. Scaling the

parameters given before to zcm = 0.7µm, λc = 4µm, and h = 50nm, results in a gap of 2π~ × 3.98Hz

centered at E = 2π~× 191Hz. Although this energy range has been experimentally demonstrated [7],

the minimum distance of a BEC to the surface at present is limited to 2µm.
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Furthermore, if tighter configurations are considered in such a context, the relative

frequency shift becomes smaller than the experimental resolution reported in [5]. For

example, using the parameters proposed above one finds that the maximum relative

change in the lateral frequency shift is about 7× 10−7, while the reported experimental

sensitivity of those experiments was 5 × 10−5 [5]. In contrast, the tighter Gaussian

configuration proposed here would give an improved resolution in the distance to the

surface, and the axial spatial resolution would only be limited by the accuracy in

determining the laser wavenumber differences and depends neither on the radial density

profile nor in any oscillation amplitude. However, as pointed out before, both techniques

for measuring lateral Casimir-Polder forces remain at present at the edge of detectability.

6. Concluding Remarks

Geometry effects of the quantum vacuum, such as the lateral Casimir-Polder atom-

surface interaction, modify the energy spectrum of a BEC in close proximity to a

corrugated surface. The qualitative differences in the lowest energy (phonon-like) band

were characterized in this context and a possible experimental set up for measuring the

effect was discussed. As we have shown, using Bragg spectroscopy to measure this effect

seems challenging with present day technology but could become feasible in the near

future, opening a new window on the physics of the interaction between surfaces and

coherent matter.
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