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Excited states of 4He droplets
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We study low-lying excited states of4He clusters up to a cluster size of 40 atoms in a variational framework.
The ansatz wave function combines two- and three-body correlations, coming from a translationally invariant
configuration interaction description, and Jastrow-type short-range correlation. We have previously used this
scheme to determine the ground-state energies of4He and3He clusters. Here we present an extension of this
ansatz wave function having a good quantum angular momentumL. The variational procedure is applied
independently to the cases withL50,2,4, and upper bounds for the corresponding energies are thus obtained.
Moreover, centroid energies forL excitations are calculated through the use of sum rules. A comparison with
previous calculations is also made.
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I. INTRODUCTION

The study of liquid helium clusters is an active area
both experimental and theoretical research.1,2 Since the
atom-atom interaction is well known, a detailed knowled
of some ground-state properties has been obtained using
eral microscopic methods.3–10 In particular, diffusion Monte
Carlo ~DMC!, Green function Monte Carlo, or path integr
techniques provide essentially exact the ground-state e
gies of 4He droplets at zero temperature. These calculati
are thus a useful benchmark to test other many-body m
ods.

Collective states have also been studied within sev
theoretical approaches.7,11–15 The excitation spectrum o
quantum liquids is expected to be experimentally more ea
accessible than the ground-state energetics. Moreover, s
of the excitation spectrum varying the number of consti
ents has been used11 to establish the onset of superfluidity
finite 4He clusters. Bulk helium becomes superfluid at ve
low temperatures; recently,16 evidence for the occurrence o
this phenomenon has been observed in finite droplets
sisting of 60 4He atoms doped with the OCS molecule. H
lium clusters can sustain collective oscillations of differe
multipolarities. Theoretical descriptions of the excited sta
usually follow the Feynman17 treatment of compressional ex
citations in liquid4He. The trial wave function of the excite
state is written as the productF(R)C0(R), whereC0 is the
ground-state wave function,F is an excitation operator to b
determined, andR refers to the translationally invariant s
of coordinates. The excitation operator is determined
minimizing the excitation energy; ifC0 is the exact wave
function, a rigorous upper bound is then obtained for
excitation energy.

In this work we follow a different approach, although
could be related formally to Feynman’s approach. Rece
we reported10 accurate variational calculations for the grou
0163-1829/2001/63~22!/224519~7!/$20.00 63 2245
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state of4He droplets based on trial functions which combi
two-body Jastrow-type short-range correlations as well
two- and three-body correlations, coming from a translatio
ally invariant configuration interaction~CI! description, with
the role of incorporating fine details to the wave function
medium and long range. We have shown that these so-ca
J-CI3 wave functions represent a considerable improvem
in the ground-state energy. Typically the calculated up
bounds are within 2% of the diffusion Monte Carlo groun
state energies. In this work we apply the same schem
calculate variational upper bounds to the energy of the lo
lying excited states with angular momentum different fro
zero.

In Sec. II we present an extension of the J-CI3 schem
describe excited states characterized by an orbital ang
momentumL. Our results for the excitation spectra of stat
with L52 and 4 are discussed in Sec. III. We also presen
closely related approach based on sum rules, as well
comparison with other calculations, based on the Feynm
prescription. In Sec. IV we show our results for the disp
sion relation and the structure factor. Finally some concl
ing remarks are given in Sec. V.

II. TRIAL WAVE FUNCTION

We use a generalization of our previous variational tre
ment of the ground-state wave function, which has proved
be very efficient in describing the ground state of bo
bosonic10 and fermionic18 helium clusters. The trial function
is based on a special linear version of the coupled clu
method ~CCM!,19 supplemented by Jastrow correlations
control the strong atom-atom repulsion at short distanc
We shall refer to this as the J-CI3 approximation, mean
the presence of two-body Jastrow correlations~J! and addi-
tive configuration interaction correlations involving up
three particles~CI3!.
©2001 The American Physical Society19-1
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In a nutshell, the CCM ansatz for the wave function of
N-body system is constructed by means of the action of
exponentiated many-body operator on a reference or m
stateuC&5eŜuF&. The operatorŜ is a sum of particle-hole
excitations for 1 up toN bodies. The usual CCM formulatio
for extended systems must be modified in the case of fi
systems to eliminate the spurious center-of-m
coordinate.20 In the linearized version of the CCM o
configuration-interaction formalism, the ansatz wave fu
tion contains only the linear terms of the exponential exp
sion. In coordinate representation, it may be written in
form

C~R!5FCI~R!FJ~R!, ~1!

whereFJ(R) is the translationally invariant reference sta
wave function with zero angular momentum. Without loss
generality the configuration interaction operator, up to thr
particle and three-hole~3p-3h! excitations, may be assume
to be

FCI~R!511(
i , j

f 2~r i j !1 (
i , j ,k

f 3~r i j ,r ik ,r jk!, ~2!

where f 2 and f 3 are unknown correlation functions to b
determined by minimization of the Hamiltonian expectati
value. To preserve Bose statistics the functionf 3(s,t,u)
must be symmetric in the three relative distances. Inter
ingly, this term may be interpreted as the linearization o
Feenberg trial wave function containing two- and three-bo
correlations; we shall show that a short-range term is ne
theless included in the reference state. It is worth notic
that as compared with a CCM description, the CI sche
loses the size extensivity guaranteed by the exponenti
form, and thus is not appropriate for extended systems.

In a theoretical analysis it is frequent to take as refere
state the one based on a harmonic oscillator single-par
Hamiltonian, which permits a simple factorization of th
center-of-mass coordinate. However, to deal with a system
strongly interacting particles it is advisable to include J
strow correlations into the reference state. In previous w
we have used the explicit parametrization

FJ~R!5)
i , j

expF2
1

2 S b

r i j
D nG)

i , j
expS 2

a2

2N
r i j

2 D , ~3!

where the first term is a truly short-range correlation and
second term is a convenient form of representing the bos
harmonic oscillator reference state. The parametersn andb
are fixed according to the short-distance behavior of the t
body interaction potential; for the Aziz HFD-B~HE!
potential21 we have found the optimal values to ben55.2
andb52.95 Å, independent of the number of atoms in t
cluster. The size parametera is determined by minimizing
the expectation value of the Hamiltonian using a simpler t
wave function with only two-body correlations. This s
called J-CI2 wave function is written as in Eqs.~1!–~3!,
setting f 350. Depending on the size of the cluster,a lies
between 0.27 and 0.30 Å21. An interesting outcome of ou
J-CI3 ground-state calculations14 is that the ground-state en
22451
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ergies are not very sensitive to the precise value ofa in a
large interval around that obtained without triplet corre
tions. Finally, the yet unknown functionsf 2 and f 3 can be
optimally determined by minimizing the expectation value
the Hamiltonian, as will be shown below. This scheme h
been applied with success to the ground-state descriptio
small 4He droplets and, adequately modified, to small3He
droplets. The resulting ground-state energies are typic
within 2% of those obtained within a diffusion Monte Car
scheme.

In order to deal withLÞ0 states two options are imme
diately apparent. First of all, one may change the harmo
oscillator reference state and promote one particle to
nearestl 5L open shell. In fact, a convenient combination
1p-1h plus 2p-2h is required to guarantee translational
variance. Alternatively, one may change the CI operator
put there a translationally invariant operator with angu
momentumL. We have found the first approach to be sim
pler, and thus the reference stateF (L) has been changed to

FJ
(L)~R!5)

i , j
expF2

1

2 S b

r i j
D nG)

i , j
expS 2

a2

2N
r i j

2 D
3(

i , j
r i j

L PL~ r̂ i j !, ~4!

wherePL is a Legendre polynomial, with argumentr̂ i j [(zi
2zj )/r i j given by the relative unit distance along thez axis
of each pairi j of particles. Note that only even-L states may
be generated in this way. This is similar to what happens
nuclei, where theL51 resonance must have isospinT51;
otherwise, it describes a translation of the system as a wh

On the other hand, for the CI correlation term we take
same structure as in theL50 ground state, i.e.,

FCI
(L)~R!511(

i , j
f 2

(L)~r i j !1 (
i , j ,k

f 3
(L)~r i j ,r ik ,r jk!. ~5!

The indexL in functions f i
(L) reflects the fact that they ar

determined by minimizing the expectation value of t
Hamiltonian with respect to the new trial state with angu
momentumL, i.e., C (L)5fCI

(L)FJ
(L) . It is worth noting that

even if there is a close similarity between our approach
the Feynman treatment for excited states, both methods
fer in the sense that the latter uses as trial wave function
product of the excitation operatorF(R) times the~hopefully!
exactL50 ground-state wave functionC0(R).

Similarly to the ground-state case, the optimalf 2
(L) and

f 3
(L) correlation functions could be determined by minimizin

the expectation value of the Hamiltonian, with an appropri
normalization constraint, resulting in a system of coup
integrodifferential equations for thef i

(L) . As a practical al-
ternative to determine the correlation functionsf i

(L) we have

expanded this term in a set ofNb Gaussians$e2br 2
% in the

following form:

FCI
(L)~R!5(

m
Cm

(L)Fm~R!, ~6!
9-2
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TABLE I. Energies of the lowest states with angular momentumL50,2,4, excitation energies, an
absolute value of chemical potential, given in K, for different cluster sizes. The ground state correspo
L50.

N E0 E2 E4 E22E0 E42E0 umu

6 22.316(7) 20.979(13) 20.030(17) 1.38~2! 2.29~2! 1.02~1!

8 25.022(9) 23.535(11) 22.28(4) 1.49~1! 2.74~4! 1.45~1!

10 28.488(15) 26.906(12) 25.412(17) 1.58~2! 3.08~2! 1.85~2!

12 212.426(18) 210.843(14) 29.311(17) 1.58~2! 3.12~2! 2.09~2!

14 216.83(2) 215.32(2) 213.66(2) 1.51~3! 2.97~3! 2.26~3!

16 221.62(2) 220.15(2) 218.47(2) 1.47~3! 3.15~3! 2.47~3!

18 226.86(3) 225.31(2) 223.56(2) 1.55~4! 3.30~4! 2.64~4!

20 232.73(2) 231.15(3) 229.40(4) 1.58~4! 3.33~4! 2.87~3!

30 263.60(6) 262.23(7) 260.33(7) 1.37~9! 3.27~9! 3.54~11!

40 298.17(16) 296.70(16) 295.07(17) 1.5~2! 3.1~2! 3.7~2!
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Fm5SH (
i , j ,k

exp~2bpr i j
2 2bqr ik

2 2b r r jk
2 !J , ~7!

where the subindexm refers to the ordered set of Gaussi
labelsp<q<r , and the symbolS indicates symmetrization
with respect to them.

The variational determination of the energy reduces to
solution of a generalized eigenvalue problem, which can
stated as follows:

(
m2

~Km1 ,m2

(L) 1Vm1 ,m2

(L) !Cm2

(L)5E(L)(
m2

Nm1 ,m2

(L) Cm2

(L) , ~8!

The matrix elements of the norm and the potential energy
given, respectively, by the integrals

Nm1 ,m2

(L) 5E dRuFJ
(L)u2Fm1

* ~R!Fm2
~R! ~9!

and

Vm1 ,m2

(L) 5E dRuFJ
(L)u2Fm1

* ~R!(
i , j

V~r i j !Fm2
~R!, ~10!

whereV(r ) is the atom-atom interaction potential. We wri
the matrix elements of the kinetic energy operator as

Km1 ,m2

(L) 5E dRuFJ
(L)u2Fm1

* ~R!
1

FJ
(L)~R!

S 2
\2

2m (
i

D i D
3Fm2

~R!FJ
(L)~R!, ~11!

so that we may use the positive definite functionuFJ
(L)(R)u2

as the guide for a Metropolis random walk. As we are us
translationally invariant wave functions no substraction
the center-of-mass motion is necessary.

The lowest eigenvalue solution provides a rigorous up
bound to the exact lowest energy for states with angular
mentumL, and it also gives the values of theNb(Nb11)
3(Nb12)/6 unknown amplitudesCm

(L) of the corresponding
optimal wave function. The Gaussian expansion has pro
22451
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to be a very accurate representation of the correlation fu
tion provided both negative and positive values ofb are
included, with the only restriction of having a square int
grable wave function. We have chosen a set of six rang
with values b/a250,20.05,0.5,1,2,4. Note that the nu
value gives rise to the first and second terms on the rig
hand side~RHS! Eq. ~5!, up to a normalization constant.

III. EXCITATION SPECTRA FOR LÄ2 AND 4

We have solved the generalized eigenvalue problem~8! to
obtain an upper boundE(L) for the energies of the lowes
state with angular momentumL52 andL54. The calcula-
tions have been done for the Aziz interaction HFD-H~HE!.21

For each cluster size considered, the parametera has been
fixed to the ground-state (L50) value, so that the determi
nation of the J-CI3 correlation functionsf 2

(L) and f 3
(L) has no

adjustable parameter.
Our results are indicated in Table I, together with t

ground-state energies previously given in Ref. 10. Excitat
energies and absolute values of the chemical potential
shown in the last three columns. For a drop withN atoms the
chemical potential has been explicitly calculated as the
ference between the ground-state energiesE(0)(N)2E(0)(N
21). Our results indicate that in the considered interval
cluster sizesN all these energies follow a rough quadra
dependence onN. Bound excitations with angular momen
tum 2 appear for systems with ten or more atoms, wher
the threshold for bound excitations withL54 lies in N
.30. Moreover, the excitation energies are approximat
constant in the considered interval ofN. States withL52
have an excitation energy of around 1.5 K, whereas th
with L54 have a value of around 3.1 K.

Useful information about the excitation spectrum may
also obtained by using sum rules, which only require kno
edge of the ground-state wave function. Suppose the gro
state is probed with an operatorQ. Denoting byCn the ki-
nematically accessible excited states having energyEn , the
sum rule of orderp is defined as

M p~Q!5 (
nÞ0

~En2E0!pu^CnuQuC0&u2. ~12!
9-3
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The centroid of the excitation energies is defined as the r
between the energy-weightedM1(Q) and the non-energy
weightedM0(Q) sum rules. For an arbitrary operator it fo
lows that

E12E0<
M1~Q!

M0~Q!
; ~13!

i.e., the energy of the first excited state is bounded by
centroid related toQ.

The sum rulesM0 and M1 can be easily calculate
through ground-state expectation values of specific op
tors. Indeed, assumingQ real, the non-energy-weighted su
rule is written as the following ground-state expectati
value:

M0~Q!5^C0uQ2uC0&2u^C0uQuC0&u2. ~14!

In the caseC0 is theexactground-state wave function, th
energy-weighted sum rule may be written as

M1~Q!5
1

2
^C0u@Q,@H,Q##uC0&. ~15!

We use our ground-state trial wave function to obtain
estimate of the centroid. We first consider excitation ope
tors

QL5(
i , j

r i j
2 ~L50!

5(
i , j

r i j
L PL~ r̂ i j ! ~LÞ0!, ~16!

which somehow are present in the long-wavelength limit
any realistic excitation operator. Given thatQL has a good
orbital angular momentum it acts like a projector in Eq.~12!
in the sense that the sum is restricted to all accessible s
Cn with angular momentumL. In consequence, Eq.~13!
refers to the lowest excited state of angular momentumL.
The calculation of

\vL5M1~QL!/M0~QL! ~17!

TABLE II. Centroids\vL ~in K! calculated by means of sum
rules, Eq.~17!.

N \v0 \v2 \v4

6 1.699~11! 1.434~8! 2.70~2!

8 2.156~16! 1.569~11! 3.03~3!

10 2.63~2! 1.695~12! 3.40~3!

12 2.78~2! 1.646~14! 3.20~3!

14 3.00~3! 1.640~16! 3.21~3!

16 3.19~4! 1.62~2! 3.21~4!

18 3.32~5! 1.68~3! 3.33~5!

20 3.57~7! 1.78~4! 3.62~6!

30 3.92~9! 1.85~5! 3.55~6!

40 3.93~10! 1.79~6! 3.38~9!
22451
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is thus an alternative way of evaluating an upper bound
the lowest excited state of angular momentumL, providing a
consistency check of our previous results.

Table II displays the calculated centroid energies\vL for
L50, 2, and 4. Comparing with the excitation energies
Table I we see that these centroids always provide an up
bound to the corresponding excitation energies, resulting
supplementary positive test of our trial wave function.
some cases we have explicitly calculated the contribution
the first excited state for eachL to the momentsM0 andM1,
obtaining more than 80% of the sum rules, which is an in
cation of the collectivity of these excitations. This may al
be qualitatively inferred from the fact that the excitation e
ergies are rather close to their respective centroids.

As mentioned in Sec. I, the variational determination
excited energies goes usually through the Feynman pres
tion, writing the trial wave function as

Cexc~R!5F~R!C0~R!, ~18!

whereF is an excitation operator to be determined. In t
caseC0 is theexactground-state wave function, the energ
of the first excited state is given by the centroid energy

\v~F !5
M1~F !

M0~F !
, ~19!

corresponding to the operatorF. One is naturally led to de-
termine the excitation operatorF by minimizing the centroid.
This scheme was followed by Chin and Krotscheck7 using a
translationally invariant one-body function forF(R) and re-
stricting their calculations to the monopole and quadrup
components ofF. The ground-state wave function was o
tained within a DMC calculation, so that their results provi
a rigorous upper bound to the excitation energies. Howe
even if C0 is not the exact ground-state wave function, o
may still use Eq.~19! to estimate the excitation energy. Ch
and Krotscheck used a trial wave function containing a tw
and three-body Jastrow factor, and minimized Eq.~19! to
estimate the excitation energies withL50 and 2. Another
estimation for the monopolar excitations has been done
Rama Krishna and Whaley,5 who used a previously deter
mined variational wave functionC0 and parametrized one
body monopolar functions~19! to describe nodal excitation
of states withL50, through the minimization of the centroi
~19!.

It is worth noticing that the J-CI3 approach bears so
similarity with Feynman’s treatment for the excited sta
Inspecting Eqs.~1!–~5! we realize that the J-CI3 trial func
tion for the excited state with angular momentumL may be
formally written as

C (L)~R!5F~R!C (L50)~R!, ~20!

where the Feynman-like excitation function is

F~R!5
FCI

(L)~R!

FCI
(0)~R!

(
i , j

r i j
L PL~ r̂ i j !; ~21!

i.e., it is a many-body function which is formally determine
in two steps. First are obtained the correlation functio
9-4
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EXCITED STATES OF4He DROPLETS PHYSICAL REVIEW B 63 224519
f 2
(L50) and f 3

(L50) of the ground state, and afterwards a
obtained those of the excited state withLÞ0. This function
does not have the structure of a translationally invariant o
body function, and so the comparison with the abo
mentioned previous calculations is not straightforward. W
can say that, in principle, this J-CI3 wave function for t
excited states spans a larger variational space.

In Table III our J-CI3 results are compared with tho
obtained by Chin and Krotscheck7 for clusters withN520
and 40 atoms, and excitations with angular momentumL
50 and 2. The row labeled VMC contains their results us
a trial wave function with a harmonic oscillator factor and
Jastrow factor with two- and three-body correlation fun
tions. It is similar to Eq.~1!, apart from the three-body func
tion. This function was used for the importance sampling
their DMC calculations, whose results are displayed in
row labeled DMC. Also the chemical potentials are d
played, and it can be seen that our chemical potentialsm are
very close to the DMC ones. This was to be expected, s
the ground-state energies of the clusters in this interva
values ofN are also very close, as showed in Ref. 10. It
interesting to compare the structure of the J-CI3 wave fu
tion with the VMC trial wave function used in Ref. 7. Instea
of a three-body Jastrow factor, the J-CI3 wave function c
tains a CI factor, with two-and three-body functions whi
are determined by minimizing the expectation value of
energy. The J-CI3 variational space is larger than this VM
one, and this is reflected in the fact that our excitation en
gies are lower than the VMC ones. This statement is c
firmed by the fact that for the cluster withN520 ourL52
excitation energy is lower than the DMC value.

IV. STATIC STRUCTURE FACTOR AND DISPERSION
RELATION

Excitations of a many-body system are usually studied
means of scattering experiments. In the case of helium c
ters, inelastic neutron scattering could in principle be use
obtain excitation energies and transition densities. It is t
useful to consider the response of the system to a pr
represented by a plane-wave operator

Q~q!5(
i

eiqW •(rW i2RW ). ~22!

The use of sum rules is useful to analyze collective prop
ties of the system. As done before, we shall use here both

TABLE III. Comparison of the variational~VMC! and diffusion
~DMC! Monte Carlo results of Ref. 7 with our J-CI3 results, f
droplets with 20 and 404He atoms.

N520 N540
L50 L52 2m L50 L52 2m

VMC 2.72 2.26 3.53 2.04
DMC 2.80 1.77 2.91 3.68 1.50 3.67
J-CI3 1.58 2.87 1.5 3.72
\vL 3.57 1.78 3.93 1.79
22451
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energy-weighted and the non-energy-weighted sum ru
which can be written as

M1~q!5
\2

2m
q2H N212

2

N K (
i , j

eiqW •rW i j L J , ~23!

M0~q!5N12K (
i , j

eiqW •rW i j L 2U K (
i

eiqW •(rW i2RW )L U2

, ~24!

where the expectation values refer to the ground-state w
function.

From these sum rules we define the dispersion relatio

\v5
M1~q!

M0~q!
~25!

and the static structure factor

S~q!5M0~q!/N. ~26!

Figure 1 displays our calculated dispersion relation for
drops withN58, 12, 20, 30, and 40 atoms. The presence
the maxon in the dispersion relation is related to superflu
ity, and in this respect it has been shown11 that the onset of
superfluidity in finite droplets appears for a number of ato
greater than.60. Our results show that forN540 atoms a
shoulder is insinuating in the dispersion relation at a mom
tum transferq.1 Å21.

FIG. 2. Structure factorS(q) for drops withN58, 12, 20, 30,
and 40, respectively, from bottom to top.

FIG. 1. Dispersion relation\v(q) ~in K! for drops withN58,
12, 20, 30, and 40, respectively, from bottom to top.
9-5
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Figures 2 and 3 refer to the static structure factors,
former displaying our calculatedS(q) for the same numbe
of atoms as in Fig. 1. The systems with 20 and 40 atoms
compared in Fig. 3 with the results of Ref. 7, which refer
VMC and DMC calculations. It appears that for 20 atom
J-CI3 results~solid line! are in between VMC~dots! and
DMC ~diamonds! results, whereas for 40 atoms, both J-C
and VMC are practically coincident. This may be an indic
tion of the limits of the present J-CI3 calculations, as co
pared to DMC results, already mentioned in the ground-s
energy results.

FIG. 3. Structure factorS(q) for drops withN520 and 40. Dots
and diamonds correspond respectively to the VMC and DMC
sults of Ref. 7.
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V. CONCLUSIONS

The richness and adaptability of the J-CI3 ansatz is
clue of our efficient method of describing lowest-ener
states of4He drops with good angular momentum quantu
numbers (L50, 2, and 4 have been studied here!. Even if the
method of obtaining the two- and three-body configurat
interaction parts of the wave function by means of a non
thogonal Gaussian basis is not strictly equivalent to an ex
Euler-Lagrange method, it maintains a close analogy wit
and is almost equivalent.

A minimum number of constituents is required to ha
LÞ0 bound states. Actually,N>10 are needed to have aL
52 bound state, and the threshold forL54 bound excita-
tions is close toN530. Below these values ofN the varia-
tional method provides excitation energies located in
continuum. These states could be interpreted asvirtual
states, in the language of potential scattering theories or e
resonances. However, this interpretation is not rigoro
Within the statistical fluctuations, the excitation energies
roughly constant as a function ofN, with a value of around
1.5 K for states withL52 and 3.1 K forL54, thus indicat-
ing approximate vibrational spectra.

Our scheme, however, is not flexible enough to descr
monopolar excitations. In that case one must ensure s
orthogonality with respect to the presumed exact grou
state wave function, as was done in Ref. 5. This condition
authomatically provided in our method through the soluti
of the generalized eigenvalue problem. However, the
tained energies are quite unstable with respect to sm
changes in the Gaussian basis. We interpret this disapp
ing property as a signal of the lack of flexibility of our tria
function family to accomodate simultaneously both t
ground state and theL50 excitations.
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