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1 Introduction

Recently there has been much interest in the study of electromagnetic (EM) duality,

perhaps due to its role in unifying theories [1]. In particular, the construction of a funda-

mental ”M-theory” in eleven dimensions, based on extended objects called branes, relies

on the implementation of an EM duality. ¿From Maxwell’s equations we know that general

EM duality implies the existence of magnetic charge (monopole) and currents. However,

when considering the quantum dynamics of particles carrying both electric and magnetic

charges (dyons) one faces the lack of a naturally defined classical field theory despite of

the fact that a consistent quantum field theory does exist [2]. This issue was analyzed in

recent contributions by considering certain generalized Dirac-strings [4] (See also [5] for

a formulation of dual quantum electrodynamics based on the original string-dependent

action of Dirac and Schwinger). In [6] a non local Lagrangian formalism was proposed

whose quantized version allowed to compute probability amplitudes for charge-monopole

scattering [7]. There were also some other recent works that focused on different aspects

of classical electromagnetism such as its connection to General Relativity [8], consistency

conditions [9] [10], etc.

The aim of this work is to present and explore an alternative formulation of EM duality,

in a classical context, which avoids the concept of Dirac-string. This classical field theory

is based on the introduction of a doublet of 4-dimensional vector potentials that have no

singularity around the magnetic monopoles. It posses manifest Lorentz covariance and

SO(2) duality symmetry. The main advantage of our formulation is that, since the gauge

fields are regular, one expects that their quantization will be straightforward.

The paper is organized as follows. In the next section we give a brief review of

classical EM duality and explain why one needs to introduce the Dirac monopole and the

Dirac string around the monopole. In the third section we describe in some detail our

formulation. In section 4, in order to illustrate the physical content of this model and

allow comparison with the Dirac-string formulation, we solve the classical equations of

motion for some specific static and non-static cases. In section 5 we derive a generalized

Lorentz force formula and show how to get the electric charge quantization condition.

Finally, in section 6 we display the Lagrangian form of our formulation and present our

main conclusions.
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2 EM duality and the Dirac string

Let us start by recalling the basic concepts related to EM duality and the Dirac monopole.

In terms of the electric field E, the magnetic induction B, the charge and current densities

ρe and je, Maxwell’s equations read

∇ · E = ρe, ∇×B =
∂E

∂t
+ je , (2.1)

∇ ·B = 0, ∇× E = −∂B

∂t
. (2.2)

where we set c = h̄ = 1 and µ0 = ε0 = 1. As usual, one introduces the electric scalar

potential φe and the magnetic vector potential Am such that

E = −∇φe −
∂Am

∂t
(2.3)

B = ∇× Am (2.4)

Aµ = (φe,−Am), xµ = (t,−x), Je
µ = (ρe,−je). (2.5)

Thus, in terms of the electro-magnetic field tensor

Fµν = ∂µAν − ∂νAµ, (2.6)

Maxwell’s equations (2.1) and (2.2) can be written in a manifestly Lorentz covariant form

as

∂µFµν = Je
ν , (2.7)

and

∂σFµν + ∂µFνσ + ∂νFσµ = 0. (2.8)

Furthermore, if we define the dual of the electromagnetic field tensor as

∗Fµν =
1

2
ǫµνρσF ρσ, (2.9)

Maxwell’s equations become

∂µFµν = Je
ν , ∂µ ∗Fµν = 0. (2.10)

In the source free case, i.e. Je
µ = (ρe,−je) = 0, the duality symmetry of the above

equations becomes apparent. Indeed, it is easy to show that under the dual transformation
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given by Fµν → ∗Fµν ,
∗Fµν → ∗∗Fµν = −Fµν , the equations (2.10) are unchanged. In

fact, taking into account that

Fµν =




0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0


 , (2.11)

and

∗Fµν =




0 Bx By Bz

−Bx 0 −Ez Ey

−By Ez 0 −Ex

−Bz −Ey Ex 0


 , (2.12)

one can readily convince oneself that the dual transformation is equivalent to performing

the following replacement in Maxwell’s equations:

E → B, B → −E. (2.13)

The duality symmetry is immediately broken if a non-zero electric current Je
µ enters

the theory, unless a non-zero magnetic current Jm
µ = (ρm,−jm) is also introduced. When

both electric and magnetic sources are included Maxwell’s equations read

∇ · E = ρe, ∇× B = je +
∂E

∂t
, (2.14)

∇ · B = ρm, ∇×E = −jm − ∂B

∂t
(2.15)

and both electric and magnetic currents are conserved, i.e. they satisfy

∂µJe
µ = 0 (2.16)

∂µJm
µ = 0. (2.17)

Maxwell’s equations and currents conservation conditions above are obviously invari-

ant under the dual transformation, i.e. they are invariant under the replacement (2.13)

together with

ρe → ρm, ρm → −ρe, je → jm, jm → −je. (2.18)

At this point the question arises about how to formulate Maxwell’s duality theory in

the presence of sources, in a Lorentz covariant way. It is clear that one needs to modify

the Maxwell’s equation (2.10) in the form

∂µFµν = Je
ν , ∂µ ∗Fµν = Jm

ν . (2.19)
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But, as we know, if the field tensor Fµν is defined by equation (2.6) then the second equa-

tion of (2.10) (Bianchi identity) always holds unless the potential Aµ have a singularity

somewhere. In other words, if we compute the magnetic flux through a sphere S2 which

surrounds the monopole with magnetic charge g, we shall always get
∫ ∫

s2

B · dS =
∫ ∫

s2

(∇×A) · dS = 0, (2.20)

although, due to the existence of the monopole, we must have a flux equal to g. So, as is

well-known, the way out of this problem is to allow A to have a singularity somewhere

on the sphere. This argument can be used for any radius of the spheres surrounding the

monopole, so by increasing it from zero to infinity we conclude that the monopole has

attached a line of singularities. This line is called the Dirac string [3], and this kind of

monopole is also called Dirac monopole. The Dirac string is not a physical observable

and one should not be able to measure it, so the orientation of the Dirac string can be

chosen arbitrarily (different orientations correspond to different gauge choices). As a by

product of the Dirac string one can get the quantization condition for the electric charge.

However, as will be shown in section 5, the Dirac string is not necessary to obtain that

condition.

3 EM duality without Dirac strings

In this section we will present an alternative formulation of EM duality without the use

of Dirac strings. Besides φe and Am defined in the previous section, let us now introduce

also a scalar potential φm associated to the magnetic field and a vector potential Ae

associated to the electric field. The electric field E and the magnetic induction B are

then expressed as:

E = −∇φe −
∂Am

∂t
+ ∇× Ae, (3.1)

B = ∇φm +
∂Ae

∂t
+ ∇× Am. (3.2)

Now we substitute these definitions in Maxwell’s equation (2.14) and (2.15), and use the

Lorentz gauge given by:

∇ · Am +
∂φe

∂t
= 0, ∇ · Ae +

∂φm

∂t
= 0. (3.3)
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Thus we get
∂2

∂t2
φe −∇2φe = ρe,

∂2

∂t2
Am −∇2Am = je

∂2

∂t2
φm −∇2φm = −ρm,

∂2

∂t2
Ae −∇2Ae = −jm

(3.4)

At this point we define

A1

µ = (φe,−Am), Aµ1 = (φe,Am), (3.5)

A2

µ = (φm,−Ae), Aµ2 = (φm,Ae), (3.6)

and

J1

µ = Je
µ = (ρe,−je), J2

µ = Jm
µ = (ρm,−jm). (3.7)

Equations in (3.4) can then be written as

∂µ∂µA1

ν = J1

ν (3.8)

∂µ∂
µA2

ν = −J2

ν (3.9)

In analogy to formula (2.6) we also write

F I
µν = ∂µA

I
ν − ∂νA

I
µ, I = 1, 2. (3.10)

Taking into account that Lorentz gauge (3.3) can now be expressed as

∂µAI
µ = 0,

we have

∂µF I
µν = gII′JI′

ν , (3.11)

where

gII′ =

(
1 0
0 −1

)
.

This is our first non trivial result. Equation (3.11) is the new version of Maxwell’s

equations, which have manifest Lorentz symmetry and SO(2) dual symmetry. The cur-

rents JI
µ are conserved currents. In our approach this conservation reads

∂νJI
ν ∝ ∂ν∂µF I

µν = 0 (3.12)
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which are equivalent to equations (2.16) and (2.17).

We should mention that the general gauge transformation in this formalism is given

by AI
µ → AI

µ + ∂µχI . It is easy to check that the fields E, B as well as the field tensors in

(3.10) and Maxwell’s equations (3.11) are all invariant under such a transformation.

Let us also stress that in the expressions above neither F 1

µν nor F 2

µν have the same

matrix form given by (2.11) and (2.12). In order to facilitate comparison between our

formalism and the one depicted in section 2 it is useful to define

Fµν = F 1

µν + ∗F 2

µν (3.13)

F̃µν = ∗F 1

µν − F 2

µν (3.14)

where F̃µν can be viewed as a new dual field tensor that, as we shall see, is specially

adequate to express the duality symmetry in a compact fashion. The matrix form for Fµν

is exactly the same as the form in (2.11). On the other hand the newly introduced F̃µν has

a matrix form equal to the one corresponding to ∗Fµν in the previous section (equation

(2.12)). Of course the electric and magnetic fields in this new expressions are given by

(3.1) and (3.2) whereas the older ones were determined by (2.3) and (2.4). Since the

vector potentials in our formalism have no singularities one has ∂µ ∗F I
µν = 0, so Maxwell’s

equations can also be written as

∂µFµν = ∂µF 1

µν = J1

ν

∂µF̃µν = −∂µF 2

µν = J2

ν

(3.15)

This couple of equations is obviously invariant under the dual transformation Fµν →
F̃µν , F̃µν → −Fµν , J1

µ → J2

µ, J2

µ → −J1

µ, which are equivalent to E → −B and

B → E. This duality symmetry is called special duality symmetry [11]. In fact, (3.15)

has a more general duality symmetry under the following transformations:

(
F ′

µν

F̃ ′

µν

)
=

(
a c
b d

)(
Fµν

F̃µν

)
, (3.16)

(
J ′1

µ

J ′2

µ

)
=

(
a c
b d

)(
J1

µ

J2
µ

)
(3.17)

with ad − bc 6= 0. This symmetry should also hold for Maxwell’s equations (2.14) and

(2.15). Indeed, invariance of these equations under the change

(
E′

B′

)
=

(
a c
b d

)(
E

B

)
(3.18)
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yields a = d and b = −c. Moreover, if we impose that the energy density and the Poynting

vector are also invariant under this transformation we get a2 + b2 = 1. It is then natural

to introduce an angle α such that a = cos α and b = sin α. Hence the general duality

transformation matrix coincides with the general rotation matrix in two dimensions. Thus

it becomes apparent that the general EM duality symmetry is the SO(2) symmetry.

Let us also mention that it would be desirable to get equation (3.15) from a variational

principle, exactly as it is done in the absence of monopoles [12] (see also [13]). This issue

will be considered in section 6.

It is also important to stress that our two potentials formulation can be recast in terms

of one unique vector field Aµ defined as

Aµ = A1

µ + ∗A2

µ, (3.19)

where ∗AI
µ are defined through

∂µ
∗AI

ν =
1

2
ǫ αβ
µν ∂αAI

β. (3.20)

The field tensor Fµν can then be expressed as

Fµν = ∂µAν − ∂νAµ. (3.21)

This tensor has the same form as in equation (2.6), but here the dual of Fµν coincides with

F̃µν , it does not satisfy an equation of the form (2.9). As a consequence the equations in

(2.10) are now replaced by equations (3.15). Let us also stress that after quantization the

field Aµ will be associated to the photon.

4 Application to specific electromagnetic systems

In this section we will give some explicit solutions for specific static systems in the presence

of both electric and magnetic sources. At the end we will briefly comment on the formal

solutions for the general non-static case.

In a static situation the Maxwell’s equation (3.4) becomes

∇2φe = −ρe(x), ∇2φm = ρm(x),
∇2Am = −Je(x), ∇2Ae = Jm(x)

(4.1)

For simplicity, we shall consider a dyon with electric charge q and magnetic charge g

placed at the origin of the coordinate system:

∇2φe = −q δ(x), ∇2φm = g δ(x),
∇2AI = 0, I = e, m.

(4.2)
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The solutions in boundless space are

φe =
1

4π

q

r
, φm = − 1

4π

g

r
,

AI = 0, I = e, m.

(4.3)

Then from (3.1) and (3.2), the field strengths are given by

E =
q r

4πr3

B =
g r

4πr3
.

(4.4)

Let us emphasize that these simple solutions are obtained without using the concept of

Dirac string.

As a second example we now consider a steady current of dyons in a circular loop.

To be definite let us place the circle with radius R in the xy plane and use spherical

coordinates r, θ and ϕ. The only non-vanishing components of the current densities

correspond to the ϕ direction:

JI
ϕ(r, θ) = JIδ(cos(θ))

δ(r − R)

R
, I = e, m. (4.5)

where J is the number of dyons passing through a cross-section in the unit of time,

Je = qJ and Jm = gJ . Since JI has only ϕ-components the same will happen with AI .

Therefore the solutions of Maxwell’s equation (4.1) for this case read

AI
ϕ(r, θ) =

JIR

π
√

R2 + r2 + 2Rr sin θ

(
(2 − k2)K(k) − 2E(k)

k2

)
(4.6)

where

k2 =
4Rr sin θ

R2 + r2 + 2Rr sin θ

and E(k) and K(k) are elliptic integrals.

For small k, one gets

AI
ϕ =

JIR2

4

r sin θ

(R2 + r2 + 2Rr sin θ)3/2
(4.7)

Noticing that in this example one has φe = φm = 0, we obtain E = ∇×Ae,B = ∇×Am.

This means that for k small (which corresponds to R >> r, or r >> R, or θ << 1), we
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find

Br =
qJ cos θ

4

2R2 + 2r2 + Rr sin θ

(R2 + r2 + 2Rr sin θ)5/2

Bθ = −qJ sin θ

4

2R2 + 2r2 + Rr sin θ

(R2 + r2 + 2Rr sin θ)5/2

Bϕ = 0

(4.8)

and

Er =
gJ cos θ

4

2R2 + 2r2 + Rr sin θ

(R2 + r2 + 2Rr sin θ)5/2

Eθ = −gJ sin θ

4

2R2 + 2r2 + Rr sin θ

(R2 + r2 + 2Rr sin θ)5/2

Eϕ = 0.

(4.9)

When the magnetic charge vanishes (g = 0), the above results coincide with the well-

known expressions obtained for an electric charge moving steadily in a circular loop. On

the other hand, for g 6= 0, it is not simple to evaluate the fields using the concept of Dirac

strings.

For completeness let us now display the formal solutions for general non-static distri-

butions:

ρI = ρI(x, t), JI = JI(x, t), I = 1, 2. represent I = e, m. (4.10)

In principle this problem can be analyzed by means of the retarded potential method,

exactly as it is done in g = 0 classical electrodynamics [14]. The solution of equations

(3.4) is then given by

φI(x, t) =
1

4π

∫ gII′ρI′(x
′, t − r)

r
d3x′

AI(x, t) =
1

4π

∫
gII′JI′(x

′, t − r)

r
d3x′,

(4.11)

where r = |x − x′| and gII′ is given by the definition below the equation (3.11), then the

field strengths are

E(x, t) =
1

4π

∫
ρe(x

′, t − r)
r

r3
d3x′

+
1

4π

∫
Jm(x′, t − r)× r

r3
d3x′ − 1

4π

∫
1

r

∂Jm(x′, t − r)

∂t
d3x′,

(4.12)
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and

B(x, t) =
1

4π

∫
ρm(x′, t − r)

r

r3
d3x′

− 1

4π

∫
Je(x

′, t − r)× r

r3
d3x′ +

1

4π

∫
1

r

∂Je(x
′, t − r)

∂t
d3x′.

(4.13)

The solutions for the general static case is obtained from the expressions above by

omitting the time derivative terms and of course one shoud also omit t and t − r in the

corresponding arguments.

5 Generalized Lorentz force and the electric charge

quantization condition

As it is well-known a particle with electric charge q moving in the electromagnetic field

will be subjected to a Lorentz force:

F = q E + q v × B, (5.1)

where v is the velocity of the particle. From the dual symmetry, we know that if a particle

with magnetic charge g moves in an electromagnetic field, it will also feel a force given by

F = g B− g v ×E (5.2)

Now, if we consider a dyon moving in the electromagnetic field, it will gain a generalized

Lorentz force:

F = q (E + v ×B) + g (B − v × E) (5.3)

and the equation of motion in a covariant form reads

m ẍµ = (qFµν + g F̃µν) ẋν . (5.4)

When g = 0, we have Fµν → Fµν , equation (5.4) returns to the well know result in

electrodynamics.

Now let us consider a particle with electric charge q moving in the field produced by a

monopole with magnetic charge g. We place a very heavy monopole at the origin of the

coordinate system and use for B the solution obtained in the previous section (for the

static case), such that the equation of motion of the electric charge is

m
d2x

dt2
=

q g

4π
v × r

r3
. (5.5)
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It is easily shown that the kinetic energy and the total angular momentum are con-

stants of motion of this system. Indeed, through elementary manipulations one can show

that
d

dt
(L − κr̂) = 0,

where κ = qg
4π

and L = r × mv is the orbital angular momentum. Thus we find the

following constant of motion,

J = L− κr̂ (5.6)

This means that the total angular momentum of the system must be identified with

J whereas the second term (−κr̂) is nothing but the angular momentum of the electro-

magnetic field. Since we have decomposed J into two orthogonal parts one immediately

obtains

J2 = L2 + κ2 (5.7)

and now it is obvious that quantization of the total and orbital angular momentum (via

equation (5.6)) translates into the Dirac quantization condition:

κ =
1

2
h̄ ⇒ q g = 2πn, n = 1, 2, · · · (h̄ = 1). (5.8)

An immediate corollary is that if a single monopole with magnetic charge g exists, then

the electric charge is quantized in units of 2π/g. If we consider a dyon with electric and

magnetic charge (q1, g1) moving in the field of another dyon with charges (q2, g2), we can

derive the new electromagnetic angular momentum which reads

Lem =
q2g1 − q1g2

4π

r

r
(5.9)

and the corresponding quantization condition is

q1g2 − q2g1 = 2πn, n = 1, 2, · · · (5.10)

Therefore we were able to obtain the electric charge quantization condition without

using the concept of Dirac string.

6 Final remarks

We end this work by making some remarks concerning the Lagrangian formulation. Ac-

cording to the description of EM duality presented in this paper, the field equations are
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given by equation (3.11). These equations can be derived from the following Lagrangian

density

L = 1

4
(F̃µν)

2 −AµJ
µ1 − ÃµJ

µ2, (6.1)

where Aµ is given by (3.19), Ãµ = A2

µ − ∗A1

µ, F̃µν = −(∂µÃν − ∂νÃµ) and we have used

(Fµν)
2 = −(∗Fµν)

2 = −(F̃µν)
2. Employing the identities

∂F2

∂(∂µAν)
= 4Fµν

∂F̃2

∂(∂µÃν)
= −4F̃µν ,

it is easy to show that the corresponding Euler-Lagrange equations

∂µ(
∂L

∂(∂µAν)
) =

∂L
∂Aν

∂µ(
∂L

∂(∂µÃν)
) =

∂L
∂Ãν

give the right Maxwell’s equation (3.15). Following the above depicted calculation one

can see that the two-potential formalism proposed in this work is equivalent to the usual

one potential one, which is consistent with the existence of only one kind of photon in the

real world.

The first term of equation (6.1) is associated to the free electromagnetic field, whereas

the second and third terms correspond to the interaction between field and source (cur-

rents) and the interaction between electric source and magnetic source. More explicitly,

the interaction between electric and the magnetic sources can be expressed as

− ∗A2

µJµ1 + ∗A1

µJµ2. (6.2)

Taking into account equation (3.20), we can formally write

∗AI
µ = −1

2
ǫµναβ

∫ x

P
∂αAβIdxν

and using (4.11) (for the static case) we have

AI
µ(x) =

1

4π

∫ gII′JI′

µ (x′)

r
d3x′.
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Therefore we have,

∗A1

µJ
µ2 = −1

2
ǫµναβ

∫ x

P
∂αAβ1(y)dyν · Jµ2(x)

= − 1

8π
ǫµναβ

∫

Ω

Jβ1(x′)[
∫ x

P

∂

∂yα

1

|y − x′|dyν]Jµ2(x)d3x′

(6.3)

which means that ∗A1

µJµ2 is just the non local interaction between the electric current

Jβ1 and the magnetic current Jµ2. One has a similar result for the term ∗A2

µJ
µ1 which is

obtained by interchanging Jµ1 and Jµ2 in the above equation.

In summary we have presented an alternative description of classical electromagnetism.

Relevant features of this formulation are its manifest Lorentz covariance and its simple

realization of duality symmetry. However, the main advantage is the fact that the four-

vector potentials introduced in our formalism have no singularities, thus allowing a de-

scription of dyonic dynamics without Dirac strings. We think that these properties will

be helpful when carrying over the quantization of the theory. We hope to report on this

issue in a forthcoming article [16].
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