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Diffusion in disordered lattices and related Heisenberg ferromagnets
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We study the diffusion of classical hard-core particles in disordered lattices within the formalism of a
quantum spin representation. This analogy enables an exact treatment of noninstantaneous correlation func-
tions at finite particle densities in terms ofsingle spin excitations in disordered ferromagnetic backgrounds.
Applications to diluted chains and percolation clusters are discussed. It is found that density fluctuations in the
former exhibit a stretched exponential decay while an anomalous power law asymptotic decay is conjectured
for the latter.

PACS number~s!: 02.50.2r, 75.10.Jm, 82.20.Mj, 05.50.1q
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I. INTRODUCTION

Processes involving classical particles constrained to
fuse and interact stochastically on discrete substrates is
of the oldest schemes for the study of a rich variety of rel
ation phenomena@1–3#. Although from a conceptual stand
point such processes give only a phenomenological leve
understanding, they do provide the type of behavior nec
sary to describe irreversibility in many-body systems wh
otherwise, would be difficult to derive from first principle
Among the main techniques to obtain the time probabi
distribution of these processes, possibly the master equa
~MEQ! approach@4# is the more directly related to physica
concepts. Despite its apparent simplicity however, it gen
ally gives rise to an infinite hierarchy of coupled equatio
whose solutions become quite involved to elucidate, part
larly at large times. In a concerted effort to remedy this si
ation, quantum field theory methods have recently regai
new impetus in the study of the dynamics of non-quantu
mechanical objects@5#. Basically, the underlying idea is tha
the MEQ resembles a time-dependent Schro¨dinger equation
in a pure imaginary time with probability distributions pla
ing the role of wave functions. Thus, by studying the fie
theory associated to the MEQ a formal solution, in so
casesexact, of many-body probability distributions can b
found explicitly @6#.

As a contribution to the current momentum of this a
proach, in this work we shall revisit the problem of hard-co
particles diffusing in quenched disordered lattices empha
ing the formal analogy with its quantum counterpart. T
avoidance of double occupancy accounts for the esse
aspects of both interparticle interactions and mobi
whereas frozen-in disordered bonds$Jr ,r8%, modeling ran-
dom hopping rates between locations$r ,r 8%, is essential to
understand the slowing down of transport properties in a v
family of inhomogeneous and glassy systems@2,3,7#.

Following the thread of ideas initiated in Ref.@8# and
developed subsequently by many authors in related proce
@5,9#, here we attempt to further advance the subject forw
by means of a~pseudo! spin-12 description in which spin up
or down at a given site corresponds to particle or vacan
say, at that location. The MEQ is then equivalent to
action of a quantum spin ‘‘Hamiltonian’’ encompassing t
PRE 611063-651X/2000/61~1!/324~8!/$15.00
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original transition probability rates. Interestingly, for the ca
of symmetric diffusion of hard core particles the resulti
Hamiltonian reduces to an isotropic Heisenberg ferromag
whose full rotational symmetry appliesirrespectiveof the
hopping disorder. Although this continuous symmetry is
timately imposed by conservation of probability througho
the Brownian process, its exploitation is not evident witho
appealing to the quantum spin Hamiltonian analogy@10#.
Particularly, this formalism becomes advantageous in a
lyzing spontaneous fluctuations of the steady state suc
noninstantaneous density-density correlation functions~e.g.,
structure factors and scattering functions!. As we shall see,
the use of elementary quantum mechanical considerat
along with selection rules based on the conservation of t
angular momentum enable an exact treatment of thesemany-
bodycorrelations in terms ofsinglespin excitations.

The layout of the paper is organized as follows. In Sec.
we recast the MEQ of the disordered Brownian process a
physical realization of the Heisenberg ferromagnet. Secti
II A and II B treat in turn the structure of the steady state a
its noninstantaneous two-point correlations. Section III d
cusses autocorrelation functions in a variety of scenarios.
exact treatment of these functions in diluted chains is giv
in Sec. III A, where a stretched exponential asymptotic d
namics exhibiting a scaling regime is found. Section III
continues with a discussion of diluted lattices in higher
mensions. Exploiting scaling pictures for the frequency a
the density of states of single excitations on percolation c
ters at criticality @11#, we are led to suggest a slower o
anomalous diffusive kinetics. We end the paper with Sec.
which contains our conclusions, along with some remarks
extensions of the present work.

II. MASTER EQUATION AND SPIN REPRESENTATION

A central assumption underlying most phenomenologi
stochastic models is that the actual nonequilibrium dynam
of real systems can be approximated by a discrete Marko
process and, therefore described by a MEQ. The latter g
erns entirely the time evolution of the probabilitiesP(s,t) of
finding the system in a certain configurationus& at time t. If
W(s→s8) denotes the rate or transition probability per u
324 ©2000 The American Physical Society
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PRE 61 325DIFFUSION IN DISORDERED LATTICES AND . . .
time at which configurationus& evolves tous8&, the MEQ
reads

] tP~s,t !5(
s8

@W~s8→s!P~s8,t !2W~s→s8!P~s,t !#.

~1!

Assuming the basis vectorsus& form an orthonormal set, it is
useful to describe the ensemble averaged state vector o
system at timet asuP(t)&5(sP(s,t)us&. Thus, starting from
a given probability distributionuP(0)& it can be readily
checked that the formal integration of Eq.~1! yields a state
vector solution of the type

uP~ t !&5e2HtuP~0!&, ~2!

where the matrix elements of the transition operatorH ~or
‘‘Hamiltonian’’ ! are constructed as@12#

^s8uHus&52W~s→s8!, s8Þs, ~3!

^suHus&5 (
s8Þs

W~s→s8!. ~4!

The steady states of our stochastic processes corres
to the ground states ofH of each subspace within which th
dynamics takes place, all with the zero eigenvalue. Any
genvalues with positive real partsl.0 correspond to decay
ing states with lifetime 1/l. Due to probability conservation
clearly every column of H adds up to zero, i.e.
(s8^s8uHus&50. Thus, in passing and for future reference
is worth pointing out that aleft steady state can be immed
ately obtained as

^c̃u5(
s

^su, ~5!

which evidently satisfies^c̃uH50. Also, notice that

^c̃uP(t)&[1;t.
Turning to the analogy between diffusion of hard-co

classical particles and quantum spin-1/2 systems we
represent a particle or vacancy, respectively, at siter by spin
up or down, i.e., bymr511,21 wheremr is an eigenvalue
of the z component~say! of the Pauli operatorsW (r ) for site
r . Clearly a typical configurationus& in a general lattice with
N locations can be characterized by a direct prod
umr1

, . . . ,mrN
& of all the site spinors. So the set$W(s

→s8)%5$Jrr8 % of transition hopping rates between connec
sitesr ,r 8 ~e.g., nearest neighbors^r ,r 8&), then describes the
following spin-exchange process

umr1
•••mr51•••mr8521•••mrN

&↔
Jrr 8

umr1
•••mr

521•••mr851•••mrN
&.

Here and in the following the set$Jrr 8% can be arbitrarily
substitutionally disordered. To construct the associa
‘‘Hamiltonian’’ H whose terms keep proper track of bo
probability conservation and the spin exchange process,
useful to cast the discussion in terms of spin raising a
the
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lowering operatorss r
1 ,s r

2 . The off-diagonal part ofH ex-
changing configurations as schematized above, is there
given by

(
s

(
s8Þs

us8&^s8uHus&^su52 (
^rr 8&

Jrr 8~s r
1s r8

2
1H.c.!,

~6!

whereas conservation of probability, i.e., Eq.~4!, requires the
emergence of a diagonal part of the form

(
s

us&^suHus&^su5 (
^rr 8&

Jrr 8@ n̂r~12n̂r8!1~12n̂r !n̂r8#,

~7!

where n̂r[s r
1s r

2 denote occupation number operato
These terms basically count the total number of ways
which a given configurationus& can evolve to different state
us8& through a particle hopping attempt between near
neighbor pairŝ rr 8&, weighting each accessible attempt wi
rateJrr 8 . This yields precisely the right hand side of Eq.~4!.
Thus, in terms of usual spin-1/2 Pauli matricessW
[(sx,sy,sz), by virtue of Eqs.~6! and ~7! the evolution
operatorH reduces finally to a Heisenberg ferromagnet

H52
1

2 (
^rr 8&

Jrr 8~sW r•sW r821!. ~8!

Interestingly, due the isotropic nature of the interactions,
stochastic dynamics leaves invariant all the components
the total angular momentumS5 1

2 ( rsW r , namely,@H,S#50
irrespectiveof the disordered background of hopping rat
Jrr 8 . As a consequence of the full rotational symmetry, t
calculation of spontaneous density fluctuations are simpli
remarkably ~Sec. II B!. In preparation for the analysis o
those functions, let us first examine the form of the stea
state at finite particle densities.

A. The steady state

Evidently, the fully jammed ferromagnetic stateuF&
5uS,Sz& with total spinS5N/2 and total magnetizationSz

5N/2 is a steady state~SS!. Since@H,S2#50 we can gen-
erate normalized SSucm& with uS,Sz&5uN/2,N/22m&, i.e.,
having m vacancies and particle densityr512m/N, and
such thatHucm&50 by applyingm times the lowering op-
eratorS25( rs r

25Sx2 iSy, namely,

ucm&5am~S2!muF&, ~9!

where the normalization factor isam5A(N2m)!/N!.
Notice thatucm& is an equally weighted linear combina

tion of all permissibleV5(m
N) configurations with (N2m)

particles. In particular,

^cmu5
1

AV
^c̃u, ~10!

which is in line with the more basic observation that, as
from normalization prefactors, left and right SS should co
cide since Eq.~8! involves a self-adjoint evolution operato
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namely, W(s→s8)5W(s8→s). From this latter observa
tion, it is worth pointing out that detailed balance arises i
mediately in Eq.~1! given thatP(s)→1/V;us&.

The structure of these equilibrium states is rather triv
regardless of the hopping disorder. This follows by noti
that

n̂pn̂qucm&5
1

AV
( 9
j 1,

••• ( 9
•••, j m

s r j 1

2
•••s r jm

2 uF&, ~11!

where the index ordering denotes sums over all reach
different configurations and the double prime restricts
sums tor jÞp,q. This yields ( m

N22) nonvanishing configura
tions and therefore

^cmun̂pn̂qucm&5

S N22

m D
V

5S 12
m

ND S 12
m

N21D
N→`

;
r2,

~12!

so density-density correlators decouple in the large sys
limit. A similar reasoning holds for many-point correlato
thus yielding spatially uncorrelated SS. Henceforth, we
dress our approach to the correlations between fluctuat
that occur spontaneously atdifferent times which as is
known @13#, are closely related to the relaxation dynam
governing nonequilibrium regimes.

B. Noninstantaneous steady state correlations

We will be especially interested in the calculation ofnon-
instantaneousjoint probability distributionŝ A(t)B(0)& of
quantitiesA,B such as local densities or local density cor
lations, i.e., diagonal operators in the particle ors z repre-
sentation. Here, the brackets indicate an average over h
ries up to a to timet starting from a given probability
distributionuP(0)&. More precisely, this can be expressed
terms of the following discrete path integration

^A~ t !B~0!&5~Dt !n21(
s1

•••(
sn

P~s1,0!^s1uBus1&W~s1→s2!

3W~s2→s3!•••W~sn21→sn!^snuAusn&,

~13!

where the sums run over all possible statesusj&, and
DtW(sj 21→sj ) denotes the probability of evolving from
usj 21& to usj& in a single elementary time stepDt5t/(n
21) @14#. However, by construction@Eqs.~3! and ~4!#, this
latter probability is given bŷ sj u12DtHusj 21&. Because
A,B are taken diagonal in the particle representation,

P~s,0!^suBus&5^suBuP~0!&,

^suAus&5^c̃uAus&, ~14!

so, recalling that (12DtH)n→e2Ht, in the limit of a large
number of steps@14#, Eq. ~13! yields

^A~ t !B~0!&5^c̃uAe2HtBuP~0!&. ~15!
-

l

le
e

m

-
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-

to-

Since@H,S#50 for any disorder realization, Eq.~15! allows
for a systematic treatment of spontaneous density fluc
tions. In terms of the local density fields referred to abo
this requires consideration of noninstantaneous parti
particle correlationsCr ,r8(t)5^n̂r(t)n̂r8(0)& occurring in the
SS distribution uP(0)&5ucm&/AV with r512m/N. As
usual, it is convenient to choose a basis$uL&5uS,Sz,l&% of
common eigenstates ofS2,Sz and H with eigenvaluesS(S
11),Sz and l respectively. Inserting an orthogonalized s
of uL& states in Eq.~15!, by virtue of Eq.~10! it follows that
in the m-down-spin subspaceCr ,r8(t) can be written as

Cr ,r8~ t !5 (
levels l.0

e2lt^cmun̂ruL&^Lun̂r8ucm&, ~16!

where we have restricted the sum to eigenstatesuL& different
from ucm& ~which has vanishing eigenvaluel50), to sub-
tract the time independent correlations, i.e.^n̂r&^n̂r8&5r2.
All eigenvaluesl are real and positive definite, as by co
structionH is a self-adjoint stochastic operator.

Selection rules can now be applied to simplify remarka
the calculation. Noting that the Pauli matricess r

z are tensors

of rank one, sincen̂r5(11s r
z)/2, the Wigner-Eckart theo-

rem ensures nonvanishing matrix elements^cmun̂ruL& only
if the total spinS of ucm& and uL& differ by 0 or 1, i.e.,S
5N/2,N/221; in either case withSz5N/22m. To identify
the relevantuL& states, we first compute the total spinSof a
single spin excitation uwl&5( rwl(r )s r

2uF&. Since S2

5SzSz1 1
2 (S1S21S2S1), it can readily checked that

S2uwl&5H S N

2
21D N

2
uwl& if l.0,

N

2 S N

2
11D uwl& if l50,

~17!

for which the wave function should satisfy( rwl(r )
[ANdl,0 . Therefore, the desireduL& states giving nonzero
matrix elements in Eq.~16! are essentially rotated version
of the above single spin excitation states. Specifically, rec
ing that the angular momentum algebra imposes

S2uS,Sz&5A~S1Sz!~S2Sz11!uS,Sz21&, ~18!

we can generate a normalized SS in them-down-spin sector
by applying (m21) times the lowering operatorS2 to the
spin excitationuwl&, namely,

uL&5bm~S2!m21uwl&, ~19!

where the normalization factor arising from the produ
generated by each application ofS2 turns out to be

bm5A ~N2m21!!

~N22!! ~m21!!
, 1,m,N21. ~20!

Thus, for uL&Þucm& these areall the linearly independen
states contributing to Eq.~16!, having total spinS5(N/2
21), total magnetizationSz5(N/22m), andl.0. So, we
are now left with the calculation of̂cmun̂ruL&. This matrix
element is expanded as
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PRE 61 327DIFFUSION IN DISORDERED LATTICES AND . . .
^cmun̂ruL&5bm^cmun̂r~S2!m21uwl&

5bm(
p

wl~p!^cmun̂r~S2!m21sp
2uF&. ~21!

To go a further step in our analysis notice that

n̂r~S2!m21sp
2uF&5~m21!! ~12d r ,p!

3( 9
j 1,

( 9
j 2,

•••

3 (
•••, j m21

9 s r j 1

2
•••s r j m21

2 sp
2uF&, ~22!

where the double prime restricts the sums to vectorsr j
Þr ,p. Thus, for rÞp there are (m21

N22) terms contributing

equally to ^cmun̂ruL&. Hence, by taking into account th
wave function constraint( rwl(r )[0 so as to ensure a tota
spin S5N/221 (l.0), we obtain

^cmun̂ruL&5~m21!!m! S N22

m21Dambm(
p

wl~p!~12d r ,p!

52Am~N2m!

N~N21!
wl~r !, ~23!

where am is taken as in Eq.~9!. Therefore the particle-
particle correlations of Eq.~16! are finally given by

Cr ,r8~ t !5
Nr~12r!

N21 (
singlel levels

e2ltwl~r !wl* ~r 8!,

~24!

which at most requires the evaluation ofsingle spin-wave
~Bloch! excitations in disordered ferromagnetic bac
grounds. This is the main result of this section. Certainly,
usefulness of the quantum spin operational formalism de
oped so far is subject to the knowledge of such excitatio
However, much is known about their properties and den
of states@11,15#, and in fact this enables us to obtain explic
results, particularly for large time asymptotic regimes~Sec.
III !. A similar reasoning for non-instantaneousn-point corr-
elators would involveuL& states with total spinS5N/2
2M, i.e., states with M-interacting magnons (M
51, . . . ,n). In this more general case however, analyti
progress seems difficult given the scarcity of exact result
d.1, even for ordered substrates@16#.

III. AUTOCORRELATION FUNCTIONS
OF DILUTED LATTICES

A subcase of Eq.~24! entailing particular interest an
which is related to the probability of hard-core random wa
ers returning to the origin, is that of autocorrelation functio
C(t). This corresponds to averaging Eq.~24! over all loca-
tions r5r 8. For isotropic structures, it is plausible that th
number of sites a random walker~particle! has visited after a
time t is proportional to the volumeRd(t), whereR is the
root mean square displacement in a substrate of dimens
ality d ~either Euclidean or fractal!. Thus for densitiesr
e
l-
s.
ty

l
in

-
s

n-

!1/Rd , the probability of returning to the origin should i
principle scale asC(t)}R2d(t). Departures from normal o
Fickian diffusion (R}t1/2) in disordered lattices can there
fore be studied by both,~i! evaluating the asymptotic behav
ior of autocorrelations and~ii ! averaging the hopping distri
bution.

Autocorrelations are in turn closely related to the dens
of states in the substrate. In fact, due to the normalization
the single level eigenfunctions, after averaging over the s
~origins! of a given sample, in the largeN limit clearly Eq.
~24! reduces to

C~ t !5
Ar

N (
single l levels

e2lt, ~25!

whereAr[r(12r). So, the form of the density of states fo
l→0 determines entirely the large time asymptotic behav
of the autocorrelation function for hard-core particles at fin
densities.

Before continuing and in preparation for the analysis
autocorrelations in disordered scenarios, it is worthwhile
pause and consider the finite size scaling regimes emer
asymptotically from Eq.~25! in regular ordered situations
($J^rr 8&%[J). Let us consider briefly ad-dimensional hyper-
cubic lattice withN5Ld sites and periodic boundary cond
tions. It is well known that the correspondingl levels are
2J( j 51

d @12cos(2pnj /L)# with nj50, . . . ,L21. From Eq.
~25! it is straightforward to check that the autocorrelati
function of such finite system factorizes as

C~ t !5Ar

e22dJt

Ld F S (
n50

L21

e2Jt cos(2pn/L)D d

21G , ~26!

where the last term takes care of the cancellation of thl
50 contribution. Thus, it can be readily verified that there
a scaling regimeL→`,Jt→` for which the autocorrelation
scales with a universal functionF(t) so long ast[Jt/L2 is
held constant, namely,

C~L,t !5~Jt!2d/2F~t!,

F~t!5Artd/2@q3
d
~q!21#, q3~q![112(

n51

`

qn2
,

~27!

whereq5e24p2t andq3(q) is a Jacobi theta function of th
third kind @17# . Hence, the typical size of the system sets
time scales (t}L2) for which the dynamics becomes diffu
sive. Also, recalling that lim

t→0

Atq3(q)51/2Ap , the auto-

correlations of the infinite system result in long time diff
sive tails ~as they should!, whose asymptotic kinetics is
given by

C~ t !;
Ar

~4p!d/2
~Jt!2d/2. ~28!
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Turning to more general situations, a case of interes
that of bond-~hopping-! diluted lattices. More specifically
we will focus attention on the following binary hoppin
probability distribution

P~J8!5pdJ,J81~12p!dJ8,0 , ~29!

defined uniformly throughout all lattice bonds. For sho
range hoppings, say, e.g., nearest neighbors, a purely
metric effect, known as the percolation transition, arises fr
the configurational aspects caused by dilution. We add
the reader to Ref.@18# for a detailed introduction to this
subject which has been found useful to characterize a
variety of diluted systems including spin systems@19#. Here,
we just mention that there exists a critical concentrationpc
below which only finite clusters exist and above which
cluster spanning the~infinite! lattice is formed.

Of course ind51 any bond removal disconnects the la
tice, sopc51. However, as we shall see in Sec. III A, as
the regular case@Eq. ~27!#, autocorrelations also exhibit a
asymptotic scaling regime forfinite dilutions but through a
dilution-dependent scale of length. In higher Euclidean
mensions, extensive research@11,15,18,20# has led to the
conclusion that percolation clusters are statistically s
similar at the transition, and so are random fractals. They
characterized by various scaling dimensions~fractal, spec-
tral! for the various processes~mass, density of states! mea-
surable on the fractal. Thus, exploiting scaling results for
spectral dimension, in Sec. III B we shall discuss the imp
cations which the resulting density of states imposes on
large time average behavior of Eq.~25!.

A. Diluted chain

In the one-dimensional case for 0,p,1 the distribution
~29! breaks theN-site chains into a collection of finitedis-
connectedsegments, each having a number 1<L<N21 of
consecutive bonds, orL11 correlated sites. So, the probab
ity W(L) to find a chain withL consecutive nonvanishin
transition rates and free boundaries is independent of
chain location and is given by

W~L !5H ~12p!2pL if 1<L<N22,

~12p!pL if L5N21,

pL if L5N ~periodic chain!.

~30!

On the other hand, as shown in Sec. II, for a given segm
of (L21) bonds, it is sufficient to consider the correspon
ing evolution operatorHL within the single spin excitation
sector. From Eq.~8!, it can be readily checked thatHL can be
recast in terms of the followingL3L tridiagonal form

HL52JF 1 21 0 ••• 0

21 2 21 � A

0 � � � 0

A � 21 2 21

0 ••• 0 21 1

G , ~31!

with eigenvalues
is

-
o-

ss

h

i-

f-
re

e
-
e

he

nt
-

lL~n!54JS 12cos
np

L D , n50,1,•••,L21. ~32!

Assuming a constant particle densityr per chain, the overall
autocorrelations must be averaged overboth histories~time!
and samples~hopping disorder!. Thus, the autocorrelation
arising from all possible distributions of disconnected se
ments reads

^C~ t !&5Ar (
L51

N21

W~L ! (
n51

L

e2lL11(n)t, ~33!

whereAr is taken as in Eq.~25!. Here the first sum, denote
by the brackets on the left hand side, runs over segment
L consecutive bonds and takes into account the hopping
order, whereas the second sum runs over eigenvalue le
lL11(n).0, 1<n<L, and carries out the time depende
average. We are especially interested to elucidate
asymptotic behavior of Eq.~33! for arbitrarily large times
andfinite dilution regimes 0,p,1. To this aim, it is useful
to introduce the natural length scale emerging in the pr
lem, namely, the percolation correlation length

j52
1

ln p
, 0,p,1, ~34!

which measures the effective distance between missing h
ping rates. On general grounds, this scale can be regarde
the mean distance between two sites belonging to the s
cluster which, in higher dimensions, diverges asj;(p
2pc)

2n with a universal exponentn depending solely on the
space dimensionality@18#.

Now, from Eqs.~30! and ~33! it follows that in the ther-
modynamic limitN→` we are left with the calculation of

^C~ t !&5Ar

~12p!2

p (
L52

`

(
n51

L

e2[L/j1lL(n)t] . ~35!

Since lL(n)52J(np/L)21O(1/L4) it is clear that the
dominant contributions to Eq.~35! whent→`, are basically
contained in largeL segments. Introducing the~dimension-
less! scaling variables

t5
Jt

j2
, s5

L

j
, ~36!

it is straightforward to verify that within the scaling regim
j@1 with Jt@1 Eq. ~35! can be written as

^C~t!&;
Ar

j E
0

`

e2s(
n51

sj

e22p2n2t/s2
ds. ~37!

For t!1, the sum overn can be replaced by an integral, an
a result^C(t)&}t21/2 ~of pure-system form! follows. This is
the asymptotic behavior on one side of a crossover occur
at t;1. The other side has the more interesting~disorder-
dominated! asymptotic behavior, obtained by consideringt
@1. Then the sum is dominated by then51 term, so
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^C~t!&;
Ar

j E
0

`

e2[s1(2p2/s2)t]ds. ~38!

To obtain the asymptotic behavior of the integral we us
saddle-point expansion around the minimum of the ex
nent, ats05(4p2t)1/3, which becomes exact in the scalin
limit t@1. After elementary manipulations, this final
yields autocorrelations characterized by a universal sca
function U(t) exhibiting a stretched exponential decay t
gether with a subdominant power law prefactor. More e
plicitly, for t@1, j@1,

^C~j,t!&5j
21U~t!,

U~t!5ArA2ap

3
t1/6expS 2

3a

2
t1/3D , ~39!

wherea5(2p)2/3. This is the central result of this subse
tion, and it corresponds to localization when the avera
cluster size is smaller than the pure diffusion length.

To check the reliability of this form we address the rea
er’s attention to Fig. 1 in which autocorrelations are co
puted directly from Eq.~35!. The data collapse obtained fo
different dilutions clearly confirm Eq.~39! and provides fur-
ther evidence for the existence of an asymptotic scaling
gime characterized by the variablet5Jt/j2 and showing the
crossover att;1 between pure system diffusive behavi
(t,1) and localization (t.1). Notice that so long asp
Þ1, no matter how small the dilution is, it induces at suf
ciently large time a different dynamics from that develop
by the regular, purely diffusive case@Eq. ~28!#. This contrast-
ing behavior comes from the interplay of a pure diffusi
length (}t1/2) and the percolation lengthj ~roughly the av-
erage segment length! which diverges at the thresholdp
51.

B. Percolation cluster

In higher dimensions the dynamic behavior is much ric
by virtue of ~i! the more interesting fractal structure of th
percolation geometry at the thresholdpc and ~ii ! the exis-

FIG. 1. Stretched exponential decay and scaling regime for
tocorrelation functions of diluted chains.t ~here denoted asT), is
the dimensionless variable of Eq.~36! involving the timet divided
by the square of the percolation correlation lengthj. Following Eq.
~39! in the text,F(t) is here taken aŝC(j,t)&/@j21t1/6A2ap/3#.
Solid lines denote different degrees of dilutionp5e21/j. The up-
permost curve at the left corresponds top50.6, and the lower
curves top50.5, 0.4, 0.3, 0.2, and 0.1, in descending order. T
slope of the dashed line is2 3

2 (2p)2/3log10 e.
a
-

g

-

e

-
-

e-

r

tence of the infinite~spanning! cluster abovepc . We there-
fore have to distinguish finite cluster contributions to^C(t)&
from the infinite cluster contribution whenp>pc .

We first consider how such features might affect t
Goldstone argument@21#. The spin symmetry properties re
main as for the pure system. The full rotational symmetry
an anglea around an arbitrary spin directionn̂, evidently
leaves the evolution operator~8! invariant, i.e., H

5e2 iaS•n̂HeiaS•n̂. However, the steady~ground! states of
Eq. ~9! do not preserve such symmetry;n̂Þ ẑ. Because of
this spontaneous symmetry breaking, in the thermodyna
limit N→` a low-lying band of gapless or Goldstone mod
can be expected in the pure system@21# and, because of its
unlimited size, also on the infinite cluster (p>pc) irrespec-
tive of the hopping disorder inH. Moreover, the Goldstone
modes are theuL& states already introduced in Eq.~19! and
those with large characteristic scale are ultimately resp
sible for the emergence of a slow asymptotic kinetics@Eqs.
~26!,~27!#.

Next consider the finite clusters~for pÞpc). They are
distributed with size distribution having characteristic scalj
but nevertheless extending with exponential tail to infin
size ~see also Sec. IV!. Without these tails the finite size
cutoff would introduce a gap in the spectrum of the~Gold-
stone! modes on the ensemble of finite clusters.

The contributions, to dynamic properties such
^C(j,t)&, from excitations on finite clusters and on the in
nite cluster~for the casep>pc) can be obtained from the
density of single levelsv(l) or density of states~DOS! in-
volved in Eq.~25!. Therefore, the averaged autocorrelatio
can be written as

^C~ t !&5ArE
0

`

v~l!e2ltdl. ~40!

The specific form of the DOS forl→0 from modes on
the finite clusters is closely related to the role played
Lifshitz tails ;e2l2r

(r .0) in the energy distribution, a
typical issue occurring in the presence of disorder@22#. Con-
sider, for example, a square lattice of which a fractionp of
bonds are accessible. Below the percolation threshold
low energy DOS is characterized by Lifshitz tails which a
contributed by large regions of connected sites. In the o
dimensional case~Sec. III A! strings of lengthL occur with
probabilitypL and contribute low-lying ferromagnetic mode
with l}L22, so the DOS form isv(l)}pl21/2

. In fact, such
a tail in the DOS is dominant in determining the relaxati
dynamics referred to in Sec. III A.

Above the percolation threshold Lifshitz tail modes a
also present, but are swamped by the power law tailv(l)
;ld/221 due to low energy excitations on the infinite cluste
Thus for p.pc we expect the usual diffusive decay^C(t)&
}t2d/2 at long times. In passing, it is instructive to check t
casep51. It is well known that for an hypercubic lattice th
DOS of large wavelength excitations behaves asv(l)
;@Vd/2(2p)d#ld/221, where Vd is the surface of the
d-dimensional unit sphere. Thus after integrating Eq.~40!,
we recover precisely both the asymptotic diffusive tails a
amplitudes already obtained in Eq.~28!.

At p5pc , the Lifshitz tail is again present inv(l) and
swamped by a power tail which in this case has a nontriv

u-

e
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exponentds21 whereds is, by definition, the spectral di
mension and is the ratio of the fractal dimensiondf and the
dynamic exponentz ~which are respectively the length sca
ing dimensions for mass and frequency!: ds5df /z. These
exponents have been investigated for the linear spin w
problem at the percolation threshold, by direct numerical c
culation @23# and via scaling relations@11,15# df5d
2b/n, z521(t2b)/n to the exponents for percolatio
conductance (t), correlation length (n), and density (b).
For all d.1, ds is very close to~though not exactly equal to!
the conjectured Alexander-Orbach@24# value 2/3~a factor of
2 arises here because the basic equation for ferromag
spin waves involves frequency squared!.

Hence from Eq.~40! we immediately obtain for the exac
finite-density autocorrelation function of hard-core diffusi
particles at large times at the percolation threshold (p5pc)

^C~ t !&}t2ds, ~41!

whereds5(dn2b)/(2n1t2b) is very close to 2/3 for all
d.1.

This is in fact the (t/jz)→0 scaling limit of the following
general form implied by scaling considerations applica
when botht andj are large:

^C~j,t !&}t2dsf ~ t/jz!. ~42!

This form includes the crossover att;jz, and leads us to
conjecture that atpc within the percolation cluster, the diffu
sive behavior is characterized by an anomalous root m
square displacementR}t1/z, z;3df /2 wheredf is the fractal
dimensiond2bn. Equations~41! and ~42! are the main re-
sults of this subsection.

IV. CONCLUSIONS

The mapping to quantum spin systems exploited in t
paper gives a powerful approach to the stochastic dynam
of hard-core particle systems. Using it we have been abl
obtain in Sec. II exact dynamical properties~including the
space and time dependent pair correlation function! for the
interacting system at any density in terms of correspond
properties for linearized spin wave dynamics. The proced
applies equally well to disordered systems, and in addit
Goldstone arguments still apply there. In the applicatio
made here to disordered systems we have chosen to em
size the diluted case, because of the dramatic effects
there by virtue of the underlying percolation geometry.

A somewhat surprising result is that hard-core parti
diffusion on diluted chains is quite interesting, any dilutio
disconnects the chain, so the static diffusion constant stri
vanishes. Yet finite-time dynamics is nontrivial, exhibitin
scaling behavior and stretched exponential autocorrela
functions in the time domain~Sec. III A!. The scaling behav-
ior is analogous to that calculated earlier for the appare
much simpler~but equivalent! problem of ferromagnetic spin
wave dynamics of diluted chains@25#. There the calculations
were carried out in the frequency-wave vector domain,
comparison with inelastic neutron scattering measureme
so the stretched exponential time behavior was not identifi
but it should also be present there.

For interacting particle dynamics on higher dimensio
ve
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diluted lattices, by virtue of the mapping we have been a
to draw on scaling procedures and results for spin wave
namics of diluted systems. This is particularly direct for t
autocorrelation function of the diffusing hard-core partic
system, which is given completely in terms of a DOS whi
is the same as for spin wave dynamics.

Below the percolation threshold the diffusion is entire
on finite clusters. The low frequency density of states de
mining the long time behavior comes from large cluste
whose occurrence probability is exponentially small in clu
ter size, very much as in the one dimensional case. Ab
the percolation threshold the finite cluster contribution
similar, but it is now swamped by the infinite~spanning!
cluster contribution which, well away from the thresho
gives a behavior like that for the pure system. At and n
the threshold (p;pc) the diverging scale of the percolatio
geometry induces scaling behavior for the long time dyna
ics. Here the DOS has an anomalous power law depend
on frequencyl; the associated exponent has been obtai
via the relationship of the DOS to that for the linear sp
wave system and further relationships to percolation p
cesses including~static linear! conductance; the exponent i
the DOS power law is given in terms oft,b,n, the exponents
dependence onup2pcu of percolation conductance, densi
and correlation length. The consequent exponent in
power law time decay of the autocorrelation function atpc

turns out to be close to 2/3 for anyd.1 ~in accord with the
approximate Alexander-Orbach conjecture@24#!. The scaling
behavior of the space and time dependent correlation fu
tion depends on the DOS exponent and also on the len
scaling exponent for the frequencyl. This so called dynamic
critical exponent is also related tot,bn, and hence we can
give the power law dependence of the characteristic diffus
length on time. This generalization also allows discussion
the crossover due to the competition between character
diffusion length and percolation correlation length near
transition.

Clearly, further extensions are desirable. For the dil
systems the most obvious ones are the calculation of sp
and time dependent correlation and crossover functions,
also probability distributions rather than just averages. In
dition simulation confirmation of the analytic predictions
experimental comparisons would be desirable. As rega
more general disorder, other types of substitutional disor
could clearly be treated by the methods we have used
more challenging extension is to the biased diffusion of ha
core particles@26#. Much has been done exploiting the qua
tum spin mapping for the biased case along with adsorpt
desorption processes@6#. But biased hard-core particl
diffusion on disordered lattices is at present beyond the e
techniques exploited here.
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