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Diffusion in disordered lattices and related Heisenberg ferromagnets
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We study the diffusion of classical hard-core particles in disordered lattices within the formalism of a
guantum spin representation. This analogy enables an exact treatment of noninstantaneous correlation func-
tions at finite particle densities in terms sihgle spin excitations in disordered ferromagnetic backgrounds.
Applications to diluted chains and percolation clusters are discussed. It is found that density fluctuations in the
former exhibit a stretched exponential decay while an anomalous power law asymptotic decay is conjectured
for the latter.
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[. INTRODUCTION original transition probability rates. Interestingly, for the case
of symmetric diffusion of hard core particles the resulting

Processes involving classical particles constrained to difHamiltonian reduces to an isotropic Heisenberg ferromagnet
fuse and interact stochastically on discrete substrates is owvehose full rotational symmetry applidgrespectiveof the
of the oldest schemes for the study of a rich variety of relaxthopping disorder. Although this continuous symmetry is ul-
ation phenomenfl—3|. Although from a conceptual stand- timately imposed by conservation of probability throughout
point such processes give only a phenomenological level ahe Brownian process, its exploitation is not evident without
understanding, they do provide the type of behavior necesappealing to the quantum spin Hamiltonian analdgg].
sary to describe irreversibility in many-body systems whichparticularly, this formalism becomes advantageous in ana-
otherwise, would be difficult to derive from first principles. lyzing spontaneous fluctuations of the steady state such as
Among the main techniques to obtain the time probabilitynpninstantaneous density-density correlation functiens.,
distribution of these processes, possibly the master equatiafirycture factors and scattering functipnas we shall see,
(MEQ) approact{4] is the more directly related to physical the use of elementary quantum mechanical considerations
concepts. Despite its apparent simplicity however, it genergjong with selection rules based on the conservation of total
ally gives rise to an infinite hierarchy of coupled equationsangu|ar momentum enable an exact treatment of thessy
whose solutions become quite involved to elucidate, particunody correlations in terms ofingle spin excitations.
larly at large times. In a concerted effort to remedy this situ- The layout of the paper is organized as follows. In Sec. II,
ation, quantum field theory methods have recently regainege recast the MEQ of the disordered Brownian process as a
new impetus in the study of the dynamics of non-quantumphysical realization of the Heisenberg ferromagnet. Sections
mechanical object§5]. Basically, the underlying idea is that || A and I B treat in turn the structure of the steady state and
the MEQ resembles a time-dependent Sdimger equation  jts noninstantaneous two-point correlations. Section Il dis-
in a pure imaginary time with probability distributions play- cysses autocorrelation functions in a variety of scenarios. An
ing the role of wave functions. Thus, by studying the field exact treatment of these functions in diluted chains is given
theory associated to the MEQ a formal solution, in somep Sec. 111 A, where a stretched exponential asymptotic dy-
casesexact of many-body probability distributions can be namics exhibiting a scaling regime is found. Section 11l B
found explicitly [6]. continues with a discussion of diluted lattices in higher di-

As a contribution to the current momentum of this ap-mensions. Exploiting scaling pictures for the frequency and
proach, in this work we shall revisit the problem of hard-corethe density of states of single excitations on percolation clus-
particles diffusing in quenched disordered lattices emphasizgrs at criticality [11], we are led to suggest a slower or
ing the formal analogy with its quantum counterpart. Theanomalous diffusive kinetics. We end the paper with Sec. IV

avoidance of double occupancy accounts for the essentighich contains our conclusions, along with some remarks on
aspects of both interparticle interactions and mobilityextensions of the present work.

whereas frozen-in disordered bonfl ,/}, modeling ran-

dom hopping rates between locatiofrsr’}, is essential to

undgrstaqd the slowing down of transport properties in a vast;, \iasTeR EQUATION AND SPIN REPRESENTATION
family of inhomogeneous and glassy systd@s3,7].

Following the thread of ideas initiated in Rd8] and A central assumption underlying most phenomenological
developed subsequently by many authors in related processs®chastic models is that the actual nonequilibrium dynamics
[5,9], here we attempt to further advance the subject forwaraf real systems can be approximated by a discrete Markovian
by means of dpseudo spin+4 description in which spin up process and, therefore described by a MEQ. The latter gov-
or down at a given site corresponds to particle or vacancyerns entirely the time evolution of the probabilitiegs,t) of
say, at that location. The MEQ is then equivalent to thefinding the system in a certain configurati®) at timet. If
action of a quantum spin “Hamiltonian” encompassing the W(s—s’) denotes the rate or transition probability per unit
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time at which configurationjs) evolves to|s’), the MEQ  |owering operatorsr,” ,o, . The off-diagonal part o ex-
reads changing configurations as schematized above, is therefore
given by
FP(s,1)=2 [W(s'—s)P(s',1) —W(s—s")P(s,)].
s (1) E E |S’><S,|H|S><S|:_E ‘]rr’(o'ro'r_"l'H-C-),
S s'#s (") 5
Assuming the basis vectofs) form an orthonormal set, it is ®)
useful to describe the ensemble averaged state vector of thghereas conservation of probability, i.e., E4), requires the
system at time as|P(t))==¢P(s,t)|s). Thus, starting from emergence of a diagonal part of the form
a given probability distribution/P(0)) it can be readily
checked that the formal integration of Eq) yields a state B A aa
(7)

where ﬁrzafcrr_ denote occupation number operators.
These terms basically count the total number of ways in
which a given configuratiofs) can evolve to different states
/ __ , , |s’) through a particle hopping attempt between nearest
(s'IHls) Wis=s), s'#s, ® nei>ghbor pairgrr '), weighting each accessible attempt with
rated,,, . This yields precisely the right hand side of Ed).
(s|H|s)= X W(s—s). (49 Thus, in terms of usual spin-1/2 Pauli matrices
s'#s =(0*%,0Y,0%), by virtue of Egs.(6) and (7) the evolution

The steady states of our stochastic processes correspoRferatort reduces finally to a Heisenberg ferromagnet
to the ground states ¢ of each subspace within which the 1
dynamics takes place, all with the zero eigenvalue. Any ei- H=—= > J,/(0, 0, —1). (8)
genvalues with positive real pans>0 correspond to decay- 2 (')

ing states with lifetime V. Due to probability conservation, . . . . .
clearly every column ofH adds up to zero, ie., Interestingly, due the isotropic nature of the interactions, the

S.(s'|H|s)=0. Thus, in passing and for future reference it stochastic dynamics leaves invarizint all the components of
is worth pointing out that 4eft steady state can be immedi- the total angular momentui®= ;=0 , namely,[H,S]=0
ately obtained as irrespectiveof the disordered background of hopping rates
Jir . As a consequence of the full rotational symmetry, the
~ calculation of spontaneous density fluctuations are simplified
<¢|:§ (s, ) remarkably (Sec. 11B). In preparation for the analysis of
those functions, let us first examine the form of the steady
state at finite particle densities.

[P()=e""[P(0)), )

where the matrix elements of the transition operatofor
“Hamiltonian” ) are constructed d42]

which evidently satisfies(~z,lf|H=O. Also, notice that
(Y|P(t))=1V1.

Turning to the analogy between diffusion of hard-core
classical particles and quantum spin-1/2 systems we now Evidently, the fully jammed ferromagnetic staté&)
represent a particle or vacancy, respectively, atrsitg spin ~ =|S,S?) with total spinS=N/2 and total magnetizatios”
up or down, i.e., byn,= +1,—1 wherem, is an eigenvalue =N/2 is a steady stat€SS. Since[H,S™]=0 we can gen-
of the z component(say of the Pauli operatoo(r) for site ~ €rate normalized S§jy,) with |S,S%)=|N/2N/2—m), i.e.,
r. Clearly a typical configuratiofs) in a general lattice with having m vacancies and particle density=1—m/N, and
N locations can be characterized by a direct producguch thatH|yy)=0 by applyingm times the lowering op-

A. The steady state

Iy, ....m;) of all the site spinors. So the s¢i(s  eratorS =30, =S'—iS, namely,
—s )}:,{Jrr} of transition .hopplng r’ates between c_:onnected )= am(ST)M|F), 9)
sitesr,r’ (e.g., nearest neighbo¢s,r’)), then describes the
following spin-exchange process where the normalization factor is,,=/(N—m)!/N!.
3 Notice that|,) is an equally weighted linear combina-

M- m=1---my=—1---m ) |m_---m, t|on.of all perm|§S|bIeQ—(m) configurations with l—m)
! N 1 particles. In particular,

:—1...mr,:1...mrN>_ L
Here and in the following the s¢f,,/} can be arbitrarily (Wl \/ﬁ<¢|' (10
substitutionally disordered. To construct the associated
“Hamiltonian” H whose terms keep proper track of both which is in line with the more basic observation that, aside
probability conservation and the spin exchange process, it isom normalization prefactors, left and right SS should coin-
useful to cast the discussion in terms of spin raising anaide since Eq(8) involves a self-adjoint evolution operator,
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namely, W(s—s')=W(s'—s). From this latter observa- Since[H,S]=0 for any disorder realization, E¢L5) allows
tion, it is worth pointing out that detailed balance arises im-for a systematic treatment of spontaneous density fluctua-
mediately in Eq(1) given thatP(s)— 1/QV|s). tions. In terms of the local density fields referred to above,
The structure of these equilibrium states is rather trivialthis requires consideration of noninstantaneous particle-
regardless of the hopping disorder. This follows by notingparticle correlationS:r,r,(t)=<ﬁ,(t)ﬁ,,(0)> occurring in the
that SS distribution |P(0))= ¢}/ VQ with p=1—m/N. As
. usual, it is convenient(tgg choose a badid)=|S,S%\)} of
~ A " " _ common eigenstates &°,S* and H with eigenvaluesS(S
npnq|¢m>:\/_ﬁ ]12< Z,m Triy 'Ufjm|F>' 1D +1),S* and \ respectively. Inserting an orthogonalized set
of |A) states in Eq(15), by virtue of Eq.(10) it follows that
where the index ordering denotes sums over all reachabl@ the m-down-spin subspacé; .(t) can be written as
different configurations and the double prime restricts the

sums tor;#p,q. This yields '3 nonvanishing configura- Cror(t)= > e M In ANA|N ), (16)
tions and therefore levels A>0
N—2 where we have restricted the sum to eigenstatedifferent
( m ) m m from | (which has vanishing eigenvalue=0), to sub-
(Wl NN ) = =(1— —)(1— —) P2 tract the time independent correlations, i@, )(n, )= p?.
Q N N=1/\ - (12 All eigenvalues\ are real and positive definite, as by con-

structionH is a self-adjoint stochastic operator.

so density-density correlators decouple in the large systerﬁl Selchoq rules can now be apphgd to s!mpl|fy remarkably
limit. A similar reasoning holds for many-point correlators "¢ calculation. No}mg that the Pauli matrioe§are tensors
thus yielding spatially uncorrelated SS. Henceforth, we adof rank one, sincen,=(1+07)/2, the Wigner-Eckart theo-
dress our approach to the correlations between fluctuation®@m ensures nonvanishing matrix eleme@@q|ﬁr|/\) only
that occur spontaneously afifferent times which as is if the total spinS of |¢,,) and|A) differ by 0 or 1, i.e.,S
known [13], are closely related to the relaxation dynamics=N/2,N/2—1; in either case witls?=N/2—m. To identify

governing nonequilibrium regimes. the relevantA) states, we first compute the total si8iof a
single spin excitation |¢\)==,¢,(r)o, |F). Since S?
B. Noninstantaneous steady state correlations =S'S*+1(S'S +S S"), it can readily checked that
We will be especially interested in the calculationnain- N N
instantaneougoint probability distributions(.4(t)3(0)) of =—1|5]¢y) if A>0,
" " . 2 2
guantitiesA4,B such as local densities or local density corre- 2 _
. R . . . S |<P)\> (17)
lations, i.e., diagonal operators in the particlecof repre- o
sentation. Here, the brackets indicate an average over histo- 2 §+1 lex) if A=0,

ries up to a to timet starting from a given probability

distribution|P(0)). More precisely, this can be expressed infor which the wave function should satisfif,e,(r)

terms of the following discrete path integration = \/N&\’O. Therefore, the desire|d\> states giving nonzero
matrix elements in Eq(16) are essentially rotated versions

<A(t)B(O)>=(At)“*1E E P(s1,0)(s1|B|s1)W(S;—S,) of the above single spin excitation states. Specifically, recall-
s S ’ ing that the angular momentum algebra imposes

XW(Sp—S3) - - - W(Sn_1—,) (Sl AlSn), SIS, =(S+S9) (S-S +1)|S,5-1), (19

13 . . :
(13 we can generate a normalized SS in thelown-spin sector

where the sums run over all possible stafes, and bPY applying —1) times the lowering operat@" to the
AtW(s;_;—s;) denotes the probability of evolving from SPIN excitation| ¢, ), namely,

Isj—1) to |s;) in a single elementary time stept=t/(n _ —\m—1

—1) [14]. However, by constructiofEgs. (3) and (4)], this [A)=Bn(SH™ en). (19
latter probability is given by(s;|1—AtH|s;_;). Because \here the normalization factor arising from the products

A,B are taken diagonal in the particle representation, generated by each application $f turns out to be
P(.0)(s|B|s)=(s|B|P(0)), [ Nemenr
3 Po= N N=2yi(m=py» 1=M=N-1. (20
(s|Als)=(ylAls), (14

Thus, for|A)#|¢,,) these areall the linearly independent
so, recalling that (+ AtH)"—e "' in the limit of a large  states contributing to Eq(16), having total spinS=(N/2
number of step$§14], Eq. (13) yields —1), total magnetizatio®*=(N/2—m), andA>0. So, we

B are now left with the calculation dfy/|/n,|A). This matrix
(A(t)B(0))= ()| Ae~"'B|P(0)). (150  element is expanded as
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A LAY = A(S ym-1 <1/RY | the probability of returning to the origin should in
(Wl A)= Bl Yl (SH™ ) principle scale a€(t)>RY(t). Departures from normal or
A Fickian diffusion R=t?) in disordered lattices can there-

— 1
_:Bmzp ex(P){¢hmlNe(ST)™ 9p F). (D) fore be studied by botHj) evaluating the asymptotic behav-
ior of autocorrelations andi) averaging the hopping distri-

To go a further step in our analysis notice that bution.
Autocorrelations are in turn closely related to the density
n(S~ m_lo";||:>=(m—1)! (1-6p) of states in the substrate. In fact, due to the normalization of
the single level eigenfunctions, after averaging over the sites
S (origing) of a given sample, in the larg¥ limit clearly Eq.
= = (24) reduces to
X"'<zim—1 O'rjl' : 'Urjm_lap [F), (22 C(t)= ﬁ 2 e M, (25)

N single \ levels

where the double prime restricts the sums to vectgrs .
#r,p. Thus, forr#p there are {_2) terms contributing WwhereA,=p(1—p). So, the form of the density of states for

equally t0<111m|ﬁr|A>- Hence, by taking into account the A—0 determines (_antirely the large time asymptptic behe_lv_ior
wave function constrain, ¢, (r)=0 so as to ensure a total of the autocorrelation function for hard-core particles at finite
; =

spinS=N/2—1 (A>0), we obtain densities. - . . .
Before continuing and in preparation for the analysis of
) N—2 autocorrelations in disordered scenarios, it is worthwhile to
(N | AYy=(m—1)Im! ( m—l) am,BmE ox(P) (1= p) pause and consider the finite size scaling regimes emerging
p asymptotically from Eq.25) in regular ordered situations

\/M ({J<_rr,>}ElJ). Let us co(jnsjder briefly d—dimensional hyper-.
=—\/———o\(r), (23)  cubic lattice withN=L" sites and periodic boundary condi-
N(N-1) tions. It is well known that the correspondinglevels are
2J=¢_,[1-cos(2m;/L)] with n;=0, ... L—1. From Eq.
(25) it is straightforward to check that the autocorrelation
function of such finite system factorizes as

where «, is taken as in Eq(9). Therefore the particle-
particle correlations of Eq16) are finally given by

_Np(1-p)

Ci ()= e Moy(Nex(r), e 2dJt

N—-1 single levels
(24) CO=A T3

0

L-1 d
( E eZJt COS(Zﬂ'n/L)) _ 1j| ’ (26)
n=

which at most requires the evaluation sihgle spin-wave

(Bloch) excitations in disordered ferromagnetic back-where the last term takes care of the cancellation ofxthe
grounds. This is the main result of this section. Certainly, the= 0 contribution. Thus, it can be readily verified that there is
usefulness of the quantum spin operational formalism devela scaling regimé. —,Jt—o for which the autocorrelation

oped so far is subject to the knowledge of such excitationsscales with a universal functiafi() so long asr=Jt/L? is
However, much is known about their properties and densityheld constant, namely,

of stated11,15, and in fact this enables us to obtain explicit
results, particularly for large time asymptotic regin{&gc.
[11). A similar reasoning for non-instantaneousoint corr-
elators would involve|A) states with total spinS=N/2

- M, ie. states with M-interacting magnons (M g * )
=1,... ). In this more general case however, analytical ~ F(7)=A, 7% §3(q)—1], Fs(q)=1+2> q",
progress seems difficult given the scarcity of exact results in n=1

C(L,t)=(Jt) " Y2F (1),

d>1, even for ordered substratgls]. @7
1. AUTOCORRELATION FUNCTIONS whereq= 8_47TZT andJ;(q) is a Jacobi theta function of the
OF DILUTED LATTICES third kind[17] . Hence, the typical size of the system sets the

time scales t{xL?) for which the dynamics becomes diffu-

A subcase of Eq(24) entailing particular interest and gjye. Also, recalling that |im/;193(q)=1/2\/;, the auto-
which is related to the probability of hard-core random walk- —0

ers returning to the origin, is that of autocorrelation functionscorrelations of the infinite system result in long time diffu-
C(t). This corresponds to averaging H@4) over all loca- sive tails (as they should whose asymptotic kinetics is
tionsr=r'. For isotropic structures, it is plausible that the given by

number of sites a random walk@garticle) has visited after a

time t is proportional to the volum&‘(t), whereR is the A

root mean square displacement in a substrate of dimension- C(t)~—L2—(Jt) 92, (28)
ality d (either Euclidean or fractal Thus for densities (4)92
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Turning to more general situations, a case of interest is n
that of bondéthopping) diluted lattices. More specifically, KL(”):4J(1—C03T
we will focus attention on the following binary hopping
probability distribution

. n=01,--L—1. (32

Assuming a constant particle densityper chain, the overall
autocorrelations must be averaged obeth histories(time)
and sampleghopping disorder Thus, the autocorrelations

] ) ) arising from all possible distributions of disconnected seg-
defined uniformly throughout all lattice bonds. For short- jents reads

range hoppings, say, e.g., nearest neighbors, a purely geo-

P(J")=pdyy +(1=p)dy o, (29

metric effect, known as the percolation transition, arises from N-1 L
the configurational aspects caused by dilution. We address (C(t)>=ApE W(L) Y, e MMt (33
the reader to Ref[18] for a detailed introduction to this L=1 n=1

subject which has been found useful to characterize a rich
variety of diluted systems including spin systeft§]. Here, ~whereA, is taken as in Eq(25). Here the first sum, denoted
we just mention that there exists a critical concentrafign by the brackets on the left hand side, runs over segments of
below which only finite clusters exist and above which aL consecutive bonds and takes into account the hopping dis-
cluster spanning thénfinite) lattice is formed. order, whereas the second sum runs over eigenvalue levels
Of course ind=1 any bond removal disconnects the lat- A +1(n)>0, 1<n<L, and carries out the time dependent
tice, sop.=1. However, as we shall see in Sec. Il A, as inaverage. We are especially interested to elucidate the
the regular cas€Eq. (27)], autocorrelations also exhibit an asymptotic behavior of E¢(33) for arbitrarily large times
asymptotic scaling regime fdinite dilutions but through a andfinite dilution regimes 6<p<<1. To this aim, it is useful
dilution-dependent scale of length. In higher Euclidean di40 introduce the natural length scale emerging in the prob-
mensions, extensive researfhl,15,18,20 has led to the lem, namely, the percolation correlation length
conclusion that percolation clusters are statistically self-
similar at the transition, and so are random fractals. They are
characterized by various scaling dimensidfractal, spec-
tral) for the various processémass, density of statemea-
surable on the fractal. Thus, exploiting scaling results for theyhich measures the effective distance between missing hop-
spectral dimension, in Sec. IlI B we shall discuss the impli-ping rates. On general grounds, this scale can be regarded as
cations which the resulting density of states imposes on thghe mean distance between two sites belonging to the same

1
§=—W, O<p<1, (34)

large time average behavior of E@5). cluster which, in higher dimensions, diverges &s (p
—pc)~ ¥ with a universal exponent depending solely on the
A. Diluted chain space dimensionality18].

Now, from Egs.(30) and (33) it follows that in the ther-

In the one-dimensional case fox(pb<<1 the distribution modynamic limitN— e we are left with the calculation of

(29) breaks theN-site chains into a collection of finitdis-
connectedsegments, each having a numberll<N—1 of

0 L
consecutive bonds, ar+ 1 correlated sites. So, the probabil- (C(1))=A (1- p)z z E e [L/ErA (M (35)
ity W(L) to find a chain withL consecutive nonvanishing Pop Z2hma
transition rates and free boundaries is independent of the
chain location and is given by Since A (n)=2J(nw/L)?+O(1/IL*) it is clear that the
oL dominant contributions to E¢35) whent— o, are basically
(1-p)°p- if IsL<=N-2, contained in largd. segments. Introducing th@imension-
W(L)=4{ (1—p)p- if L=N-1, (30)  les9 scaling variables
Loy - .
p- if L=N (periodic chain. 3t L
. . T™=—, S=7, (36)
On the other hand, as shown in Sec. I, for a given segment £ &

of (L—1) bonds, it is sufficient to consider the correspond-

ing evolution operatoH, within the single spin excitation it is straightforward to verify that within the scaling regime
sector. From Eq(8), it can be readily checked thefi can be  ¢>1 with Jt>1 Eq.(35) can be written as

recast in terms of the following X L tridiagonal form

A, (= &
1 -1 0 --- 07 <C(T)>~—pf e s> e 2mnisyg (37)
€Jo =1
-1 2 -1 - :
Ho=2J3| 0 . . . 0|, (31) For r<1, the sum oven can be replaced by an integral, and

a result(C(t) )=t~ Y2 (of pure-system formfollows. This is

the asymptotic behavior on one side of a crossover occurring

o --- 0 -1 1 at 7~1. The other side has the more interestidgsorder-
dominatedl asymptotic behavior, obtained by considering

with eigenvalues >1. Then the sum is dominated by the=1 term, so
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tence of the infinitgspanning cluster abovep.. We there-
fore have to distinguish finite cluster contributions(@t))
from the infinite cluster contribution whep=p. .

We first consider how such features might affect the
Goldstone argumerj21]. The spin symmetry properties re-
main as for the pure system. The full rotational symmetry by

an anglea around an arbitrary spin directiom, evidently
leaves the evolution operatof8) invariant, i.e., H
E =e 1*SNHeleSN However, the steadyground states of
0 04 0‘81/31'2 162 Eq. (9) do not preserve such symmet#n+z. Because of
this spontaneous symmetry breaking, in the thermodynamic
FIG. 1. Stretched exponential decay and scaling regime for aul-'mIt N—c a Iow—l_ymg band of gapless or Goldstone ques
tocorrelation functions of diluted chains.(here denoted &%), is can b_e expected in the pure sy_stéi’ﬂ] and, beca_luse of its
the dimensionless variable of E(6) involving the timet divided ~ Unlimited size, also on the infinite clustep®p.) irrespec-
by the square of the percolation correlation lengtiFollowing Eq.  tive of the hopping disorder iii. Moreover, the Goldstone
(39) in the text,F(7) is here taken aéC(&,7)/[é 1r/6\2am/3). ~ Modes are thgA) states already introduced in EG9) and
Solid lines denote different degrees of dilutipa-e~ . The up-  those with large characteristic scale are ultimately respon-
permost curve at the left corresponds fie-0.6, and the lower Sible for the emergence of a slow asymptotic kinefiggs.
curves top=0.5, 0.4, 0.3, 0.2, and 0.1, in descending order. The(26),(27)].
slope of the dashed line is 3(27)?og,,e. Next consider the finite clusterdor p#p.). They are
distributed with size distribution having characteristic séale
A (= - but nevertheless extending with exponential tail to infinite
(C(T)>~?pf e [st(2mIHgs, (38)  size (see also Sec. IV Without these tails the finite size
0 cutoff would introduce a gap in the spectrum of tf@old-
To obtain the asymptotic behavior of the integral we use @atong modes on the ensemble of finite clusters.
saddle-point expansion around the minimum of the expo- The contributions, to dynamic properties such as
nent, atsy,=(47°7)3, which becomes exact in the scaling (C(¢,t)), from excitations on finite clusters and on the infi-
limit 7=1. After elementary manipulations, this finally nite cluster(for the casep=p.) can be obtained from the
yields autocorrelations characterized by a universal scalingensity of single levelgo(\) or density of state¢$DOS) in-
function /(1) exhibiting a stretched exponential decay to-volved in Eq.(25). Therefore, the averaged autocorrelations
gether with a subdominant power law prefactor. More ex-can be written as
plicitly, for 7>1, &1,

(Clé,m)=¢ U7,

[2am 3a
Ur)=A, 3 71’6exp< - 771/3

wherea=(27)%2. This is the central result of this subsec-
tion, and it corresponds to localization when the averag
cluster size is smaller than the pure diffusion length.

To check the reliability of this form we address the read-
er's attention to Fig. 1 in which autocorrelations are com-

puted directly from Eq(35). The data collapse obtained for dimensional caséSec. Il A) strings of lengthL occur with

d|ﬁereqt dilutions clearly_conﬂrm Eq39) and proy|des fur— probability p- and contribute low-lying ferromagnetic modes
ther evidence for the existence of an asymptotic scaling re-

. -2 . }\*1/2
gime characterized by the variabte: Jt/¢2 and showing the With AL ", so the DOS form iss(A)=p® . In fact, such
crossover atr~1 between pure system diffusive behavior & tail in the DOS is dominant in determining the relaxation
(r<1) and localization £>1). Notice that so long ap  dynamics referred to in Sec. lllA. —
+1, no matter how small the dilution is, it induces at suffi- _A\POve the percolation threshold Lifshitz tail modes are
ciently large time a different dynamics from that developed?!S9, Present, but are swamped by the power lawdiéi)
by the regular, purely diffusive caggq. (28)]. This contrast- ~\ due to low energy excitations on the infinite cluster.
ing behavior comes from the interplay of a pure diffusionThljglzforp>pc we expect the usual diffusive decqg(t))
length (t'3) and the percolation length (roughly the av- =t at long times. In passing, it is instructive to check the

erage segment lengttwhich diverges at the threshold casep=1. It is well known that for an hypercubic lattice the
-1 DOS of large wavelength excitations behaves @&\)

~[Q4/2(27)9NY2"1, where Q4 is the surface of the

d-dimensional unit sphere. Thus after integrating Et)),

we recover precisely both the asymptotic diffusive tails and
In higher dimensions the dynamic behavior is much richeramplitudes already obtained in E®8).

by virtue of (i) the more interesting fractal structure of the At p=p., the Lifshitz tail is again present in(\) and

percolation geometry at the threshgdd and (ii) the exis- swamped by a power tail which in this case has a nontrivial

0.1

0.01 E

F(T)

0.001 |

0.0001 £

<C(t)>=Apf:w(>\)e—“d>\. (40)

The specific form of the DOS fox—0 from modes on
, (39  the finite clusters is closely related to the role played by
Lifshitz tails ~e™* ' (r>0) in the energy distribution, a
typical issue occurring in the presence of disof{@®. Con-
Psider, for example, a square lattice of which a fractoof
bonds are accessible. Below the percolation threshold the
low energy DOS is characterized by Lifshitz tails which are
contributed by large regions of connected sites. In the one-

B. Percolation cluster
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exponentds—1 wheredg is, by definition, the spectral di- diluted lattices, by virtue of the mapping we have been able
mension and is the ratio of the fractal dimensthnand the to draw on scaling procedures and results for spin wave dy-
dynamic exponent (which are respectively the length scal- namics of diluted systems. This is particularly direct for the
ing dimensions for mass and frequencys=d/z. These autocorrelation function of the diffusing hard-core particle

exponents have been investigated for the linear spin waveystem, which is given completely in terms of a DOS which
problem at the percolation threshold, by direct numerical calis the same as for spin wave dynamics.

culation [23] and via scaling relationd11,1§ di=d Below the percolation threshold the diffusion is entirely
—plv, z=2+(t—p)/v to the exponents for percolation on finite clusters. The low frequency density of states deter-
conductance t), correlation length £), and density §).  mining the long time behavior comes from large clusters

Foralld>1, d is very close tdthough not exactly equalto  \hose occurrence probability is exponentially small in clus-
the conjectured Alexander-Orbaf4] value 2/3(a factor of (et gjze, very much as in the one dimensional case. Above
2 arises here because the basic equation for ferromagnelife percolation threshold the finite cluster contribution is

spin wave];'s involves frequgncy gqua)lr.edb in for th similar, but it is now swamped by the infinitespanning
Hence from Eq(40) we immediately obtain for the exact cluster contribution which, well away from the threshold

f'g':t?c'lc;in:lﬁ/a?uéoggéilZtt'?Eefulﬁgg?agg:?;?ég%ﬁ;gfl;S'ng gives a behavior like that for the pure system. At and near
P g P ¢/ the threshold g~ p.) the diverging scale of the percolation

(C(t))oct ™, (41  9eometry induces scaling behavior for the long time dynam-
ics. Here the DOS has an anomalous power law dependence
whereds=(dv—B)/(2v+t— B) is very close to 2/3 for all on frequency\; the associated exponent has been obtained
d>1. via the relationship of the DOS to that for the linear spin
This is in fact the {/£%) —0 scaling limit of the following ~ wave system and further relationships to percolation pro-
general form implied by scaling considerations applicablecesses includingstatic lineay conductance; the exponent in
when botht and ¢ are large: the DOS power law is given in terms tf3, v, the exponents
_ dependence ofp—p,| of percolation conductance, density
(Cen)=t ST (U e, (42) and Correlatiortp Ieng|th. The consequent exponent in the
This form includes the crossover &t &, and leads us to POWer law time decay of the autocorrglation funct.iorp@t
conjecture that ap, within the percolation cluster, the diffu- {Urns out to be close to 2/3 for a1 (in accord with the
sive behavior is characterized by an anomalous root mea@PProximate Alexander-Orbach conject{d]). The scaling
square displacemeft'2, z~3d,/2 whered; is the fractal Pehavior of the space and time dependent correlation func-

dimensiond— Bv. Equations(41) and (42) are the main re- tion depends on the DOS exponent and also on the length

sults of this subsection. scaling exponent for the frequengy This so called dynamic
critical exponent is also related toBv, and hence we can
IV. CONCLUSIONS give the power law dependence of the characteristic diffusion

length on time. This generalization also allows discussion of

The mapping to quantum spin systems exploited in thighe crossover due to the competition between characteristic
paper gives a powerful approach to the stochastic dynamicgitfusion length and percolation correlation length near the
of hard-core particle systems. Using it we have been able tgansition.
obtain in Sec. Il exact dynamical propertigacluding the Clearly, further extensions are desirable. For the dilute
space and time dependent pair correlation fungtion the  systems the most obvious ones are the calculation of space
interacting system at any density in terms of correspondingind time dependent correlation and crossover functions, and
properties for linearized spin wave dynamics. The procedurg|so probability distributions rather than just averages. In ad-
applies equally well to disordered systems, and in additionjjtion simulation confirmation of the analytic predictions or
Goldstone arguments still apply there. In the applicationsxperimental comparisons would be desirable. As regards
made here to disordered systems we have chosen to emphgore general disorder, other types of substitutional disorder
size the diluted case, because of the dramatic effects seggy|d clearly be treated by the methods we have used. A
there by virtue of the underlying percolation geometry.  more challenging extension is to the biased diffusion of hard-

A somewhat surprising result is that hard-core particlecore particleg26]. Much has been done exploiting the quan-
diffusion on diluted chains is quite interesting, any dilution {ym spin mapping for the biased case along with adsorption-
disconnects the chain, so the static diffusion constant StriCt'Hesorption processef6]. But biased hard-core particle
vanishes. Yet finite-time dynamics is nontrivial, exhibiting giffusion on disordered lattices is at present beyond the exact
scaling behavior and stretched exponential autocorrelatiotféchniques exploited here.
functions in the time domaitSec. Il A). The scaling behav-
ior is analogous to that calculated earlier for the apparently
much simplerbut equivalentproblem of ferromagnetic spin
wave dynamics of diluted chaihg5]. There the calculations
were carried out in the frequency-wave vector domain, for We would like to thank D. C. Cabra for valuable discus-
comparison with inelastic neutron scattering measurementsjons and remarks. M.D.G. acknowledges financial support
so the stretched exponential time behavior was not identifiedrom CONICET, Argentina. The research of R.B.S. was
but it should also be present there. partly supported by the EPSRC under the Oxford Condensed

For interacting particle dynamics on higher dimensionalMatter Theory Rolling Grant No. GR/M 04426.
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