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Abstract. We study the eigenvalue problem for a system of fractional p−Laplacians,

that is, 
(−∆p)ru = λ

α

p
|u|α−2u|v|β in Ω,

(−∆p)su = λ
β

p
|u|α|v|β−2v in Ω,

u = v = 0 in Ωc = RN \ Ω.

We show that there is a first (smallest) eigenvalue that is simple and has

associated eigen-pairs composed of positive and bounded functions. Moreover,

there is a sequence of eigenvalues λn such that λn →∞ as n→∞.
In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and

we obtain [λ1,p]1/p → Λ1,∞ as p→∞, where

Λ1,∞ = inf
(u,v)

{
max{[u]r,∞; [v]s,∞}
‖|u|Γ|v|1−Γ‖L∞(Ω)

}
=

[
1

R(Ω)

](1−Γ)s+Γr

.

Here R(Ω) := maxx∈Ω dist(x, ∂Ω) and [w]t,∞ := sup(x,y)∈Ω
|w(y)−w(x)|
|x−y|t .

Finally, we identify a PDE problem satisfied, in the viscosity sense, by any
possible uniform limit along subsequences of the eigen-pairs.

1. Introduction

In this work we deal the non-local non-linear eigenvalue problem

(1.1)


(−∆p)

ru = λ
α

p
|u|α−2u|v|β in Ω,

(−∆p)
su = λ

β

p
|u|α|v|β−2v in Ω,

u = v = 0 in Ωc = RN \ Ω,

where p > 1, r, s ∈ (0, 1), α, β ∈ (0, p) are such that

α+ β = p, min{α;β} ≥ 1,

and λ is the eigenvalue. Here and subsequently Ω is a bounded smooth domain in
RN and (−∆p)

t denotes the fractional (p, t)−Laplacian, that is

(−∆p)
tu(x) := 2P.V.

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy x ∈ Ω.

The natural functional space for our problem is

W(r,s)
p (Ω) := W̃ r,p(Ω)× W̃ s,p(Ω).
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Here W̃ t,p(Ω) denotes the space of all u belong to the fractional Sobolev space

W t,p(Ω) :=

{
v ∈ Lp(Ω):

∫
Ω2

|v(x)− v(y)|p

|x− y|N+tp
dxdy <∞

}
such that ũ ∈W t,p(RN ) where ũ is the extension by zero of u and Ω2 = Ω×Ω. For
a more detailed description of these spaces and some its properties, see for instance
[1, 15].

Note that in our eigenvalue problem we are considering two different fractional
operators (since we allow for t 6= s) and therefore the natural space to consider

here, that is W(r,s)
p (Ω) = W̃ r,p(Ω)× W̃ s,p(Ω), is not symmetric.

In this context, an eigenvalue is a real value λ for which there is (u, v) ∈ W(r,s)
p (Ω)

such that uv 6≡ 0, and (u, v) is a weak solution of (1.1), i.e.,∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(w(x)− w(y))

|x− y|N+rp
dxdy = λ

α

p

∫
Ω

|u|α−2u|v|βwdx∫
R2N

|v(x)− v(y)|p−2(v(x)− v(y))(z(x)− z(y))

|x− y|N+sp
dxdy = λ

β

p

∫
Ω

|u|α|v|β−2vzdx

for any (w, z) ∈ W(r,s)
p (Ω). The pair (u, v) is called a corresponding eigenpair.

Observe that if λ is an eigenvalue with eigenpair (u, v) then uv 6≡ 0 and

λ =
[u]pr,p + [v]ps,p
|(u, v)|pα,β

,

here

[w]pt,p :=

∫
R2N

|w(x)− w(y)|p

|x− y|N+tp
dxdy and |(u, v)|pα,β :=

∫
Ω

|u|α|v|βdx.

Thus
λ ≥ λ1,p

where

(1.2) λ1,p := inf

{
[u]pr,p + [v]ps,p
|(u, v)|pα,β

: (u, v) ∈ W(r,s)
p (Ω), uv 6≡ 0

}
.

Our first aim is to show that λ1,p is the first eigenvalue of our problem. In fact,
in Section 3, we prove the following result.

Theorem 1.1. There is a nontrivial minimizer (up, vp) of (1.2) such that both
components are positives, up, vp > 0 in Ω, and (up, vp) is a weak solution of (1.1)
with λ = λ1,p. Moreover, λ1,p is simple.

Finally, there is a sequence of eigenvalues λn such that λn →∞ as n→∞.

We don’t know if the first eigenvalue is isolated or not.

Now, our aim is to study λ1,p for large p. To this end we look for the asymptotic
behaviour of λ1,p as p → ∞. From now on for any p > 1, (up, vp) denotes the
eigen-pair associated to λ1,p such that |(u, v)|α,β = 1. To study the limit as p→∞
we need to assume that

(1.3) pmin{r, s} ≥ N,
and

(1.4) lim
p→∞

αp
p

= Γ, 0 < Γ < 1.
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Note that the last assumption and the fact that αp + βp = p implies

lim
p→∞

βp
p

= 1− Γ, 0 < 1− Γ < 1.

In order to state our main theorem concerning the limit as p → ∞, we need to
introduce the following notations:

[w]t,∞ := sup
(x,y)∈Ω

|w(y)− w(x)|
|x− y|t

,

W̃ t,∞(Ω) :=
{
w ∈ C0(Ω): [w]t,∞ <∞,

}
, W(r,s)

∞ (Ω) := W̃ r,∞(Ω)× W̃ s,∞(Ω)

and

R(Ω) := max
x∈Ω

dist(x, ∂Ω).

Now we are ready to state our second result. It says that there is a limit for
[λ1,p]

1/p and that this limit verifies both a variational characterization and a sim-
ple geometrical characterization. In addition, concerning eigenfunctions there is a
uniform limit (along subsequences) that is a viscosity solution to a limit PDE eigen-
value problem. The proofs of our results concerning limits as p→∞ are gathered
in Section 4.

Theorem 1.2. Under the assumptions (1.3) and (1.4), we have that

lim
p→∞

[λ1,p]
1/p = Λ1,∞

where

Λ1,∞ = inf

{
max{[u]r,∞; [v]s,∞}
‖|u|Γ|v|1−Γ‖L∞(Ω)

: (u, v) ∈ W(r,s)
∞ (Ω)

}
.

Moreover, we have the following geometric characterization of the limit eigenvalue:

Λ1,∞ =

[
1

R(Ω)

](1−Γ)s+Γr

.

Lastly, there is a sequence pj → ∞ such that (upj , vpj ) → (u, v) converges uni-

formly in Ω, where (u∞, v∞) is a minimizer of Λ1,∞, and a viscosity solution to
min

{
Lr,∞u(x);L+

r,∞u(x)− Λ1,∞u
Γ(x)v1−Γ(x)

}
= 0 in Ω,

min
{
Ls,∞u(x);L+

s,∞u(x)− Λ1,∞u
Γ(x)v1−Γ(x)

}
= 0 in Ω,

u = v = 0 in RN \ Ω,

where

Lt,∞w(x) := L+
t,∞w(x) + L−r,∞w(x) = sup

y∈RN

w(x)− w(y)

|x− y|t
+ inf
y∈RN

w(x)− w(y)

|x− y|t
.

To end the introduction let us briefly refer to previous references on this sub-
ject. The limit of p−harmonic functions (solutions to the local p−Laplacian, that
is, −∆pu = −div(|∇u|p−2∇u) = 0) as p → ∞ has been extensively studied in the
literature (see [4] and the survey [3]) and leads naturally to solutions of the infinity
Laplacian, given by −∆∞u = −∇uD2u(∇u)t = 0. Infinity harmonic functions (so-
lutions to −∆∞u = 0) are related to the optimal Lipschitz extension problem (see
the survey [3]) and find applications in optimal transportation, image processing
and tug-of-war games (see, e.g.,[10, 18, 25, 26] and the references therein). Also
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limits of the eigenvalue problem related to the p-Laplacian witth various bound-
ary conditions have been exhaustively examined, see [17, 22, 23, 27, 28], and lead
naturally to the infinity Laplacian eigenvalue problem (in the scalar case)

(1.5) min {|∇u| − λu, −∆∞u} = 0.

In particular, the limit as p → ∞ of the first eigenvalue λp,D of the p-Laplacian
with Dirichlet boundary conditions and of its corresponding positive normalized
eigenfunction up have been studied in [22, 23]. It was proved there that, up to a
subsequence, the eigenfunctions up converge uniformly to some Lipschitz function
u∞ satisfying ‖u∞‖∞ = 1, and

(λp,D)
1/p → λ∞,D = inf

u∈W 1,∞(Ω)

‖∇u‖∞
‖u‖∞

=
1

R(Ω)
.

Moreover u∞ is an extremal for this limit variational problem and the pair u∞,
λ∞,D is a nontrivial solution to (1.5). This problem has also been studied from an
optimal mass-transport point of view in [11]. Note that here the fact that we are
dealing with two different operators in the system is reflected in that the limit is
given by

Λ1,∞ =

[
1

R(Ω)

](1−Γ)s+Γr

,

a quantity that depends on s and t.
On the other hand, there is a rich recent literature concerning eigenvalues for

systems of p−Laplacian type, (we refer e.g. to [6, 12, 16, 14, 29] and references
therein). The only references that we know concerning the asymptotic behaviour
as p goes to infinity of the eigenvalues for a system are [5] and [12] where the
authors study the behaviour of the first eigenvalue for a system with the usual local
p−Laplacian operator.

Finally, concerning limits as p → ∞ in fractional eigenvalue problems (a single
equation), we mention [9, 20, 22]. In [22] the limit of the first eigenvalue for the
fractional p−Laplacian is studied while in [20] higher eigenvalues are considered.

2. Preliminaries

We begin with a review of the basic results that will be needed in subsequent
sections. The known results are generally stated without proofs, but we provide
references where the proofs can be found. Also, we introduce some of our notational
conventions.

2.1. Fractional Sobolev spaces. Let s ∈ (0, 1) and p ∈ (1,∞). There are several
choices for a norm for W s,p(Ω), we choose the following:

‖u‖ps,p := ‖u‖pLp(Ω) + |u|ps,p
where

|u|ps,p =

∫
Ω2

|u(x)− u(y)|p

|x− y|p
dxdy.

Observe that for any u ∈ W̃ s,p(Ω) we get

|u|s,p ≤ [u]s,p.

Our first aim is to show a Poincaré–type inequality.
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Lemma 2.1. Let s ∈ (0, 1). For any p > 1, there is a positive constant C, inde-
pendent of p, such that

[u]ps,p ≥
ωN
sp

(diam(Ω) + 1)sp‖u‖pLp(Ω) ∀u ∈ W̃ s,p(Ω)

where ωN is the N−dimensional volume of a Euclidean ball of radius 1.

Proof. Let u ∈ W̃ s,p(Ω). Then

[u]ps,p ≥
∫

Ω

|u(x)|p
∫

Ω1

1

|x− y|N+sp
dydx

where Ω1 = {y ∈ Ωc : dist(y,Ω) ≥ 1}. Now, we observe that for any x ∈ Ω we have
Bd+1(x)c ⊂ Ω1 where d = diam(Ω). Thus∫

Ω1

dy

|x− y|N+sp
≥
∫
Bd+1(x)c

dy

|x− y|N+sp
= ωN

∫ ∞
d+1

dρ

ρsp+1
=
ωN
sp

(d+ 1)sp

for all x ∈ Ω. Therefore, we conclude that,

[u]ps,p ≥
ωN
sp

(d+ 1)sp‖u‖pLp(Ω).

�

The following result will be one of the keys in the proof of Theorem 1.2.

Lemma 2.2. Let s ∈ (0, 1) and p > s/N. If q ∈ (N/s, p) and t = s− N/q then

‖u‖Lq(Ω) ≤ |Ω|
1/q−1/p‖u‖Lp(Ω) and |u|t,q ≤ diam(Ω)

N/p|Ω|2/q−2/p|u|s,p
for all u ∈W s,p(Ω).

Proof. Since q < p, the first inequality is trivial, then, we only need to prove the
second one. Let u ∈W s,p(Ω). It follows from Hölder’s inequality that

|u|qt,q =

∫
Ω2

|u(x)− u(y)|q

|x− y|sq
dxdy

≤
(∫

Ω2

|u(x)− u(y)|p

|x− y|sp
dxdy

)q/p
|Ω|2−2q/p

≤ diam(Ω)
Nq/p

(∫
Ω2

|u(x)− u(y)|p

|x− y|sp+N
dxdy

)q/p
|Ω|2−2q/p,

as we wanted to show. �

2.2. Weak and Viscosity Solutions. Let us discuss the relation between the
weak solutions of

(2.6)

{
(−∆p)

su = f(x) in Ω,

u = 0 in Ωc,

and the viscosity solutions of the same problem.

We begin by introducing the precise definitions of weak and viscosity solutions.

Definition (weak solution). Let f ∈W−s,p(Ω) (the dual space of W̃ s,p(Ω)) and

u ∈ W̃ s,p(Ω). We say that u is a weak solution of (2.6) if only if∫
R2N

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+rp
dxdy = 〈f, v〉
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for every v ∈ W̃ s,p(Ω). Here 〈·, ·〉 denotes the duality pairing of W̃ s,p(Ω) with
W−s,p(Ω).

Definition (viscosity solution). Let p ≥ 2, f ∈ C(Ω) and u ∈ C(RN ) be such
that u = 0 in Ωc.

We say that u is a viscosity subsolution of (2.6) at a point x0 ∈ Ω if and only if
for any test function ϕ ∈ C2

0 (RN ) such that u(x0) = ϕ(x0) and u(x) ≤ ϕ(x) for all
x ∈ RN we have that

2

∫
RN

|ϕ(x0)− ϕ(y)|p−2(ϕ(x0)− ϕ(y))

|x0 − y|N+sp
dy ≤ f(x0).

We say that u is a viscosity supersolution of (2.6) at a point x0 ∈ Ω if and only
if for any test function ϕ ∈ C2

0 (RN ) such that u(x0) = ϕ(x0) and u(x) ≥ ϕ(x) for
all x ∈ RN we have that

2

∫
RN

|ϕ(x0)− ϕ(y)|p−2(ϕ(x0)− ϕ(y))

|x0 − y|N+sp
dy ≥ f(x0).

Finally, u is called a viscosity solution of (2.6) if it is both a viscosity super- and
subsolution at x0 for any x0 ∈ Ω.

Following carefully the proof of [24, Proposition 11], we have the following result.

Theorem 2.3. Let p ≥ 2 and f ∈ C(Ω). If u is a weak solution of (2.6) then it is
also a viscosity solution.

The following result is one of the key to show that every eigen-pair associated
to the first eigenvalue has constant sign. For the proof we refer to [24, Lemma 12].

Lemma 2.4. Let p ≥ 2. Assumme u ≥ 0 and u ≡ 0 in Ωc. If u is a viscosity
supersolution of (−∆p)

su = 0 in Ω then either u > 0 in Ω or u ≡ 0 in RN .

3. The eigenvalue problem

We begin showing that λ1,p is the first eigenvalue of our problem.

Lemma 3.1. There is a nontrivial minimizer (u, v) of (1.2) such that u, v > 0 a.e.
in Ω and (u, v) is a weak solution of (1.1) with λ = λ1,p.

Proof. Since C∞0 (Ω)× C∞0 (Ω) ⊂ W(r,s)
p (Ω), we have

(3.7) 0 ≤ inf

{
[u]pr,p + [v]ps,p
|(u, v)|pα,β

: (u, v) ∈ W(r,s)
p (Ω), uv 6≡ 0

}
<∞.

Now, we consider a minimizing sequence {(un, vn)}n∈N normalized according to

|(un, vn)|(α,β) = 1. It follows from (3.7) that {(un, vn)} is bounded in W(r,s)
p (Ω).

Then, by the compactness of the Sobolev embedding theorem, there is a subse-
quence {(unj , vnj )}j∈N such that

unj ⇀ u weakly in W̃r,p(Ω), vnj ⇀ v weakly in W̃s,p(Ω),

unj → u strongly in Lp(Ω), vnj → v strongly in Lp(Ω).

Thus, |(u, v)|(α,β) = 1 and

[u]pr,p + [v]ps,p ≤ lim inf
j→∞

{
[unj ]

p
r,p + [vnj ]

p
s,p

}
= λ1,p.
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Therefore (u, v) is a minimizer of (1.2). Moreover, since

[|u|]pr,p + [|v|]ps,p ≤ [u]pr,p + [v]pr,p,

we can assume that u and v are non-negative functions.
The fact that this minimizer is a weak solution (1.1) with λ = λ1,p is straight-

forward and can be obtained from the arguments in [24].
Finally, since u and v are non-negative function and (u, v) is a weak solution of

(1.1) with λ = λ1,p, by [7, Theorem A.1], we obtain u, v are positive functions a.e.
in Ω. �

The following result follows from the classical inequality

||a| − |b|| < |a− b| ∀ab < 0.

Corollary 3.2. If (u, v) is an eigen-pair corresponding to λ1,p then u and v have
constant sign.

Our next aim is to prove that all the eigen-pairs associated to λ1,p are bounded.
For this, we follow ideas from [8, Theorem 3.2].

Lemma 3.3. If (u, v) is an eigen-pair associated to λ1,p, then u, v ∈ L∞(RN ).

Proof. Without loss of generality we can assume that r ≤ s and u, v > 0 a.e. in Ω.
It follows from the fractional Sobolev embedding theorem (see, e.g., [13, Corol-

lary 4.53 and Theorem 4.54]) that, if r > N/p then the assertion holds.
Then we need to prove that the assertion also holds in the following cases:

Case 1: r < N/p;
Case 2: r = N/p.

Before we start to analyze the different cases, we will show two inequalities. For
every M > 0, we define

uM (x) := min{u(x),M} and vM (x) := min{v(x),M}.

Since (u, v) ∈ W(r,s)
p (Ω), it is not hard to verify that (uM , vM ) ∈ W(r,s)

p (Ω). More-

over if q ≥ 1 then (uqM , v
q
M ) ∈ W(r,s)

p (Ω). Then, since (u, v) is an eigen-pair associ-
ated to λ1,p, uM ≤ u, vM ≤ v, and α, β ≤ p, we have∫

R2N

|u(x)− u(y)|p−2(u(x)− u(y))(uM (x)− uM (y))

|x− y|N+rp
dxdy ≤ λ1,p

∫
Ω

uα+q−1vβdx,∫
R2N

|v(x)− v(y)|p−2(v(x)− v(y))(vM (x)− vM (y))

|x− y|N+sp
dxdy ≤ λ1,p

∫
Ω

uαvβ+q−1dx.

Hence, by using [8, Lemma C2], we get

(3.8)

qpp

q + p− 1

∫
R2N

|u
q+p−1
p

M (x)− u
q+p−1
p

M (y)|p

|x− y|N+rp
dxdy ≤ λ1,p

∫
Ω

uα+q−1vβdx,

qpp

q + p− 1

∫
R2N

|v
q+p−1
p

M (x)− v
q+p−1
p

M (y)|p

|x− y|N+rp
dxdy ≤ λ1,p

∫
Ω

uαvβ+q−1dx.

We now begin to analyze the different cases.
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Case 1: r < N/p. Since r ≤ s, then p?r ≤ p?s. Therefore, by Sobolev’s embedding
theorem,(∫

Ω

u
q+p−1
p p?r

M dx

) p
p?r

≤ C(N, r, p,Ω)

∫
R2N

|u
q+p−1
p

M (x)− u
q+p−1
p

M (y)|p

|x− y|N+rp
dxdy,

(∫
Ω

v
q+p−1
p p?r

M dx

) p
p?r

≤ C(N, r, s, p,Ω)

∫
R2N

|v
q+p−1
p

M (x)− v
q+p−1
p

M (y)|p

|x− y|N+rp
dxdy.

Then, by (3.8), we get(∫
Ω

u
q+p−1
p p?r

M dx

) p
p?r

≤ λ1,p

C(N, r, p,Ω)

(
q + p− 1

p

)p−1 ∫
Ω

uα+q−1vβdx,(∫
Ω

v
q+p−1
p p?r

M dx

) p
p?r

≤ λ1,p

C(N, r, s, p,Ω)

(
q + p− 1

p

)p−1 ∫
Ω

uαvβ+q−1dx.

By using Fatou’s lemma and Young’s inequality, we obtain(∫
Ω

u
p+p−1
p p?rdx

) p
p?r

≤ λ1,p

C(N, r, p,Ω)

(
p+ q − 1

p

)p−1(∫
Ω

up+q−1dx+

∫
Ω

vp+q−1dx

)
,(∫

Ω

v
q+p−1
p p?rdx

) p
p?r

≤ λ1,p

C(N, r, s, p,Ω)

(
q + p− 1

p

)p−1(∫
Ω

up+q−1dx+

∫
Ω

vp+q−1dx

)
.

Taking Q = q+p−1/p, we get(∫
Ω

uQ
Np
N−rp dx

)Q(N−rp)
QN

≤ λ1,p

C(N, r, p,Ω)
Qp−1

(∫
Ω

uQpdx+

∫
Ω

vQpdx

)
,

(∫
Ω

vQ
Np
N−rp dx

)Q(N−rp)
QN

≤ λ1,p

C(N, r, s, p,Ω)
Qp−1

(∫
Ω

uQpdx+

∫
Ω

vQpdx

)
.

Then

‖u‖Qp
L
QN
N−rp p(Ω)

≤ λ1,p

C(N, r, p,Ω)
Qp−1

(
‖u‖Qp

LQp(Ω)
+ ‖v‖Qp

LQp(Ω)

)
,

‖v‖Qp
L
QN
N−rp p(Ω)

≤ λ1,p

C(N, r, s, p,Ω)
Qp−1

(
‖u‖Qp

LQp(Ω)
+ ‖v‖Qp

LQp(Ω)

)
.

Hence (
‖u‖Qp

L
QN
N−rp p(Ω)

+ ‖v‖Qp
L
QN
N−rp p(Ω)

) 1
Qp

≤
(

2λ1,p

C(N, r, s, p,Ω)

) 1
Q (
Q 1
Q

) p−1
p
(
‖u‖Qp

LQp(Ω)
+ ‖v‖Qp

LQp(Ω)

) 1
Qp
.

Now, taking the following sequence

Q0 = 1 and Qn+1 = Qn
N

N − rp
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we have(
‖u‖Qnp

LQn+1p(Ω)
+ ‖v‖Qnp

LQn+1p(Ω)

) 1
Qnp

≤
(

2λ1,p

C(N, r, s, p,Ω)

) 1
Qnp

(
Q

1
Qn
n

) p−1
p (
‖u‖Qnp

LQnp(Ω)
+ ‖v‖Qnp

LQnp(Ω)

) 1
Qnp

for all n ∈ N. Moreover, since

Qn+1 = QnN/(N−rp)

we have that(
‖u‖Qnp

LQn+1p(Ω)
+ ‖v‖Qnp

LQn+1p(Ω)

) 1
Qnp

≤
(

2λ1,p

C(N, r, s, p,Ω)

) 1
Qnp

(
Q

1
Qn
n

) p−1
p (
‖u‖Qn−1p

LQnp(Ω)
+ ‖v‖Qn−1p

LQnp(Ω)

) 1
Qn−1p

for all n ≥ 2.
Then, iterating the last inequality, we get

(3.9)

(
‖u‖Qnp

LQn+1p(Ω)
+ ‖v‖Qnp

LQn+1p(Ω)

) 1
Qnp

≤
(

2λ1,p

C(N, r, s, p,Ω)

) 1
p

∑n
i=0

1
Qi

(
n∏
i=0

Q
1
Qi
i

) p−1
p (
‖u‖pLp(Ω) + ‖v‖pLp(Ω)

) 1
p

for all n ≥ 2.
Observe that Qn →∞ as n→∞ due to the fact that N/N−rp > 1. Moreover,

∞∑
i=0

1

Qi
=
N

rp
and

∞∏
i=0

Q
1
Qi
i =

(
N

N − rp

) N
rpp?r

.

Hence, passing to the limit in (3.9), we deduce

max{‖u‖L∞(Ω), ‖v‖L∞(Ω)}

≤
(

2λ1,p

C(N, r, s, p,Ω)

) N
rp2
(

N

N − rp

) N
rpp?r

p−1
p (
‖u‖pLp(Ω) + ‖v‖pLp(Ω)

) 1
p

,

that is u, v ∈ L∞(Ω).

Case 2: r = N/p. In this case W(r,s)
p (Ω) ↪→ Lm(Ω)× Lm(Ω) for all m > 1 then(∫

Ω

u
q+p−1
p 2p

M dx

) 1
2

≤ C(N, r, p,Ω)

∫
R2N

|u
q+p−1
p

M (x)− u
q+p−1
p

M (y)|p

|x− y|N+rp
dxdy,

(∫
Ω

v
q+p−1
p 2p

M dx

) 1
2

≤ C(N, r, s, p,Ω)

∫
R2N

|v
q+p−1
p

M (x)− v
q+p−1
p

M (y)|p

|x− y|N+rp
dxdy.

Applying the previous reasoning, we get(
‖u‖Qp

L2Qp(Ω)
+ ‖v‖Qp

L2Qp(Ω)

) 1
Qp

≤
(

2λ1,p

C(N, r, s, p,Ω)

) 1
Q (
Q 1
Q

) p−1
p
(
‖u‖Qp

LQp(Ω)
+ ‖v‖Qp

LQp(Ω)

) 1
Qp
.
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Now, taking the following sequence

Q0 = 1 and Qn+1 = 2Qn,

the proof follows as in the previous case. �

To show that λ1,p is simple, we will prove first that λ1,p is the unique eigenvalue
with the following property: any eigen-pair associated to λ has constant sign.

Theorem 3.4. Let (u, v) be an eigenfunction associated to λ1,p such that u, v ≥ 0
in Ω. If λ > 0 is such that there is an eigen-pair (w, z) associated to λ such that
w, z > 0 then λ = λ1(s, p) and there exist k1, k2 ∈ R such that w = k1u and z = k2v
a.e. in RN .

Proof. Since λ1(s, p) is the first eigenvalue we have that λ1(s, p) ≤ λ. Moreover, by
[7, Theorem A.1], u, v > 0 a.e. in Ω since (u, v) is an eigen-pair associated to λ1,p

and u, v ≥ 0.
Let k ∈ N and define wk := w + 1/k, and zk := z + 1/k. We begin proving that

up/wp−1
k ∈ W̃r,p(Ω). It is immediate that up/wp−1

k = 0 in Ωc and wk ∈ Lp(Ω), due
to the fact that u ∈ L∞(Ω), see Lemma 3.3.

On the other hand, for any x, y ∈ RN∣∣∣∣∣ uwk (x)− u

wk
(y)

∣∣∣∣∣ =

∣∣∣∣∣u(x)p − u(y)p

wk(x)p−1
+
u(y)p

(
wk(y)p−1 − wk(x)p−1

)
wk(x)p−1wk(y)p−1

∣∣∣∣∣
≤kp−1 |u(x)p − u(y)p|+ ‖u‖pL∞(Ω)

∣∣wk(x)p−1 − wk(y)p−1
∣∣

wk(x)p−1wk(y)p−1

≤2‖u‖p−1
L∞(Ω)k

p−1p|u(x)− u(y)|

+ ‖u‖pL∞(Ω)(p− 1)
wk(x)p−2 + wk(y)p−2

wk(x)p−1wk(y)p−1
|wk(x)− wk(y)|

≤2‖u‖p−1
L∞(Ω)k

p−1p|u(x)− u(y)|

+ ‖u‖pL∞(Ω)(p− 1)kp−1

(
1

wk(x)
+

1

wk(y)

)
|w(y)− w(x)|

≤C(k, p, ‖u‖L∞(Ω)) (|u(x)− u(y)|+ |w(x)− w(y)|) .

Hence, we have that up/wp−1
k ∈ W̃r,p(Ω) for all k ∈ N since u,w ∈ W̃r,p(Ω).

Analogously vp/zp−1
k ∈ W̃s,p(Ω).

Set

L(ϕ,ψ)(x, y) = |ϕ(x)− ϕ(y)|p − (ψ(x)− ψ(y))p−1

(
ϕ(x)p

ψ(x)p−1
− ϕ(y)p

ψ(y)p−1

)
for all functions ϕ ≥ 0 and ψ > 0. By [2, Lemma 6.2], for any ϕ ≥ 0 and ψ > 0

L(ϕ,ψ)(x, y) ≥ 0 ∀(x, y)
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Then,

0 ≤
∫

Ω2

L(u,wk)(x, y)

|x− y|N+rp
dxdy +

∫
Ω2

L(v, zk)(x, y)

|x− y|N+sp
dxdy

≤
∫
R2N

L(u,wk)(x, y)

|x− y|N+rp
dxdy +

∫
R2N

L(v, zk)(x, y)

|x− y|N+sp
dxdy

= λ1,p

∫
Ω

|u|α|v|β dx− λα
p

∫
Ω

wα−1zβ
up

wp−1
k

dx− λβ
p

∫
Ω

wαzβ−1 vp

zp−1
k

dx

for all k ∈ N, since (u, v), (w, z) are eigen-pairs associated to λ1,p and λ, respectively.
On the other hand, by Young’s inequality,∫

Ω

wαzβ
uαvβ

wαk z
β
k

dx ≤ α

p

∫
Ω

wα−1zβ
up

wp−1
k

dx+
β

p

∫
Ω

wαzβ−1 vp

zp−1
k

dx

for all k ∈ N. Then

0 ≤
∫

Ω

L(u,wk)(x, y)

|x− y|N+rp
dxdy +

∫
Ω

L(v, zk)(x, y)

|x− y|N+sp
dxdy

≤ λ1,p

∫
Ω

|u|α|v|β dx− λ
∫

Ω

wαzβ
uαvβ

wαk z
β
k

dx.

By Fatou’s lemma and the dominated convergence theorem we obtain

0 ≤
∫

Ω2

L(u,w)(x, y)

|x− y|N+rp
dxdy +

∫
Ω2

L(v, z)(x, y)

|x− y|N+sp
dxdy ≤ (λ1,p − λ)

∫
Ω

|u|α|v|β dx.

Then λ = λ1,p and L(u,w) = 0 and L(v, z) = 0 a.e. in Ω.
Finally, again by [2, Lemma 6.2], there exist k1, k2 ∈ R such that w = k1u and

z = k2v a.e. in RN . �

Now, we show that λ1,p is simple.

Corollary 3.5. Let (u1, v1) be an eigen-pair associated to λ1,p normalized according
to |(u1, v1)|α,β = 1. If (u, v) is an eigen-pair associated to λ1,p then there is a
constant k such that (u, v) = k(u1, v1).

Proof. By Theorem 3.4, there exist k1 and k2 such that u = k1u1 and v = k2v2.
Without loss of generality, we can assume that k1 ≤ k2.

Then, since (u1, v1) and (u, v) are eigen-pairs associated to the first eigenvalue
λ1,p and |(u, v)|α,β = 1, we get((

k1

k2

)β
− 1

)
[u]pr,p +

((
k2

k1

)α
− 1

)
[v]ps,p = 0.

Taking x = k1/k2, a = [u]pr,p and b = [v]ps,p, we get

a(xβ − 1) + b
1− xα

xα
= 0.

Multiplying by xα and by using that α+ β = p, we obtain

axp − (a+ b)xα + b = 0.

To end the proof, we only need to show that 1 is the unique zero of the function

f : [0, 1]→ R, f(x) = axp − (a+ b)xα + b.
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Observe that, for any x ∈ (0, 1) we have

f ′(x) = paxα−1

(
xp−α − a+ b

a

α

p

)
= paxα−1

(
xα − a+ b

a

α

p

)
.

On the other hand, since (u1, v1) is an eigen-pair associated to λ1,p such that
|(u, v)|α,β = 1, we have

a+ b = λ1,p and a =
α

p
λ1,p,

then
a+ b

a
=
p

α
,

that is
a+ b

a

α

p
= 1.

Hence

f ′(x) < 0 ∀x ∈ (0, 1).

that is f is decreasing. Therefore x = 1 is the unique zero of f. �

Recall that we made the assumption:

min{α, β} ≥ 1.

Now, if (u, v) is an eigen-pair associated to λ1,p then

|u|α−2u|v|β , |u|α|v|β−2v ∈ L∞(Ω)

due to Lemma 3.3. Thus, by [21, Theorem 1.1], we have the following result.

Lemma 3.6. If (u, v) is an eigen-pair associated to λ1,p, then there exist γ1 =

γ1(N, p, r) ∈ (0, r] and γ2 = γ2(N, p, s) ∈ (0, s] such that (u, v) ∈ Cγ1(Ω)×Cγ2(Ω).

Thus, by Lemma 3.6 and Theorem 2.3, we have that

Corollary 3.7. If (u, v) is an eigen-pair associated to λ1,p then u is a viscosity
solution of (−∆p)

ru = λ1,p
α

p
|u|α−2u|v|β in Ω,

u = 0 in RN \ Ω,

and v is a viscosity solution of(−∆p)
sv = λ1,p

β

p
|u|α|v|β−2v in Ω,

v = 0 in RN \ Ω,

Therefore, by Corollary 3.7 and Lemma 2.4, we get

Corollary 3.8. If (u, v) is an eigen-pair corresponding to the first eigenvalue λ1,p,
then |u|, |v| > 0 in Ω.

Finally, we show that there is a sequence of eigenvalues.

Lemma 3.9. There is a sequence of eigenvalues λn such that λn →∞ as n→∞.
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Proof. We follow ideas from [19] and hence we omit the details. Let us consider

Mτ = {(u, v) ∈ W(r,s)
p (Ω): [u]pr,p + [v]ps,p = pτ}

and

ϕ(u, v) =
1

p

∫
Ω

|u|α|v|βdx.

We are looking for critical points of ϕ restricted to the manifold Mτ using a minimax
technique. We consider the class

Σ = {A ⊂ W(r,s)
p (Ω) \ {0} : A is closed, A = −A}.

Over this class we define the genus, γ : Σ→ N ∪ {∞}, as

γ(A) = min{k ∈ N : there exists φ ∈ C(A,Rk − {0}), φ(x) = −φ(−x)}.

Now, we let Ck = {C ⊂Mτ : C is compact, symmetric and γ(C) ≤ k} and let

βk = sup
C∈Ck

min
(u,v)∈C

ϕ(u, v).

Then βk > 0 and there is (uk, vk) ∈ Mτ such that ϕ(uk, vk) = βk and (uk, vk) is a
weak eigen-pair with λk = τ/βk. �

4. The limit as p→∞

From now on, we assume that (1.3) and (1.4) hold. Recall that we defined Λ1,∞
by

Λ1,∞ = inf

{
max{[u]r,∞; [v]s,∞}
‖|u|Γ|v|1−Γ‖L∞(Ω)

: (u, v) ∈ W(r,s)
∞ (Ω)

}
.

First, we show the geometric characterization of Λ1,∞. Then, we prove that there
exists a sequence of eigen-pairs (up, vp) associated to λ1,p such that (up, vp) →
(u∞, v∞) as p → ∞ and (u∞, v∞) is a minimizer for Λ1,∞. Finally we will show
that (u∞, v∞) is a viscosity solution of (4.12).

4.1. Geometric characterization. Observe that, by Arzelà–Ascoli theorem, there
exists a minimizer for Λ1,∞. Moreover, if (u, v) is a minimizer for Λ1,∞ then so is
(|u|, |v|). Now, we show the geometric characterization of Λ1,∞.

Lemma 4.1. The following equality holds

Λ1,∞ =

[
1

R(Ω)

](1−Γ)s+Γr

.

Proof. Let us take (u, v) a minimizer for Λ1,∞ with u, v ≥ 0 normalized according
to ‖uΓv1−Γ‖L∞(Ω) = 1. Therefore, there is a point x0 ∈ Ω such that

uΓ(x0)v1−Γ(x0) = 1.

Let us call

a = u(x0) and b = v(x0).

Then, since u, v = 0 in Ωc,

[u]r,∞ = sup
(x,y)∈Ω

|u(y)− u(x)|
|x− y|r

≥ a

[dist(x0, ∂Ω)]r
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and

[v]s,∞ = sup
(x,y)∈Ω

|v(y)− v(x)|
|x− y|s

≥ b

[dist(x0, ∂Ω)]s
.

Therefore, we are left with

Λ1,∞ ≥ inf
(a,b,x0)∈A

{
max

{
a

[dist(x0, ∂Ω)]r
;

b

[dist(x0, ∂Ω)]s

}}
,

where
A := {(0,∞)× (0,∞)× Ω: aΓb1−Γ = 1}.

To compute the infimum we observe that we must have

a

[dist(x0, ∂Ω)]r
=

b

[dist(x0, ∂Ω)]s

that is,
a = b[dist(x0, ∂Ω)]r−s.

Then, using aΓb1−Γ = 1, we obtain

b[dist(x0, ∂Ω)]Γ(r−s) = 1.

Hence
b = [dist(x0, ∂Ω)]Γ(s−r)

and
a = [dist(x0, ∂Ω)](r−s)(1−Γ).

Therefore, we are left with

inf
x0

[dist(x0, ∂Ω)]−[(1−Γ)s+Γr],

that is attained at a point x0 ∈ Ω that maximizes the distance to the boundary.
That is, letting

R(Ω) = dist(x0, ∂Ω),

we obtain that

Λ1,∞ ≥
[

1

R(Ω)

](1−Γ)s+Γr

.

To end the proof, we need to show the reverse inequality. As before, let x0 ∈ Ω
be the point where is attained the maximum distance to the boundary. Set

u0(x) = R(Ω)(r−s)(1−Γ)

(
1− |x− x0|

R(Ω)

)r
+

,

v0(x) = R(Ω)−(r−s)Γ
(

1− |x− x0|
R(Ω)

)s
+

.

We can observe that (u0, v0) ∈ Cr(RN )× Cs(RN ), ‖uΓ
0 v

1−Γ
0 ‖L∞(Ω) = 1 and

max{[u0]r,∞; [v0]s,∞} ≤
[

1

R(Ω)

](1−Γ)s+Γr

.

Therefore

Λ1,∞ = inf

{
max{[u]r,∞; [v]s,∞}
‖|u|Γ|v|1−Γ‖L∞(Ω)

: (u, v) ∈ W(r,s)
∞ (Ω)

}
≤
[

1

R(Ω)

](1−Γ)s+Γr

.

�

Remark 4.2. Observe that (u0, v0) is a minimizer of Λ1,∞.
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4.2. Convergence. Now, we prove that there exists a sequence of eigen-pairs
(up, vp) associated to λ1,p such that (up, vp) → (u, v) as p → ∞ and (u, v) is a
minimizer for Λ1,∞.

Lemma 4.3. Let (up, vp) be an eigen-pair for λ1,p such that up and vp are positive
and |(u, v)|α,β = 1. Then, there exists a sequence pj →∞ such that

(upj , vpj )→ (u∞, v∞)

uniformly in RN . The limit (u∞, v∞) belongs to the space W(r,s)
∞ (Ω) and is a

minimizer of Λ1,∞. In addition, it holds that

[λ1,p]
1/p → Λ1,∞.

Proof. We start showing that

(4.10) lim sup
p→∞

[λ1,p]
1/p ≤ Λ1,∞.

Let γ > 1 be such that γmax{r, s} < 1. Then (uγ , vγ) = (uγ∞, v
γ
∞) ∈ W(r,s)

p (Ω) ∩
W(r,s)
∞ (Ω) for all p > 1. Thus

[λ1,p]
1/p ≤

(
[uγ ]pr,p + [vγ ]ps,p

)1/p
|(uγ , vγ)|α,β

for all p > 1. In addition, we observe that ‖uΓ
γv

1−Γ
γ ‖L∞(Ω) = 1. Then

lim sup
p→∞

[λ1,p]
1/p ≤ max {[uγ ]r,∞; [vγ ]s,∞}

≤ max
{

2r(γ−1)R(Ω)γ(r−s)(1−Γ)−r; 2s(γ−1)R(Ω)−γ(r−s)Γ−s
}
.

Therefore, passing to the limit as γ → 1 in the previous inequality and using Lemma
4.1, we get (4.10).

Our next step is to show that

Λ1,∞ ≤ lim inf
p→∞

[λ1,p]
1/p.

Let pj > 1 be such that

lim inf
p→∞

[λ1,p]
1/p = lim

j→∞
[λj ]

1/pj ,

where λj = λ1,pj . By (4.10), without of loss of generality, we can assume

2 max{N/r,N/s} < p1, pj ≤ pj+1, and

(4.11) [λj ]
1/pj =

(
[uj ]

pj
r,pj + [vj ]

pj
s,pj

)1/pj
≤ Λ1,∞ + ε ∀j ∈ N,

where ε is any positive number and (uj , vj) is an eigen-pair corresponding to λj
normalized according to |(uj , vj)|αj ,βj = 1 (αj = αpj , βj = βpj ) and such that
uj , vj > 0 in Ω.

Let q ∈ (2 max{N/r,N/s}, p1), t1 = r−N/q and t2 = s−N/q. It follows from (4.11)
and Lemmas 2.1 and 2.2 that {uj} and {vj} are bounded in W t1,q(Ω) and W t2,q(Ω),
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respectively. Since qmin{t1, t2} ≥ N, taking a subsequence if is necessary, we get

uj → u∞ strongly in C0,γ1(Ω),

vj → v∞ strongly in C0,γ2(Ω).

due to the compact Sobolev embedding theorem. Here 0 < γ1 < t1−N/q = r−2N/q
and 0 < γ1 < t2 − N/q = s− 2N/q. Therefore u∞ = v∞ = 0 on ∂Ω.

On the other hand, by Lemma 2.2,

|uj |t1,q ≤ diam(Ω)
N/pj |Ω|2/q−2/pj |uj |r,pj ≤ diam(Ω)

N/pj |Ω|2/q−2/pj [λj ]
1/pj ,

|vj |t2,q ≤ diam(Ω)
N/pj |Ω|2/q−2/pj |vj |s,pj ≤ diam(Ω)

N/pj |Ω|2/q−2/pj [λj ]
1/pj .

Then passing to the limit as j → ∞ and using Fatou’s lemma, we get (u∞, v∞) ∈
W t1,q(Ω)×W t2,q(Ω) and

|u∞|t1,q ≤ |Ω|
2/q lim inf

p→∞
[λ1,p]

1/p,

|v∞|t2,q ≤ |Ω|
2/q lim inf

p→∞
[λ1,p]

1/p.

Now passing to the limit as q →∞ we obtain

[u∞]r,∞ ≤ lim inf
p→∞

[λ1,p]
1/p,

[v∞]s,∞ ≤ lim inf
p→∞

[λ1,p]
1/p,

that is (u∞, v∞) ∈ W(r,s)
∞ (Ω) and

max{[u∞]r,∞; [v∞]r,∞} ≤ lim inf
p→∞

[λ1,p]
1/p.

To end the proof we only need to show that ‖uΓ
∞v

1−Γ
∞ ‖L∞(Ω) = 1. For all q > 1

there exists j0 ∈ N such that pj > q if j > j0 and therefore, by Fatou’s Lemma and
Hölder’s inequality, we get

‖uΓ
∞v

1−Γ
∞ ‖qLq(Ω) ≤ lim inf

j→∞

∫
Ω

u
αj/pjq

j v
βj/pjq

j dx ≤ lim inf
j→∞

|Ω|1−
q
pj = 1

due to |(uj , vj)|αj ,βj = 1. Then passing to the limit as q →∞ we have

‖uΓ
∞v

1−Γ
∞ ‖L∞(Ω) ≤ 1.

On the other hand

1 = |(uj , vj)|
1/pj
αj ,βj

≤ ‖u
αj/pj
j v

βj/pj
j ‖L∞(Ω)|Ω|

1/pj → ‖uΓ
∞v

1−Γ
∞ ‖L∞(Ω).

Therefore ‖uΓ
∞v

1−Γ
∞ ‖L∞(Ω) = 1. �

4.3. Viscosity Solution. Finally we will show that (u∞, v∞) is a viscosity solution
of

(4.12)


min

{
Lr,∞u(x);L+

r,∞u(x)− Λ1,∞u
Γ(x)v1−Γ(x)

}
= 0 in Ω,

min
{
Ls,∞u(x);L+

s,∞u(x)− Λ1,∞u
Γ(x)v1−Γ(x)

}
= 0 in Ω,

u = v = 0 in RN \ Ω,

where

Lt,∞w(x) = L+
t,∞w(x) + L−r,∞w(x) = sup

y∈RN

w(x)− w(y)

|x− y|t
+ inf
y∈RN

w(x)− w(y)

|x− y|t
.
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Let us introduce the precise definition of viscosity solution of (4.12).

Definition. Let (u, v) ∈ C(RN )×C(RN ) be such that u, v ≥ 0 in Ω and u = v = 0
in Ωc.

We say that (u, v) is a viscosity subsolution of (4.12) at a point x0 ∈ Ω if and
only if for any test pair (ϕ,ψ) ∈ C2

0 (RN ) × C2
0 (RN ) such that u(x0) = ϕ(x0),

v(x0) = ψ(x0), u(x) ≤ ϕ(x) and v(x) ≤ ψ(x) for all x ∈ RN we have that

min{Lr,∞ϕ(x0);L+
r,∞ϕ(x0)− Λ1,∞u

Γ(x0)v1−Γ(x0)} ≤ 0,

min{Lr,∞ψ(x0);L+
r,∞ψ(x0)− Λ1,∞u

Γ(x0)v1−Γ(x0)} ≤ 0

We say that (u, v) is a viscosity subsolution of (4.12) at a point x0 ∈ Ω if and
only if for any test pair (ϕ,ψ) ∈ C2

0 (RN ) × C2
0 (RN ) such that u(x0) = ϕ(x0),

v(x0) = ψ(x0), u(x) ≥ ϕ(x) and v(x) ≥ ψ(x) for all x ∈ RN we have that

min{Lr,∞ϕ(x0);L+
r,∞ϕ(x0)− Λ1,∞u

Γ(x0)v1−Γ(x0)} ≥ 0,

min{Lr,∞ψ(x0);L+
r,∞ψ(x0)− Λ1,∞u

Γ(x0)v1−Γ(x0)} ≥ 0

Finally, u is a viscosity solution of (4.12) at a point x0 ∈ Ω viscosity solution, if
it is both a viscosity super- and subsolution at every x0.

Lemma 4.4. (u∞, v∞) is a viscosity solution of (4.12).

Proof. It follows as in [24, Section 8], we include a sketch here for completeness.
Let us show that u∞ is a viscosity supersolution of the first equation in (4.12) (the
fact that it is a viscosity sub solution is similar). Assume that ϕ is a test function
touching u∞ strictly from below at a point x0 ∈ Ω. We have that uj − ϕ has a
minimum at points xj → x0. Since uj is a weak solution (and hence a viscosity
solution) to the first equation in our system we have the inequality

−(−∆pj )
rϕ(xj) + λ1,pj

αj
pj
|ϕ|αj−2ϕ|v|βj (xj) ≤ 0.

Writing (as in [24])

A
pj−1
j = 2

∫
RN

|ϕ(xj)− ϕ(y)|pj−2(ϕ(xj)− ϕ(y))+

|xj − y|N+spj
dy,

B
pj−1
j = 2

∫
RN

|ϕ(xj)− ϕ(y)|pj−2(ϕ(xj)− ϕ(y))−

|xj − y|N+spj
dy

and

C
pj−1
j = λ1,pj

αj
pj
|ϕ|αj−2ϕ|v|βj (xj)

we get

A
pj−1
j + C

pj−1
j ≤ Bpj−1

j .

Using that

Aj → L+
r,∞ϕ(x0), Bj → −L−r,∞ϕ(x0) and Cj → Λ1,∞u

Γ(x0)v1−Γ(x0)

we obtain

min{Lr,∞ϕ(x0);L+
r,∞ϕ(x0)− Λ1,∞u

Γ(x0)v1−Γ(x0)} ≤ 0.

�
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