EIGENVALUES FOR SYSTEMS OF FRACTIONAL
p—LAPLACIANS

LEANDRO DEL PEZZO AND JULIO D. ROSSI

ABSTRACT. We study the eigenvalue problem for a system of fractional p—Laplacians,
that is,
e
(—Ap)"u = A—|ul*2uv|® inQ,
p

(—Ap)u = )\§|u|°‘|v|ﬁ_2v in Q,
p

u=v=0 in Q° =RV \ Q.
We show that there is a first (smallest) eigenvalue that is simple and has
associated eigen-pairs composed of positive and bounded functions. Moreover,
there is a sequence of eigenvalues \,, such that \,, — co as n — co.

In addition, we study the limit as p — oo of the first eigenvalue, A1, and

we obtain [A1,p]"/? — A1 o as p — oo, where

¢ {max{[u]noo; [v]s,00 } } _ { 1 :|(1—F)S+Fr.
lelT o' =T Loo () R(Q)

Moo= 1
(u,v)
[w(y)—w(=)]|
lo—ylt *
Finally, we identify a PDE problem satisfied, in the viscosity sense, by any
possible uniform limit along subsequences of the eigen-pairs.

Here R(Q)) := max,ecq dist(z, 02) and [w]t,co == SUP(, ,yeq

1. INTRODUCTION
In this work we deal the non-local non-linear eigenvalue problem

(—Ap) u = )\g|u|°‘_2u|v|ﬁ in Q,
p

(1.1) (=) u = A2 ol —20 in
p
u=v=0 in Q¢ =R\ Q,
where p > 1, r,s € (0,1), o, 8 € (0, p) are such that

O‘+5:p7 mm{a,ﬂ}ZL

and ) is the eigenvalue. Here and subsequently 2 is a bounded smooth domain in
RN and (—A,)* denotes the fractional (p,t)—Laplacian, that is

u(z) — u(y)P~*(u(z) — uly))

|z —y|[ NP

(—Ap) u(z) = 2P.V. dy xeq.

RN
The natural functional space for our problem is

W)(Q) = W"P(Q) x W*P(Q).

Key words and phrases. p—Laplacian, fractional operators, eigenvalue problems.
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2 LEANDRO DEL PEZZO AND JULIO D. ROSSI

Here WP () denotes the space of all u belong to the fractional Sobolev space

v(z) — v
WhP(Q) = {’U € LP(Q): /92 dedy < oo}
such that @ € WHP(RYN) where 4 is the extension by zero of u and Q2 = Q x Q. For
a more detailed description of these spaces and some its properties, see for instance
1, 15).

Note that in our eigenvalue problem we are considering two different fractional
operators (since we allow for ¢t # s) and therefore the natural space to consider
here, that is WZST’S)(Q) = W”’(Q) X Ws’p(Q), is not symmetric.

In this context, an eigenvalue is a real value A for which there is (u,v) € WZ(,T’S) Q)
such that uwv # 0, and (u,v) is a weak solution of (1.1), i.e.,

[u(@) — u()l"~?(u(@) —w@y))(wl@) —w(y) o [ as s
/JRZN |z — y|N+rp d dy*)‘p/ﬂ| | |[v|"wd

/ vm—mwwmmww@wm%wwwwwdﬁ/Wmmﬁwm
R2N P Ja

|z —y|NHep

for any (w, z) € WPST’S)(Q). The pair (u,v) is called a corresponding eigenpair.
Observe that if A is an eigenvalue with eigenpair (u,v) then uv # 0 and

) bty 2,
(u,v)[ 5

here

lw(z) —w(y)[ o

[w]?, = /R?N dedy and |(u,v) Z,B = /Q u|®|v]P d.
Thus
A Z )\1,p

where

[z, + o2 s
(1.2) Ay = 1nf{W: (u,v) € W >(Q),uv¢o}.

9 oc,ﬂ

Our first aim is to show that A; , is the first eigenvalue of our problem. In fact,
in Section 3, we prove the following result.

Theorem 1.1. There is a nontrivial minimizer (up,v,) of (1.2) such that both
components are positives, upy,v, > 0 in Q, and (up,vp) is a weak solution of (1.1)
with A\ = Ay p. Moreover, A1, s simple.

Finally, there is a sequence of eigenvalues N\, such that A\, — oo as n — oo.

We don’t know if the first eigenvalue is isolated or not.

Now, our aim is to study A;,, for large p. To this end we look for the asymptotic
behaviour of A\, as p — oco. From now on for any p > 1, (up,v,) denotes the
eigen-pair associated to A1, such that |(u,v)|s,g = 1. To study the limit as p — oo
we need to assume that

(1.3) pmin{r,s} > N,

and

(1.4) lim 22 =T, 0<TI<Ll.
p—oco P
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Note that the last assumption and the fact that o, + 3, = p implies

limﬁzl—F, 0<1-T<1.
p—o0 p
In order to state our main theorem concerning the limit as p — oo, we need to
introduce the following notations:
w(y) —w(x
o sup 2O =0

@yea Tyl

Whe(Q) = {w € Co(Q): [w]ieo < 00, }, W (Q) = W"®(Q) x W2(Q)

and

i

R(QY) = max dist(x, 092).

Now we are ready to state our second result. It says that there is a limit for
[A1,]"7 and that this limit verifies both a variational characterization and a sim-
ple geometrical characterization. In addition, concerning eigenfunctions there is a
uniform limit (along subsequences) that is a viscosity solution to a limit PDE eigen-
value problem. The proofs of our results concerning limits as p — co are gathered
in Section 4.

Theorem 1.2. Under the assumptions (1.3) and (1.4), we have that
lim [Al’p]l/p = Al,oo

pP— o0

where

. max{[u]r 00 [U]s oo}
Mm:m% : 2L (u,0) € WED(Q) b
[[ul" v Lo () ( )

Moreover, we have the following geometric characterization of the limit eigenvalue:
1 (1-T)s+Ir
Mo=|5= .
R(Q)
Lastly, ihere is a sequence p; — 0o such that (up,,vp,) — (u,v) converges uni-
formly in Q, where (s, Voo) @5 a minimizer of A1 o, and a viscosity solution to

min { £, sou(z); L u(x) — Ay soul ()0 T (2)} =0 in Q,
min { £ sou(z); LT Ju(z) — Ay sout (z)o' " H(z)} =0 in Q,

uwu=v=20 in RN \ Q7
where
Lomw(s) = LF (@) + Lo () = sup L ZWW) oy w@) Zwly)
t, ( ) t, ( ) y ( ) JERN |m—y|t yeRN |$_y|t

To end the introduction let us briefly refer to previous references on this sub-
ject. The limit of p—harmonic functions (solutions to the local p—Laplacian, that
is, —Apu = —div(|Vul[P~2Vu) = 0) as p — oo has been extensively studied in the
literature (see [4] and the survey [3]) and leads naturally to solutions of the infinity
Laplacian, given by —A,u = —VuD?u(Vu)! = 0. Infinity harmonic functions (so-
lutions to —Au = 0) are related to the optimal Lipschitz extension problem (see
the survey [3]) and find applications in optimal transportation, image processing
and tug-of-war games (see, e.g.,[10, 18, 25, 26] and the references therein). Also
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limits of the eigenvalue problem related to the p-Laplacian witth various bound-
ary conditions have been exhaustively examined, see [17, 22, 23, 27, 28], and lead
naturally to the infinity Laplacian eigenvalue problem (in the scalar case)

(1.5) min {|Vu| — Au, —Ayu} =0.

In particular, the limit as p — oo of the first eigenvalue A, p of the p-Laplacian
with Dirichlet boundary conditions and of its corresponding positive normalized
eigenfunction u, have been studied in [22, 23]. It was proved there that, up to a
subsequence, the eigenfunctions u, converge uniformly to some Lipschitz function
Uoo Satisfying ||tuco|leoc = 1, and
Vo . [Vulloo 1~

Qo0 2 Aen = Il o Tl ~ RO
Moreover 1, is an extremal for this limit variational problem and the pair uqg,
Aco,D 18 a nontrivial solution to (1.5). This problem has also been studied from an
optimal mass-transport point of view in [11]. Note that here the fact that we are
dealing with two different operators in the system is reflected in that the limit is
given by

Y

1 :| (1-T)s+I'r

b= |7
a quantity that depends on s and ¢.

On the other hand, there is a rich recent literature concerning eigenvalues for
systems of p—Laplacian type, (we refer e.g. to [6, 12, 16, 14, 29] and references
therein). The only references that we know concerning the asymptotic behaviour
as p goes to infinity of the eigenvalues for a system are [5] and [12] where the
authors study the behaviour of the first eigenvalue for a system with the usual local
p—Laplacian operator.

Finally, concerning limits as p — oo in fractional eigenvalue problems (a single
equation), we mention [9, 20, 22]. In [22] the limit of the first eigenvalue for the
fractional p—Laplacian is studied while in [20] higher eigenvalues are considered.

2. PRELIMINARIES

We begin with a review of the basic results that will be needed in subsequent
sections. The known results are generally stated without proofs, but we provide
references where the proofs can be found. Also, we introduce some of our notational
conventions.

2.1. Fractional Sobolev spaces. Let s € (0,1) and p € (1, 00). There are several
choices for a norm for W*P?(2), we choose the following:

el = [l + ulZ

— P
uf?, = / lu(x) — u(y)| dudy.
’ o |lz—yP

where

Observe that for any v € Ws’p(Q) we get
|uls,p < [u]s,p-

Our first aim is to show a Poincaré—type inequality.
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Lemma 2.1. Let s € (0,1). For any p > 1, there is a positive constant C, inde-
pendent of p, such that

WN . s
[u]f > —(diam(Q) + 1) p||U||Z£p(

s,p = sp Yu € Ws’p(ﬂ)

Q)
where wy is the N—dimensional volume of a Fuclidean ball of radius 1.

Proof. Let u € Ws’p(ﬂ). Then

1
ul? Z/U$p/ ————dydzx
e R e

where Oy = {y € Q°¢: dist(y,2) > 1}. Now, we observe that for any € Q we have
Byi1(x)¢ C Q1 where d = diam(2). Thus

o~ ulNTap 2 T N7 = WN = Xd+1)*
/Ql [z — YN+ T gy | — y[NeP i1 PP sp

for all z € Q. Therefore, we conclude that,

WN s
[u}g,p > g(d‘F 1) p”u”i}?(g)'

The following result will be one of the keys in the proof of Theorem 1.2.
Lemma 2.2. Let s € (0,1) andp > s/N. If g € (N/s,p) and t = s — N/q then

lullzaty < 190 ulloqy — and  fulug < diam(Q) Qo ul,
for all w € WP(Q).

Proof. Since q < p, the first inequality is trivial, then, we only need to prove the
second one. Let u € W*P(Q). It follows from Holder’s inequality that

— q
Q2

|z — y|*

_ P o/»
S </ ‘U(LE) U(y)‘ dxdy) |Q|272q/p
02

|z — ylP

_ D »
§ diam(Q)Nq/p / ‘u(‘r) U(y)‘ dxdy ‘Q|272t1/p,
o o~y 7+N
as we wanted to show. O

2.2. Weak and Viscosity Solutions. Let us discuss the relation between the
weak solutions of

(2.6) {(Aw%f@)inm

u=20 in Q°,
and the viscosity solutions of the same problem.
We begin by introducing the precise definitions of weak and viscosity solutions.

Definition (weak solution). Let f € W~*?(Q) (the dual space of W*P()) and
u € W*P(Q). We say that u is a weak solution of (2.6) if only if

JRLCE ()l 2(u() ~u))(vle) —0@)) g 0

|z —y| N+
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for every v € W*P(Q). Here (+,-) denotes the duality pairing of W*P(Q) with
W—=P(Q).

Definition (viscosity solution). Let p > 2, f € C(Q) and u € C(R") be such
that « = 0 in Q°.

We say that u is a viscosity subsolution of (2.6) at a point zg € Q if and only if
for any test function ¢ € CZ(RY) such that u(zg) = ¢(z0) and u(z) < ¢(x) for all
r € RN we have that

2/ lp(x0) — o(y)|P2(@(x0) — ¢(y))
RN

lzo —y|NFsp

dy < f(zo).

We say that u is a viscosity supersolution of (2.6) at a point z¢ € Q if and only
if for any test function ¢ € C2(R™) such that u(zo) = ¢(x0) and u(z) > () for
all z € RV we have that

2/ lp(x0) — o(y)|P2(@(20) — ¢ (y))
RN

lzg —y|NFsp

dy > f(zo).
Finally, u is called a viscosity solution of (2.6) if it is both a viscosity super- and
subsolution at x( for any zg € Q.

Following carefully the proof of [24, Proposition 11], we have the following result.

Theorem 2.3. Let p > 2 and f € C(Q). If u is a weak solution of (2.6) then it is
also a viscosity solution.

The following result is one of the key to show that every eigen-pair associated
to the first eigenvalue has constant sign. For the proof we refer to [24, Lemma 12].

Lemma 2.4. Let p > 2. Assumme u > 0 and v = 0 in Q°. If u is a viscosity
supersolution of (—Ap)*u =0 in Q then either u >0 in Q or u =0 in RY.
3. THE EIGENVALUE PROBLEM
We begin showing that A, is the first eigenvalue of our problem.

Lemma 3.1. There is a nontrivial minimizer (u,v) of (1.2) such that u,v > 0 a.e.
in Q and (u,v) is a weak solution of (1.1) with A = A1 p.

Proof. Since C§°(Q2) x C§° () C VV,(,T’S)(Q)7 we have

ulP 4+ |v]?

(3.7 0 < inf {[ﬂp)[p]p (u,v) € Wér’s)(Q),uv # O} < o0.
(U"/U a,B

Now, we consider a minimizing sequence {(un, vy )}neny normalized according to

|(tn,n)|(a,p) = 1. It follows from (3.7) that {(un,v,)} is bounded in W,(,T’S)(Q).
Then, by the compactness of the Sobolev embedding theorem, there is a subse-
quence {(un;,vn;)}jen such that

Up; — u weakly in WT"p(Q), U, — v weakly in Ws’p(Q),

Un,; — u strongly in LP(€2), Upn; — v strongly in LP(Q).
Thus, |(u, )], =1 and

[wl?y + (018, < liminf {fun, ]2, + 00,125} = M
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Therefore (u,v) is a minimizer of (1.2). Moreover, since

[ullfp + (015 < [ul?y + [017 s

we can assume that u and v are non-negative functions.

The fact that this minimizer is a weak solution (1.1) with A = A;, is straight-
forward and can be obtained from the arguments in [24].

Finally, since u and v are non-negative function and (u,v) is a weak solution of
(1.1) with A = A1, by [7, Theorem A.1], we obtain u, v are positive functions a.e.
in Q. O

The following result follows from the classical inequality
lla| — |b]] <]a—10b] Vab<O.

Corollary 3.2. If (u,v) is an eigen-pair corresponding to A1 p then u and v have
constant sign.

Our next aim is to prove that all the eigen-pairs associated to \; , are bounded.
For this, we follow ideas from [8, Theorem 3.2].

Lemma 3.3. If (u,v) is an eigen-pair associated to A1 p, then u,v € L= (RY).

Proof. Without loss of generality we can assume that r < s and u,v > 0 a.e. in .
It follows from the fractional Sobolev embedding theorem (see, e.g., [13, Corol-
lary 4.53 and Theorem 4.54]) that, if » > N/p then the assertion holds.
Then we need to prove that the assertion also holds in the following cases:

Case 1: r < N/p;
Case 2: r = N/p.

Before we start to analyze the different cases, we will show two inequalities. For
every M > 0, we define

up(x) = min{u(z),M} and oy (x):=min{v(z), M}.
Since (u,v) € W,(,T’S)(Q), it is not hard to verify that (unr,var) € W,(,T’S)(Q). More-

over if ¢ > 1 then (u},,vi,) € W,(,T’s)(Q). Then, since (u,v) is an eigen-pair associ-
ated to A1 p, upr < u, vy < v, and «, f < p, we have

lu(z) — u(y)|P~2(u(x) — u(y)) (urr(x) — upr(y)) . et tp
/RzN |z — y|N+rP drdy < ALP/Q dr,

o(@) — ()P (0(a) — ) ou (@) ) .
/RzN |z — y|NFsp dxdy < /\l,p/Q dx.

Hence, by using [8, Lemma C2], we get

gtp—1 gtp—1
D P _ P P
qp / |UM (x) ;L\iv]-\f (y)l d.’l?d’y S >\1,p/ uDA‘i’Q*lvﬁdz,
(3.8) q+p—1Jgen |z — y[NFrP 0
. q+p—1 atp—1
P _ P p
qp® ‘UM (1') Upng (y)| dxdy§ >\1p/ uavﬁ-l—q—ldaj.
q+p—1 Jgen |z —y|N+rp e

We now begin to analyze the different cases.
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Case 1: r < N/p. Since r < s, then pf < p%. Therefore, by Sobolev’s embedding
theorem,

p gtp—1 atp—1

q+p 1x PE P _ P p
(/ Upr” " da ) < C(N,r,p, Q)/ (@) x]f W) dzdy,

Q R2N |z — y|Ntre
# o (@) —va” ()
HE=tpr o\ PF / OV GO R U VA )l i
v "dx < C(N,r,s,p,9Q dxdy.

</Q a’ ) = 2 foo |z —y[NFTP Y

Then, by (3.8), we get

1. % L* -1
(/ i prdx) K Alp <(I+P— 1>p / w18 g
Q M N C(N7 7’7]7,9) p Q ’

P -1
< )\1717 g+p—1 P / wCPTe .
- C(N,T‘,S,p,ﬂ) p Q

By using Fatou’s lemma and Young’s inequality, we obtain

& v
() < iy (FE22) (e [ )
o C(N,r,p,Q) p Q @
& r
(/qurp lp:dx> o Alp (q +P_1> (/ uP+q—1dx+/vp+q_ldCE)-
A C(N,r,s,p,Q) p Q @

Taking Q = a+p—1/p, we get

VS
S~
<

S
M
NS
S %
IS

S

~~_
K

QN —rp)

o-Np_ oN Alp . </ o / o >
u<N-rodx < —r QP u=Pdx + v=Pdzx |,
</Q ) C(N,’I“,p,Q) Q Q
Q(ZETP) )\
QNN%d < Lp p—1 / Qry / Qry
<~/Qv ’ x) _C(N»T»SJLQ)Q Qu v QU v
Then
A
Qp 1,p 1
u S 7Qp ( u P + v D )
s, < @ (2 + 10120
Qp < p—1 ( )
1120, o < oy 2 (1) + Il )
Hence

1
op
Q Q
(||U| Pon , Tt [o] =Fon v )
LN=757(Q) LN=757(Q)

2)\117 71 ép
< f —r .
B (C(Nyr,S,p,Q)> (QQ) (HUHLQZ’(Q + HUHLQP(Q)

Now, taking the following sequence

N
N —rp

QO =1 and Qn+1 Qn
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we have

1
Qn Qn Snrp
(A T

1 p—1
2A1,p o 3o\ Q,p Q.p o
< <C(N,7">5,I%Q)> ( n (||U||Lgnp +vll7s), Q))

for all n € N. Moreover, since
Qnt1 = N/ (N—rp)

we have that

1
o, o, Qnp
(||u||LQ5+1p(m + ||v||L9i+1p(Q)) '
1 p—1
2)\17 Snp = P o)8 Qn— Q”%
<(cmom) (0F) 7 (St +1015520)
for all n > 2.

Then, iterating the last inequality, we get

Qnp Qnp )
(Nl 252 oy + (Q))

LSn+1P L2n+1P
(3.9) N bt 1
2)\1’ p £i=0 91 - P 1
= (C(Npm) (H o ) (1l + 101 )
for all n > 2.

Observe that Q,, — oo as n — oo due to the fact that N/N—rp > 1. Moreover,

N
T Ao N O\
ZQZ 5 and HQ’Ql:(N—Tp) '

=0 =0

Hence, passing to the limit in (3.9), we deduce

max{||ul| oo (), [V L) }

N _N_p—1
< (gt )" ()T (i + )
= \C(N,r,s5,p,Q) N—rp Ul ) TN )

that is u,v € L>®(Q).
Case 2: r = N/p. In this case WZ(,T’S) (Q) = L™(Q) x L™(Q) for all m > 1 then

1 gtp—1 q+p—1
gtp=1lgy 2 u p ) —u P p
uMp pdx S C(N7 r,p, Q)/ | M ( ) M (y)| dl'dy,
Q R2N |z — y| NP
1 gtp=1 atp—1
q+p atp=—1lg 2 Vs P ) —v.,? p
/ vy " Pdz ) < C(N,r,s,p, Q)/ var” (@) = vy " (W)l dxzdy.
Q R2N |z — y[N*rP

Applying the previous reasoning, we get

1
op
(Hell vy + ||v||mp o)

2M1p = Q%)
< | =P .
- (C(N7 s, P, Q)) (QQ) (HUHLQP(Q) + HU”LQP(Q )
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Now, taking the following sequence
Q=1 and Q41 =20,

the proof follows as in the previous case. (I

To show that A; ;, is simple, we will prove first that \; , is the unique eigenvalue
with the following property: any eigen-pair associated to A has constant sign.

Theorem 3.4. Let (u,v) be an eigenfunction associated to A\, such that u,v >0
in Q. If X\ > 0 is such that there is an eigen-pair (w, z) associated to A such that
w,z > 0 then A = A\1(s,p) and there exist k1, ks € R such that w = kju and z = kv
a.e. in RN,

Proof. Since A1(s,p) is the first eigenvalue we have that A\ (s,p) < A. Moreover, by
[7, Theorem A.1], u,v > 0 a.e. in © since (u, v) is an eigen-pair associated to A1
and u,v > 0.

Let k € N and define wy, := w + /&, and zx = z + /. We begin proving that
u?’/wzf1 € VV/T*?’(Q). It is immediate that uWwZﬁl =01in Q° and wy, € L?(Q2), due
to the fact that u € L>(Q), see Lemma 3.3.

On the other hand, for any =,y € RY

u(@)? —u(y)? | uy)? (wi(y)?~' — wy(z)?")
wy (z)P~1 wi ()P~ twy (y)P—1
|wi(z)P~ — wi(y)P 7|
wy ()P~ twy (y)P~!

<k fu(@)? — aly)?] + [l g

<2l o) K plu(z) — u(y)]

wi ()P~ 4 wi(y)P >
wy (z)P~ wy(y)P

<2||u||Lx(Q)k‘p_1p|u(x) - u(y)|
0= D9 (s ) ) — o)
<Ok ull e ) (1) — ()| + () — w(y)])

+ [l ) (P — 1) |wi () — wi(y)]

Hence, we have that up/wz_l € 17\77"”(9) for all & € N since u,w € Wr’p(9)~
Analogously vp/2£71 € WP(Q).
Set

Hpt)o) = Iole) ~ o) — (0(a) v~ (2 - )

for all functions ¢ > 0 and ¥ > 0. By [2, Lemma 6.2], for any ¢ > 0 and ¢ > 0

L(p,¥)(x,y) 20 V(z,y)
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Then,

OS/ Mdd Jr/ Mdzdy

o =yl o=y

L(u, wg)(z,y) L(v, zi) (2, y)
g/widd +/R A ZRINLY) g gy

lx —y|NFre v |o — y|NFsp

p P
:)\1,p/ |u|a\v\ﬁdx—>\g/waflzﬁ u_ldx—)\é/wazﬁflv—_ldx
0 P Jo wh P Ja p

2

for all k € N, since (u, v), (w, z) are eigen-pairs associated to A1 , and A, respectively.
On the other hand, by Young’s inequality,

u®? « uP vP
wzP de < — [ w2 ——dz 2 w2 ——dx
a B p—1 p—1
Q Wiz, P Ja wy, P Ja 2y,

for all £ € N. Then
OS/L(ka)( )dd +/L(Uzk)( )d dy
Q

|z —y[ Ve |z —y|Nrep
B

S)\Lp/ Ju|*[v]® dJC—)\/w”‘zBu vﬂdas.
Q Q wi zy,

By Fatou’s lemma and the dominated convergence theorem we obtain

Og/QL(“U)()dd +/ LOA@Y) g < (0, - /IUI o] da

o=y o=y

Then A = Ay , and L(u, w) = 0 and L(v,z) = 0 a.e. in .
Finally, again by [2, Lemma 6.2], there exist ki, ks € R such that w = kju and
2z = kov a.e. in RV, O

Now, we show that Aq, is simple.

Corollary 3.5. Let (u1, v1) be an eigen-pair associated to A1 , normalized according
to |(u1,v1)|a,g = 1. If (u,v) is an eigen-pair associated to A1, then there is a
constant k such that (u,v) = k(uy,v1).

Proof. By Theorem 3.4, there exist k1 and ko such that v = kju; and v = kovs.
Without loss of generality, we can assume that ky < ko.

Then, since (u1,v1) and (u,v) are eigen-pairs associated to the first eigenvalue
A1p and [(u,v)]a,p =1, we get

() - (3 )

Taking x = k1 /ka, a = [u]} , and b= [v]} , we get
1— @
a(z? —1)+b A
:LrOC

Multiplying by ¢ and by using that « + 8 = p, we obtain
az? — (a + b)z® + b= 0.
To end the proof, we only need to show that 1 is the unique zero of the function

f:00,1] = R, f(z)=az? — (a+b)z*+0.
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Observe that, for any = € (0,1) we have
b b
f’(l’) = paxo‘—l (xp—a . a+ Oé) — paxa—l (xa _ a+ a) .
a p a p

On the other hand, since (u1,v1) is an eigen-pair associated to A;, such that
|(u,v)]a,s =1, we have

a+b=2MX, and a:g)\l,p,
p

then
atb p
a o
that is
b
arbe .
a p
Hence
f'(x) <0 Vze(0,1).
that is f is decreasing. Therefore x = 1 is the unique zero of f. (Il

Recall that we made the assumption:
min{a, 8} > 1.
Now, if (u,v) is an eigen-pair associated to A1, then
[ul*2ulv|?, [u]*[v]" %0 € L*(Q)
due to Lemma 3.3. Thus, by [21, Theorem 1.1], we have the following result.

Lemma 3.6. If (u,v) is an eigen-pair associated to A1 ,, then there exist 1 =
Y1 (N,p,7) € (0,7] and vo = v2(N, p,s) € (0, s] such that (u,v) € C* () x C72(Q).

Thus, by Lemma 3.6 and Theorem 2.3, we have that

Corollary 3.7. If (u,v) is an eigen-pair associated to A1, then w is a viscosity
solution of

(—Ap)"u= Al,pg|u|a_2u\v|5 in Q,
u=0 g in RN\ Q,
and v is a viscosity solution of
T
v=0 in RV \ Q,
Therefore, by Corollary 3.7 and Lemma 2.4, we get

Corollary 3.8. If (u,v) is an eigen-pair corresponding to the first eigenvalue A ,,
then |ul, [v| > 0 in Q.

Finally, we show that there is a sequence of eigenvalues.

Lemma 3.9. There is a sequence of eigenvalues \,, such that \,, — 00 as n — oo.
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Proof. We follow ideas from [19] and hence we omit the details. Let us consider

My = {(u,0) € W(Q): [, + 12, =P}

p

and
1
oluyv) = = / o) dz.
P Ja

We are looking for critical points of ¢ restricted to the manifold M. using a minimax
technique. We consider the class

L ={AcWI(Q)\{0}: Ais closed, A = —A}.
Over this class we define the genus, v: ¥ — NU {o0}, as
v(A) = min{k € N: there exists ¢ € C(4,R* —{0}), o(z) = —¢(—2)}.

Now, we let Cx, = {C C M, : C is compact, symmetric and y(C) < k} and let

Br = sup min u,v).

* Cegk (u,v)€C SD( )

Then S > 0 and there is (ug,vi) € M, such that p(ug,vy) = Bk and (ug,vx) is a
weak eigen-pair with A, = 7/5,. O

4. THE LIMIT AS p — 00

From now on, we assume that (1.3) and (1.4) hold. Recall that we defined A1 o
by

) max{ [y co; [V]s.00 } }
A Oo—mf{ ’ 202 (u,v) € WE(Q) b
1, |||U/|F|'U|1_F||Loo(g) ( ) ( )

First, we show the geometric characterization of A; . Then, we prove that there
exists a sequence of eigen-pairs (up,v,) associated to Ai, such that (up,v,) —
(Uoos Voo) @8 P — 00 and (Ueo, Voo) is a minimizer for A; o. Finally we will show
that (oo, Vo) 18 a viscosity solution of (4.12).

4.1. Geometric characterization. Observe that, by Arzela—Ascoli theorem, there
exists a minimizer for A; o. Moreover, if (u,v) is a minimizer for Ay o then so is
(lul, Jv]). Now, we show the geometric characterization of Aj .

Lemma 4.1. The following equality holds
o 1 7(=T)s+Ir
v LRE©) |

Proof. Let us take (u,v) a minimizer for A; o, with u,v > 0 normalized according
to ||ut v~ e (@) = 1. Therefore, there is a point z¢ € Q such that

ul (zo)v' (o) = 1.

Let us call
a = u(xo) and b= v(zo).

Then, since u,v = 0 in °,

[u(y) — u(z)| a
U)r,oo = SUp " Z . -
. @yea [Tl [dist (0, 09Q)]
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and
=@ b
|z —yls  ~ [dist(zg, Q)]s

[V]s,00 = sUp
(z,y)€Q
Therefore, we are left with

Al o>  iInf {max { a4 ; b }}
T (ayhyao)€A [dist(zg, Q)] [dist(zg, 0Q)]* ’
where
A= {(0,00) x (0,00) x Q: a'b!7 T =1}.
To compute the infimum we observe that we must have
a b

[dist(zg,0Q)]"  [dist(xo, 0Q)]*

that is,
a = b[dist(zo, 0Q)]"°.

=1, we obtain
b[dist (x0, 9Q)]F ) = 1.

Then, using a'b'~T

Hence
b = [dist(zo, 0)]F )
and
a = [dist(zo, Q)] ")),
Therefore, we are left with

inf[dist(zo, aQ)]*[(lfF)erFr]’
o
that is attained at a point g € € that maximizes the distance to the boundary.

That is, letting
R(QY) = dist(zg, 0Q),

1 (1-T)s+Ir
Ao > | —— .
hee = {Rm)]

To end the proof, we need to show the reverse inequality. As before, let xy €
be the point where is attained the maximum distance to the boundary. Set

ug(x) = R(Q)(T’—S)(l—F) (1 - szg)(ﬂ)T 7
n

vo(a) = R() " (1 - |xR_(Sf)O|> .
+

We can observe that (ug,vg) € C"(RY) x C*(RN), |lufvy ™" ||l 1=() = 1 and

we obtain that

| 10-Dstrr
ol i o]} < | |
Therefore

. max{ [u]; oo} [V]s,00 }
Moo = mf{ ’ 2L (u,v) € WEH(Q) p <
([ "ol oo ()

R(Q)

|: 1 :| (1—F)S+F’r‘

O

Remark 4.2. Observe that (ug,vp) is a minimizer of Aj .
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4.2. Convergence. Now, we prove that there exists a sequence of eigen-pairs
(up,vp) associated to A1, such that (up,v,) — (u,v) as p — oo and (u,v) is a
minimizer for Ag .

Lemma 4.3. Let (up, vp) be an eigen-pair for A1 , such that u, and v, are positive
and |(u,v)|a,3 = 1. Then, there exists a sequence p; — 0o such that

(upj ) Upj) = (Uoo; Voo)

uniformly in RN,  The limit (uso,vs0) belongs to the space Wég’s)(Q) and is a
minimizer of A1 . In addition, it holds that

Aip] 77 = At oo
Proof. We start showing that
(4.10) lim sup[/\l,p]l/” <Al -

p—ro0
Let v > 1 be such that ymax{r,s} < 1. Then (uy,vy) = (ul,,v)) € W,()T’S)(Q) N
Wg’s)(Q) for all p > 1. Thus

(I 8

|(u77U'y)|a,[3

P‘l,p] e <

for all p > 1. In addition, we observe that |[ulv]~"||pq) = 1. Then

lim sup[)\l’p}l/p < max {[ty]r,00; [Uy]s,00 }
p—00

< max {QT(’Y—l)R(Q)’Y(T—S)(l—r)—r; 25(7—1)R(Q)—’Y(T—S)F—S} .

Therefore, passing to the limit as v — 1 in the previous inequality and using Lemma
4.1, we get (4.10).
Our next step is to show that

< T . l/p
Ao < hprgggf[)\l,p] .

Let p; > 1 be such that

liminf[A; )77 = lim [\;]7%3,

p—00 j—o0
where \j = A1 .. By (4.10), without of loss of generality, we can assume

2max{N/r,N/s} <p1, pj <pjs1, and

1p, '
(4.11) 77 = ([Uj]ffpj + [Uj]’s),jpj) <MAoo+e VjeN,

where ¢ is any positive number and (uj,v;) is an eigen-pair corresponding to A;
normalized according to |(u;,vj)|a, 5, = 1 (a5 = p,, B; = Bp;) and such that
u;,v; > 0in Q.

Let ¢ € (2max{N/r,N/s},p1), t1 = r—N/q and to = s —N/q. It follows from (4.11)
and Lemmas 2.1 and 2.2 that {u;} and {v;} are bounded in W*9(Q2) and W'2:9((Q2),
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respectively. Since gmin{ty,t2} > N, taking a subsequence if is necessary, we get
u; — Uso strongly in C*71(Q),
v; — Voo strongly in C92(0Q0).

due to the compact Sobolev embedding theorem. Here 0 < v; < t1 —N/g =r—2N/q
and 0 <1 <ty — N/qg = s — 2N/q. Therefore uy = voo = 0 on 9.
On the other hand, by Lemma 2.2,

[l ,q < diam(Q)/25 |7 i gy, < diam (@)™ QT[]
[07e2.q < diam ()73 Q 2 oy, < diam (@)™ [ Qi [A; ]V

Then passing to the limit as j — oo and using Fatou’s lemma, we get (oo, Vo) €
Wt(Q) x Wt24(Q) and

[toolty g < |Q|2/" liminf[)\l,p]l/”,
p—o0
[0ocles,o < 19277 lim inf D )

Now passing to the limit as ¢ — co we obtain

[toc]r0 < Timinf[Ar ],

< T 1y
[Voo)s,00 < hzglogf[/\l,p} )

that is (oo, Vos) € W™ () and
max{ [uoo]r,oo; [Uoo]r,oo} S lim inf[)\l,p]l/p~
p—00

To end the proof we only need to show that [|[ul v ||fe ) = 1. For all ¢ > 1
there exists jo € N such that p; > ¢ if j > jo and therefore, by Fatou’s Lemma and
Holder’s inequality, we get

agi/p. : R
||u£ovéo_r||%q(m < lim inf/ ujj/quvjj/qudx <liminf|Q|' % =1
j—oo Jo j—o0
due to |(uj,v;)|a.. 5. = 1. Then passing to the limit as ¢ — oo we have
g1 Vi)l ,B;
Hugovéo_F”Lw(Q) <1
On the other hand
1/, ailp. Bilps - _

1= [(u,0)|07%, < 077 e @ |17 = Ul 0l e ).

Therefore [[ul vl || =) = 1. O

4.3. Viscosity Solution. Finally we will show that (u«, Vo) is a viscosity solution
of

min { £, cou(z); L} cu(x) — Aol (2)v T (2)} =0 inQ,
(4.12) min { £ sou(z); LT u(z) — Ay soul ()0 T(2)} =0 inQ,

u=v=0 in RV \ Q,
where

Lioow(z) = L w(x) + L, w(z) = su wiz) = wly) in wiw) = wly)
t, () t, () , () yeR% 1z — ylf yerRN |z —yl|t
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Let us introduce the precise definition of viscosity solution of (4.12).
Definition. Let (u,v) € C(RY) x C(R™) be such that u,v > 0in Q andu=v =0
in Q°.

We say that (u,v) is a viscosity subsolution of (4.12) at a point z¢ € § if and
only if for any test pair (p,1) € CZ(RYN) x CZ(RY) such that u(zo) = ¢(z0),
v(z0) = Y(z0), u(x) < p(x) and v(x) < P(x) for all x € RY we have that

min{Ly,ocp(w0); £ o p(20) — Aro0u’ (wo)v' ™ (20)} <0,
min{ L ooth(w0); L, o th(w0) — A1 ,ect’ (zo)v' ™ (20)} <0

We say that (u,v) is a viscosity subsolution of (4.12) at a point 2o €  if and
only if for any test pair (p,%) € CZ(RYN) x CZ(RY) such that u(zo) = ¢(z0),
v(xo) = (o), u(z) > @(x) and v(z) > (x) for all z € RY we have that

min{ L, o (70); Lim‘?(xO) - Al,oour(xo)vlip(xo)} >0,
min{ L ooth(20); L o th(x0) — A1 ,eet’ (zo)v' " (20)} >0

Finally, u is a viscosity solution of (4.12) at a point zg €  viscosity solution, if
it is both a viscosity super- and subsolution at every xg.

Lemma 4.4. (uso,Vs0) 18 a viscosity solution of (4.12).

Proof. Tt follows as in [24, Section 8], we include a sketch here for completeness.
Let us show that u« is a viscosity supersolution of the first equation in (4.12) (the
fact that it is a viscosity sub solution is similar). Assume that ¢ is a test function
touching u strictly from below at a point z¢ € §2. We have that u; — ¢ has a
minimum at points x; — xg. Since u; is a weak solution (and hence a viscosity
solution) to the first equation in our system we have the inequality

T aj i — .
~(= 8 oag) + Aup, el P plol (@) < 0.
J

Writing (as in [24])

- ) — e@W)IP 2 (e(x5) — o))"
AP 1:2/ [o(z;) — eW)IP = (p(x; J
: - fary — 9P v

pi=1 _ (i) = eW)I" 2 (p(5) — (y))~
Bj - 2/}RN |z — y|Ntsps dy

and

-1 T ’

CP 70 = A, L1l % l0] P (2)
Dby
we get
p;—1 p;j—1 pj—1
A7+ G <B;7 .

Using that
A; = L o(xo), Bj — —L, ¢(x0) and Ci — A1 oot (z0)v' T (20)
we obtain

min{ L, 00 (20); £ op(w0) — Ay oout (zo)v' " (z0)} < 0.
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