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Abstract
The development of a 1D thermomechanical model for simulating the response of uniaxial
superelastic NiTi elements is described. The formulation of the model includes consideration
of the dependence of the critical stresses for forward and reverse transformation on the
temperature, the occurrence of strain rate effects due to self-heating/cooling associated with
the latent heat of the stress induced martensitic transformation, the localized character of the
stress induced transformation in superelastic NiTi wires and ribbons, the possibility of
nucleation events during both the forward and reverse transformations and the occurrence of
non-recoverable residual strains. Numerical simulations allowed rationalization of different
features commonly observed in experiments and their dependence on strain rate and
environment conditions. Comparisons of numerical results with experimental cycles obtained
in the present work and also with data published in the literature indicate the potentiality of the
developed model as a design tool for simulating the response of superelastic materials
subjected to realistic service conditions.

(Some figures may appear in colour only in the online journal)

1. Introduction

Superelasticity is one of the distinguishing effects exhibited
by shape memory alloys (SMAs) [1]. It is the capacity
exhibited by these materials to deform under the application
of a mechanical load to approximately 10% strain in a nearly
reversible manner. Responsible for this peculiar behavior is
the existence in these materials of a stress induced martensitic
phase transformation from an austenitic phase (A) to a
martensite phase (M). In the case of single crystalline or
polycrystalline (quasi-) unidimensional specimens, i.e. wires,
strips, and bars, transformation takes place once a critical
transformation stress σA–M is reached. Upon unloading, the
transformation reverts, and this occurs at a stress σM–A lower
than σA–M. The original specimen dimensions are recovered
in this way [2]. The stress hysteresis defined as 1σ =

σA–M − σM–A gives rise to energy dissipation, which, in
the case of a complete cycle, can be assessed by the area
enclosed by the σ–ε trajectory. It is precisely due to this
energy dissipation capability that SMAs have been considered
potential candidates as damping elements in a variety of
structures subjected to dynamical loadings [3–6].

Among the broad range of shape memory alloys, Cu
based and NiTi alloys comprise the widely studied groups [7,
8]. Near-equiatomic NiTi alloys have reached higher
technological relevance due to the excellent combination of
properties such as high transformation stress, high level of
strain recovery, adequate fatigue life, and excellent wear
and corrosion resistance, including biocompatibility [9].
Nowadays these qualities can be found in commercially
available NiTi materials shaped as wires or ribbons and
obtained via appropriate thermomechanical procedures.
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Studies of the superelastic behavior of NiTi specimens
can be roughly classified into those focused on the
understanding of the mechanisms behind the effect and
those devoted to the characterization of the relevant aspects
associated with specific applications. Among the former is
the phenomenon of the localization of the transformation. The
forward transformation (A → M) proceeds by the advance
of distinct interfaces; i.e., once a martensite domain has
nucleated, further straining of the specimen results in A/M
interfaces propagating along the specimen. The phenomenon
resembles Lüders band propagation observed during plastic
deformation of low carbon steels [10, 11]. The reverse
transformation (M → A) exhibits the same character, with
interfaces reverting upon unloading. Although there is no
complete consensus about the causes of such a behavior [12,
13], the dimensional mismatch at the interface between
austenite and martensite phases could play a significant role.
In effect, in order to maintain displacement field continuity,
a triaxial stress state is generated at this interface. This will
in turn result in an increased local effective stress, which
will concentrate the transformation activity in this region.
In this way, the local development of both the forward and
reverse transformations [14, 15] is enhanced. In low strain
rate (quasi-static) experiments, only one or two interfaces
moving along the specimen are usually observed. Under such
conditions, the interface movement can be easily tracked [16]
and an analysis of the microstructural evolution and major
fatigue damage must be limited to those sections of the
specimen that have been swept by the interface movement. As
strain rate is increased, the experimental evidence indicates
that the number of transformation domains multiplies. For
example, Zhang et al [17] have found a one-half power
exponent dependence of the number of fronts on the strain
rate in experiments performed in NiTi strips.

Another important aspect from the point of view
of any application involving SMA superelasticity is the
temperature dependence of the critical stresses σA–M and
σM–A. A thermodynamic analysis applied to martensitic
phase transformation in stressed solids indicates that this
relationship can be expressed as a Clausius–Clapeyron type
of relation which gives the slope dσ/dT = β in terms of
the entropy change and the strain change associated with the
transformation [2]. The temperature dependence of the critical
stresses can be determined experimentally with typical values
of β ranging from 6 to 7 MPa K−1 for NiTi SMAs [18]. This
coupling between temperature and critical transformation
stress results in a dependence of the mechanical response
on the strain rate, the ambient temperature and the heat
transfer characteristics between specimen and surroundings.
This, in turn, is reflected in the mechanical σ–ε behavior,
which departs from that observed under isothermal conditions
(quasi-static straining). Therefore, a proper assessment of
the material response under dynamic conditions, such as
those associated with damping applications, must necessarily
include the coupling between the mentioned effects. Results
such as those in [19–22] reporting a non-monotonic
dependence of the dissipated energy on the strain rate
(or cycling frequency) and the existence of a strain rate

for which the energy dissipation is maximized can only
be rationalized in terms of the thermomechanical coupling
described before. The development of a model able to
describe the behavior of SMA elements during dynamic
conditions is thus highly desirable. Independently of the
pursued aims, the models proposed to date range from simple
mechanical behavior laws derived from fitted experimental
curves to complex constitutive models with which it is
possible to address triaxial stress states. Modeling of the
superelastic behavior has been exploited as a complementary
tool, whether for prediction of the mechanical response of
devices aided with superelastic members [23–25], or for
studying, analytically or numerically, specific aspects of the
associated phenomenology [26, 27]. However, in spite of
the thermal effects and the localization phenomena being
important aspects to consider in an appropriate description
of the mechanical behavior of superelastic NiTi alloys, they
are often not adequately considered in model formulations.
For example, Heller et al [20] and He et al [28] studied
the self-induced thermal effects with simple models but
assuming a homogeneous transformation pattern. In this
way the authors attempted to explain the non-monotonic
dependence of the hysteresis energy on the strain rate. Maletta
et al [29] incorporated the temperature dependence of the
transformation stresses and developed a zero dimensional
thermomechanical model. Morin et al [30] proceeded in the
same manner based on a 3D model. In both cases, localization
was not taken into account or captured by the results, this
being a source of error as pointed out in [30]. The importance
of considering the localized character of the transformation
was assessed by Messner et al [31], who studied analytically
the temperature profile of a unidimensional NiTi specimen
being traversed by a heat releasing interface. From this
work, conditions for the isothermal and adiabatic regime
as a function of the interface velocity can be estimated.
Besides these useful results, analytical expressions are only
applicable to forward transformation for the specific boundary
conditions, and the conclusions are strictly valid for a fixed
number of active interfaces. A more complete approach was
achieved by Iadicola et al [32], who developed a 3D model.
In this case, superelasticity was emulated by a plasticity
constitutive relationship, which included a slight softening
in the transforming branch followed by a hardening region
representing the elastic deformation of the fully martensitic
material. The propagation of an interface is obtained as a
result of the triaxial stress state arising around it, and the
nucleation of new transformation fronts results from the
excessive heating. Despite the very good agreement between
the simulated and the experimental mechanical responses, the
adopted plasticity law is not able to reproduce the reverse
transformation path and therefore the cases that can be
analyzed are limited to a single forward transformation.

In the present work, the steps involved in the development
of a 1D model for the superelastic behavior for NiTi
uniaxial specimens are described. Firstly, a simplified model
for the mechanical behavior is proposed. It includes the
temperature dependence of the transformation stresses via
the Clausius–Clapeyron relationship. Secondly, the pure
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Figure 1. Mechanical model adopted for a uniaxial specimen. (a) States of an elemental volume can be on either the austenitic or
martensitic elastic slopes. Jumps from A to M occur at a transformation stress σA–M and the reverse occurs at the retransformation stress
σM–A. (b) σ–ε diagram resulting from an aggregate of N = 10 elemental volumes. The martensite phase fraction Z takes discrete values
(multiples of 1/N), as does correspondingly the effective elastic modulus Eeff. Transition between Z constant slopes occurs at stress
σA–M (σM–A) upon loading (unloading). (c) σ–ε diagram for a uniaxial superelastic specimen, when N tends to infinity and Z can be
assumed to be a continuous variable. (d) Schematic representation of the elastic predictor-transformation corrector rule adopted to evaluate
a new state under an applied strain increment.

thermal problem (uncoupled from the mechanical response)
associated with the propagation of the transformation
interface is addressed. Then, the influence of thermal effects
in the superelastic hysteresis is evaluated as a function of the
strain rates and environment conditions. Next, the necessity
of considering the nucleation of new transforming domains
according to the cycling conditions is discussed and a criterion
for the nucleation of new transformation domains is proposed.
In the next step, the original mechanical model is modified in
order to include the localized character of the transformation,
the thermomechanical coupling, the possibility of nucleation
of new transforming domains and the occurrence of residual
strains. The model was then implemented numerically as a
first step in the direction of developing a design tool capable
of simulation of the complex behavior of superelastic wire
materials subjected to realistic service conditions. Finally,
the developed model was applied to the study of different
benchmark cases in which the strong coupling between the
thermal effects, the number of transformation domains and the
mechanical response can be appreciated.

2. Basic mechanical uniaxial model

The mechanical model for uniaxial superelastic specimens
is derived on the assumption that the material consists of
an aggregate of N elemental volumes connected in series.
The elements can be either in austenite (A) or martensite
(M) phase. Figure 1(a) schematizes the mechanical behavior
of such an elemental volume. Under an applied stress σ ,
the strain ε associated with the elemental volume can be
expressed as

ε =
σ

EA
(1)

or

ε = εt +
σ

EM
(2)

depending on whether the element is austenitic, equation (1),
or martensitic, equation (2). EA and EM are the austenitic
and martensitic elastic moduli, respectively. The term εt in
equation (2) represents the strain associated with the stress
induced martensitic phase transformation of the element. The
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jump from phase A to phase M occurs at a transformation
stress σA–M upon loading and at a retransformation stress
σM–A upon unloading. Assuming an aggregate of N serial
connected elemental volumes, the total uniaxial strain of the
specimen can be computed as the mean value of the individual
strains as

ε =

∑N
i=1 εi

N
=

NA

N

σ

EA
+

NM

N

(
εt +

σ

EM

)
(3)

with NA and NM the numbers of austenitic and martensitic
elemental volumes, respectively. By defining Z = NM/N,
the total martensitic fraction (equivalent to the fraction of
elemental volumes in the martensitic state), equation (3) can
be rewritten as

ε = (1− Z)
σ

EA
+ Z

(
εt +

σ

EM

)
=

(
(1− Z)EM + ZEA

EAEM

)
σ + Zεt. (4)

The coefficient of the σ -containing term on the right-hand side
of (4) can be identified as the inverse of an effective elastic
modulus of the specimen Eeff defined in terms of the actual Z
value:

Eeff(Z) =
∂σ

∂ε

∣∣∣∣
Z
=

EAEM

EAZ + EM(1− Z)
. (5)

The behavior of an aggregate of N = 10 elemental
volumes is represented in figure 1(b). The fact that Z can
take only multiples of 1/N implies that the transition from
A to M and vice versa occurs through discrete states. The
jumps of the individual elements from A to M or vice versa
are accomplished at stresses σA–M and σM–A upon loading or
unloading, respectively. If N is high enough, Z can be assumed
to be a continuous variable. Now, the pairs (σ ; ε) representing
all possible states of the specimen are those included and
enclosed by the area defined by the two horizontal lines σA–M
and σM–A and the two inclined lines indicated with slopes
EA and EM. From (4), an expression for the total martensite
fraction Z (now a continuous variable) as a function of σ and
ε can be expressed as

Z(σ, ε) =
ε − (σ/EA)

(σ/EM)− (σ/EA)+ εt
. (6)

The model can be interpreted graphically with the σ–ε
diagram represented in figure 1(c). Here a state (σ0; ε0) of the
specimen is considered. The constant Z line passing through
this point is included in the graph. Its slope corresponds to Eeff
calculated with (5). The local (σ ; ε) states representing fully
austenitic condition (Z = 0) and fully martensitic condition
(Z = 1) lie on the lines with slope Eeff = EA and Eeff = EM,
respectively. Equation (6) therefore works as the level rule
used to determine phase fraction from binary phase diagrams.
Under externally imposed changes in σ or ε, the specimen
behaves elastically unless the evaluated state falls outside
the allowed zone given by the lines corresponding to Z = 0
and Z = 1. The computation of a new state is schematized
in figure 1(d). The increment 1ε0−1 can be elastically

accommodated with an increment 1Z = 0. If instead the
transformation stress is exceeded, as is the case with the
increment 1ε0−2, the resultant state must be corrected from
2 to 2′ by an increase in the transformed fraction Z(1Z > 0).
This rule can be summarized in the following way:

σ + Eeff1ε > σA–M, 1Z > 0, σ = σA–M (7)

σ + Eeff1ε < σM−A, 1Z < 0, σ = σM−A. (8)

Thus, the uniaxial response can be described with the
zero-dimensional set of relationships given by equations
(4)–(8), without the necessity of considering how the
martensite fraction is distributed along the specimen. This
simple mechanical model can be improved by considering
the temperature dependence of the critical stresses σA–M

and σM–A. Thus, if critical stresses σA–Mref and σM–Aref at
a reference temperature Tref are known, the critical stresses
must be updated to the actual temperature T before computing
the next mechanical step according to

σA–M = σA–Mref + β (T − Tref) (9)

σM–A = σM–Aref + β (T − Tref) . (10)

Now, it is necessary to define the temperature T
in equations (9) and (10). In quasi-static experiments,
it can be assumed that the specimen temperature T is
homogeneous along the length of the specimen and equal
to the environment temperature Tamb. If the process is not
quasi-static, temperature changes will be induced due to the
effects of the latent heat of transformation. In addition, the
temperature will no longer be homogeneous along the length
of the specimen, i.e., a temperature profile T(x) will develop.
The evaluation of this profile requires consideration of the
kinetics of the transformation, which is known to exhibit a
localized character in the case of superelastic NiTi. In order
to better understand the influence of thermal effects on the
superelastic response, in section 3 and before introducing this
feature in the model, the temperature changes associated with
an interface propagating at different velocities along a NiTi
wire specimen are addressed numerically using an uncoupled
analysis.

3. Self-induced thermal effects

Thermal effects arising during superelastic cycling have their
origin in the latent heat exchange associated with a first
order martensitic phase transformation (A→ M exothermic;
M → A endothermic). Quasi-one-dimensional specimens
(wires and ribbons) under typical heat transfer conditions
with the surroundings present small Biot numbers relative
to the characteristic transversal dimension (diameter) [33].
Therefore, temperature gradients along transverse sections
can be neglected. Heat flow is considered to consist of
conduction along the longitudinal direction and convection
to the ambient media through lateral surface. The balance
between the rates of heat generation, accumulation and flow
in a differential volume can be represented with the following
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1D differential equation:

k
∂2T (x, t)

∂x2 + h
P

At
(Tamb − T (x, t))+ LatŻ (x, t)

= ρC
∂T (x, t)

∂t
. (11)

The first term is related to heat conduction along the wire
length, k being the thermal conductivity of the material. The
second term accounts for heat transferred by convection with
the surroundings, which depends on the film coefficient h and
the relationship between perimeter P and transverse area At.
For cylindrical geometries this factor is four times the inverse
of the diameter. Tamb is the ambient temperature, assumed
to be uniform and constant. The third term corresponds to
the heat generation rate, which depends on the latent heat
of transformation Lat and the local rate of phase change Ż.
Here, the total latent heat Lat is composed by the chemical
latent heat (stress free) Lch plus the inelastic work per unit of
volume σεtrans, with εtrans being the transformation plateau
length [2]. The term on the right represents the sensible
heat rate, which depends on the specific heat capacity C and
the density of the material ρ. As mentioned before, in NiTi
wires and ribbons, a stress induced transformation advances
by the propagation of localized interfaces or fronts. For a
single interface propagating with a velocity ν, the expression
describing the magnitude of the local phase change rate can
be represented by

|Ż(x, t)| = |ν|δ(x− xint) (12)

where δ is the delta Dirac function, indicating that the
transformation activity is concentrated at the position of the
interface xint. If a number n of interfaces are distributed along
the specimen and they move simultaneously, their individual
mean velocity can be related to an externally imposed
extension velocity Vext through the following expression [10]:

ν̄ ≈
Vext

nεtrans
. (13)

Equation (13) indicates that the individual front velocity
decreases as the number of fronts increases. The problem
can be approached analytically, assuming specific cycling
conditions and constant number of interfaces (see [31, 32]).
In this work, a finite difference scheme was adopted instead,
with the aim of extending the analysis to more general
situations where the integration of the analytical expressions
would be difficult if not impossible to obtain. Therefore, the
specimen length and the time are discretized with increments
1x and1t, respectively. After minor algebraic manipulations,
equation (11) is reformulated into the following explicit
equation in differences:

1Tm+1
i =

k

ρC

1t

12x

(
Tm

i+1 − 2Tm
i + Tm

i−1

)
+

h

ρC

P

At
1t
(
Tamb − Tm

i

)
+

Lat

ρC

(
Zm+1

i − Zm
i

)
. (14)

Figure 2. Temperature profiles θ(x) and trend of θint obtained for
Vext = 1 mm min−1.

In this way, the temperature of a node i at instant
m is obtained as a function of phase portion change and
the temperature in the same and the adjacent volumes
corresponding to the previous instant m − 1. For this
analysis, it is assumed that only one interface can pass
through a domain each time the material is transforming.
The interface position is evaluated at each instant of time
using equation (13). In order to avoid numerical oscillations,
1t must be tuned such that the interface advance in each
step is 1x. Another condition that has to be fulfilled by the
increments 1t and 1x in order to assure general numerical
stability of the explicit method is the following [34]:

k

ρC

1t

12x
< 0.5. (15)

With these thermal considerations in mind, the effects
arising during stress induced transformations in superelastic
NiTi wires under non-isothermal conditions were studied.
Specimens considered have a diameter of 2.5 mm and a
length of 100 mm. The following values were adopted
for the NiTi properties: k = 18 W mK−1 (austenite) and
8 W m−1 K−1 (martensite), C = 871 J kg−1 K−1, ρ =

6500 kg m−3 and Lat = 100 MJ m−3 (assumed constant) [32].
The complete plateau strain for the calculus of ν was
set at 0.06. Temperature changes were normalized by the
temperature change associated with the adiabatic condition,
i.e., for the situation where the heat of transformation is
completely converted into sensible heat:

θ =
T − Tamb

Lat/ρC
. (16)

A value θ = 1 thus represents the adiabatic condition which
corresponds to a maximum deviation from Tamb of 18 K,
considering the thermo-physical properties given above.

For the numerical treatment the specimen was repre-
sented by a mesh with 200 nodes. The boundary temperatures
at the two longitudinal extremes of the wire were fixed at
Tamb (Dirichlet boundary conditions). Figure 2 shows results
obtained for a Vext = 1 mm min−1 (ν = 0.3 mm s−1)

and a film coefficient h = 30 W m−2 K−1 corresponding
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Figure 3. θint trends (black circles) and θ(x) profiles (color continuous lines) for several Vext values ranging from 0.1 to 100 mm min−1

under different convection conditions: (a) h = 30 W m−2 K−1; (b) h = 130 W m−2 K−1. (Figures over the θint curves indicate Vext values in
mm min−1.)

to natural convection conditions. Continuous lines represent
temperature profiles θ(x) at different time instants. Three of
these curves (A, B, C) have been emphasized using wider red
lines. The open circles in figure 2 represent the development
of the temperature θint at the interface position as it sweeps the
specimen from left to right. A steady state characterized by a
temperature θstd ≈ 0.7 is reached after the interface displaced
a length of approximately 40 mm. Similar conclusions have
been found in the work of Messner et al [31], where the
length necessary for reaching steady state was denoted as
lcrit. It should be noted however that toward the right end
position (figure 2) the temperature decreases abruptly due
to the imposed boundary condition. Because of this, the
temperature profile shows higher temperatures behind the
interface position in this region (curve C).

In figure 3(a), several θint trends were included for
Vext values ranging from 0.1 to 100 mm min−1 and a film
coefficient h = 30 W m−2 K−1. It can be observed that, as
Vext increases, higher θstd values are computed. It can be seen
that for Vext = 10 mm min−1 an adiabatic situation is already
reached. In this case θstd = 1. Analysis of the figure also shows
that the transient stage is more extended for intermediate
values of Vext, while for Vext = 100 mm min−1 a θstd = 1
is reached almost instantaneously. In figure 3(b) the analysis
performed in figure 3(a) is repeated, but now considering a
film coefficient h = 130 W m−2 K−1. For similar values of
Vext, lower values of θstd and a shorter transient stage are now
obtained.

Figures 3(a) and (b) also include representative temper-
ature profiles θ(x) (colored continuous lines) for every value
of Vext once the corresponding θstd has been reached. At low
Vext values, the θ(x) are quite symmetric with respect to the
interface position. This situation evolves as Vext increases. For
Vext = 100 mm min−1 the profiles can be approximated with a
step function at the interface position. For this condition, there
is not enough time for the heat released at the interface to be
dissipated and local adiabatic conditions are therefore reached
(i.e., latent heat is transformed completely into sensible heat
at the interface).

Figure 4(a) shows a complete picture of the effect of
both Vext and h on the values of θstd. Results were grouped
according to the value of the film coefficient h considered.
For each curve, the range of Vext values for which the situation
can be assumed as isothermal (θstd ≈ 0) or adiabatic (θstd ≈ 1)
can be identified. They are separated by a transition range that
covers approximately 1.5 decades in Vext. It can be seen that
increasing the h value shifts this transition toward higher Vext

values, as expected.
Similar behavior will be obtained for the magnitude of the

temperature change in the case of the reverse transformation
with the deviations being now negative due to the endothermic
character of the reverse martensitic transformation. For an
A–M interface which at a certain time will have an associated
temperature θint, equation (9) indicates that the forward
transformation will keep occurring at that interface whether
the applied stress reaches a value σA–M = σA–Mref + β(Tint −

Tref) with Tint and θint related by equation (16). A similar
conclusion can be reached for the reverse transformation
where σM–A and Tint are now related by equation (10).
Thus, it can be seen that the overloading (underloading)
stress necessary for the forward (reverse) transformation
is proportional to θint. The thermal effect contribution to
the dissipated energy would be assessed as twice the area
under the θint curve. It would be then expected that the
dissipated energy exhibits the type of Vext dependence shown
in figure 4(a). This evaluation, though simple, is not correct,
because in an actual complete cycle, the initial condition for
the reverse transformation is not simply Tamb. Actually, the
temperature level depends on the final temperature profile
developed during the previous forward transformation and on
the time elapsed during elastic unloading before reaching the
corresponding critical stress for the reverse transformation.
Therefore, an appropriate assessment of the thermal effect
contribution has to be done in terms of the following integral
evaluated over a complete cycle:

I =
∮
θintdZ. (17)

6



Smart Mater. Struct. 22 (2013) 035017 H Soul and A Yawny

Figure 4. Thermal effects calculated as a function of Vext and different values of film coefficient h. (a) Stationary interface adimensional
temperature. (b) Total thermal contribution to the hysteresis energy given by the integral I.

This integral was evaluated numerically and it includes
the forward transformation, a period of time (inversely
proportional to Vext) corresponding to the elastic unloading
and the reverse transformation. Results are represented in
figure 4(b). The curves with circles show that the integral
I exhibits a maximum value for intermediate values of Vext
and that maximum location and its value depends on the
convective conditions. The existence of this maximum is an
experimental aspect correctly reproduced by the model so far
developed.

The model predicts an asymmetric contribution to the
hysteresis; i.e., on the adiabatic side (on the right of
the maximum) the integral I reaches higher values than
on the isothermal side of the maximum (on the left of
the maximum). These last features however are contrary
to the more symmetric bell shaped curves obtained from
experiments reported in [19–22] where the dissipated energy
on the adiabatic side drops to values as low as, or even
lower than, on the isothermal side. The observed experimental
dependence on Vext can be understood if the transformation
is assumed to proceed in a homogeneous rather than a
localized way in the range of high Vext values. This was
shown by He et al [28] employing an analytical model.
The numerical algorithm proposed in the present work can
be easily adapted for the description of a homogeneous
transformation, and by doing so the bell shaped curves could
also be reproduced. This can be appreciated in figure 4(b),
where curves with open triangle symbols were included to
represent this condition. Therefore, the strain rate dependence
of the hysteresis seems to be explained more satisfactory by
a homogeneous transformation model in the high Vext range.
At first, this explanation for this behavior can be considered
contrary to the experimental evidence, which clearly indicates
that stress induced transformations in NiTi proceed in a
localized manner. This discrepancy is however only apparent
because there is still an important fact that has not yet been
considered. This is related to the occurrence of nucleation
events, which increases the number of active interfaces as
Vext increases. A high number of dispersed active interfaces
would closely correspond to a situation of homogeneous
transformation. In such situations, the individual interfaces

would move more slowly for the same global transformation
rate according to equation (13).

4. Criterion for the nucleation of a new phase
domain

To this point, the proposed model could be implemented
if the number and the initial position of interfaces are
given. No mention has been made, so far, of where and
when new transformations fronts appear. As stated in the
introduction section, the localized character of the stress
induced transformation has its origin in the particular stress
state generated around an A–M interface. The consequence
of this is that under uniaxial quasi-static conditions the
applied stress required to nucleate an additional isolated
martensite plate is higher than the stress needed to propagate
a preexisting interface. The necessary overstress has a
magnitude 1σnuc. For completeness, the criteria adopted in
the present work for the assessment of1σnuc under isothermal
conditions (quasi-static straining) will be explained in what
follows. First, it is worthwhile to mention here that in the
case of SMA superelastic wires the nucleation of martensite
already occurs during the gripping procedure due to the
associated stress concentration in the contact zone between
specimen and grips. Therefore, once the critical stress σA–M
is reached, the preexistent fronts propagate into the specimen.
Because of this, no clear detection of nucleation is usually
observed under direct gripping conditions. If, instead of using
the plain wire, the specimen is thinned in the central part,
favorable conditions for nucleation events taking place out of
the grip zone could be obtained. In this way 1σnuc can be
evaluated. Figure 5 shows the results of such an experiment
where a superelastic NiTi wire of diameter 2.5 mm and 70 mm
in length (SAES Getters) was used. A central part thinned
dog-bone specimen was obtained by spark eroding. The
initial diameter was reduced to 1.75 mm in a 35 mm central
part. An extensometer 25 mm in gage length was attached
to the reduced section for strain measurement. In order to
avoid the influence of thermal effects, the test was conducted
at Vext = 0.1 mm min−1, which, according to previous
experimental evidence, was shown to approach the isothermal

7



Smart Mater. Struct. 22 (2013) 035017 H Soul and A Yawny

Figure 5. Superelastic cycle obtained from a NiTi dog-bone
specimen. Martensite nucleates in the thinned zone, needing an
overstress 1σnuc = 70 MPa.

regime for the present test conditions. A clear overstress
1σnuc value of approximately 70 MPa was obtained from
these experiments, as is illustrated in figure 5. In this case,
the reverse transformation was induced before the forward
transformation was completed, thus resulting in the absence
of an austenite nucleation event in this case. Results of similar
experiments performed in a fully transformed specimen
indicate that a value of similar magnitude is obtained for the
understress necessary for austenite nucleation. Considering
a Clausius–Clapeyron coefficient β = 7 MPa K−1, an
equivalent temperature nucleation overheating (undercooling)
of 10 K will be necessary for the nucleation of a new
martensitic (austenitic) domain.

With the value of 1σnuc determined for the isothermal
conditions, the criterion for the nucleation of a new phase
domain under dynamic conditions can be formulated: the
nucleation condition will be reached when the difference
between the temperature Tint at a propagating interface
temperature and the minimum temperature Tcool in an
austenite domain is equal to the equivalent temperature
nucleation threshold of 10 K. Once the nucleation of a new
domain occurs, two new active interfaces are added to those
already existing. Analogously, during reverse transformation,
the temperature will decrease around a propagating interface
until an equivalent critical undercooling of 10 K is reached
with respect to a hotter position in the martensitic phase. In
this case, a new austenite domain will be nucleated.

5. Residual strain

The last aspect of the model to be explained has to do with
the residual strain appearing at the end of the cycle in figure 5.
Even though the origin and evolution of such strains are not
among the main explored issues in this stage of the model,
they were included for completeness with the aim of obtaining
more realistic σ–ε curves. Residual strain εr is included as a

new component of the total strain, by modifying equation (4)
in the following way:

ε = σ/Eeff + Zεt + εr. (18)

The introduction of εr makes it necessary also to modify
equation (6) for the evaluation of phase portion Z. Thus

Z (σ, ε − εr) =
(ε − εr)− (σ/EA)

(σ/EM)− (σ/EM)+ εt
. (19)

The accumulation of this strain is related to the decrease in
transformation stresses frequently observed during the first
hundred cycles, referred to as the stabilization stage (see
e.g. [22]). Both effects are known to evolve asymptotically
with cycling. In the present work, attention will be focused
only on the first complete cycle. In this case, εr can be
calculated as

εr = εrmaxZmax (20)

where ermax is the maximum residual strain corresponding to a
fully transformed specimen and Zmax is the maximum reached
phase portion. More detailed information can be found in [35].

6. Implementation of the thermomechanical model

With the basic mechanical model, the numerical scheme for
the temperature field evaluation and the criterion for new
phase domain nucleation as a background, it is possible to
formulate an improved 1D superelasticity model able to deal
with the thermomechanical coupled response. The calculus
procedure for evaluation of the superelastic response can be
summarized as follows.

(1) Evaluation of temperature field using equation (14).

(2) Updating of critical stresses σA–M and σM–A using
equations (9) and (10). The value of T is assumed to
correspond to the temperature of the interface which has
the lowest (highest) temperature for the computation of
σA–M (σM–A).

(3) Seeking for nucleation events. It is evaluated whether
a temperature difference −10 K (+10 K), equivalent
to 1σnuc = 70 MPa (−70 MPa), exists between the
temperature of the hottest (coolest) interface evaluated in
step 2 and the temperature of any austenite (martensite)
node. If this condition is fulfilled, the nucleation of a
new domain will take place (instead of the propagation
of one of the existing interfaces). If a nucleation event is
determined to occur, σA–M and σM–A have to be re-defined
according to the temperature at the position where the new
interfaces appear.

(4) Computation of a new σ–ε state. It is evaluated whether
a new strain increment 1ε can be accommodated either
elastically or through a variation of the phase portion Z.
These will be achieved by the propagation of one of the
interfaces selected in step 2 or the nucleation of a new
domain determined in step 3. Eventually, the computed
phase changes will be the input for the temperature
evaluation of the next calculus cycle.

8
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Figure 6. Simulated σ–ε curve. Arrows denote successive
nucleation and collapse events. Vext = 1.5 mm min−1, h =
15 W m−2 K−1,L = 500 mm, d = 2.5 mm,Tamb = 25 ◦C.

7. Results

In first place, the model was implemented to study nucleation
events for different values of Vext and environment conditions.
By adopting a discretization of N = 400 nodes for a wire
of length L = 500 mm and diameter d = 2.46 mm, for a
maximum strain of 0.08, several superelastic cycles were
simulated. The following materials properties were assumed:
EA = 32 MPa,EM = 25 GPa, εt = 0.05; transformation
stresses for reference temperature Tref = 25 ◦C, σA–Mref =

500 MPa and σM–Aref = 100 MPa; Tamb = 25 ◦C. The
maximum residual strain value εrmax was set at 0.0015. For
these simulations a film coefficient h = 15 W m−2 K−1,
corresponding to stagnant air, is assumed. Figure 6 shows the
σ–ε curve obtained for a cycle performed with an imposed
Vext = 1.5 mm min−1, while in figure 7 the temperature
profile T(x) and the local phase fields Z(x) during the
complete cycle are included as colored contours (figures 7(a)
and (b), respectively). Corresponding state points in figures 6
and 7(a) and (b) were identified (points 1 to 10) to facilitate
the analysis. Initially, an interface is introduced at the lower
end of the specimen. Its preexistence is assumed due to
the stress state caused by the clamps. This interface starts
moving upwards into the specimen length as soon as the stress
resulting from the imposed displacement reaches the critical
stress σA–M = σA–Mref = 500 MPa given by equation (9)
(initially, T = Tamb = 25 ◦C = Tref). At point 1 (357 s),
immediately after the transformation onset, a second interface
nucleates at the upper end of the specimen. At point 2
(530 s), the nucleation of two new interfaces take place. Thus,
four interfaces move now until point 3 (840 s), where two
additional interfaces nucleate. It can be appreciated from the
slope of the limiting lines of the phase fields in figure 7(b)
that each time a new interface appears the mean interface
velocity decreases. At point 4 (1134 s) the collapse of two
fronts occurs, while at point 5, close to the end of the forward
transformation, another two fronts collapse. The occurrence of
all the mentioned nucleation/collapse events is associated with
a corresponding stress step in the σ–ε curve shown in figure 6.
From point 4 on, the temperature profiles of the different
fronts begin to overlap and temperatures as high as 48 ◦C are

Figure 7. (a) Temperature and (b) phase portion Z fields
corresponding to the simulation of the cycle of figure 6:
Vext = 1.5 mm min−1, h = 15 W m−2 K−1. L = 500 mm,
d = 2.5 mm, Tamb = 25 ◦C (the right inset in (a) corresponds to the
temperature scale in ◦C).

reached. During unloading, the reverse transformation starts
at point 7 (2000 s). The fronts which did not collapse at
the end of the straining stage now reverse their movement.
At point 8 (2230 s), the nucleation of an austenite domain
occurs. Two new fronts are then active. At point 9 (2400 s), the
collapse of two interfaces occurs. The reduction in the number
of active interfaces produces an increase in the velocity of
the remaining interfaces. A corresponding decrease in stress
is observed (figure 6). At point 10 (2720 s), a new austenite
nucleation event occurs. Two new additional interfaces now
participate in the reverse transformation process. It can be
seen that toward the end of the unloading stage the collapse
of two of the interfaces results in a temperature decrease of
11 ◦C with respect to Tamb.

The effect of increasing the velocity Vext from 1.5 to
100 mm min−1 is now considered. Figure 8(a) shows the
simulated mechanical response while figure 8(b) illustrates
the corresponding temperature field evolution. As in the
previous case, a clear correspondence between the features
associated with the nucleation events in both figures can be
appreciated. It can be seen that initially, until approximately
13.5 s, the nucleation events are regularly distributed along
the length of the specimen. After this, the thermal interaction
between the individual fronts results in a rather homogeneous
temperature profile which inhibits further nucleation events.
This corresponds to the monotonic increase in stress observed

9
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Figure 8. Simulated superelastic cycle at
Vext = 100 mm min−1, h = 15 W m−2 K−1,L = 500 mm, d =
2.5 mm,Tamb = 25 ◦C. (a) σ–ε curve. (b) Temperature field
evolution during the cycle. (The right inset in (a) corresponds to the
temperature scale in ◦C.)

in the second half of the forward transformation branch in
figure 8(a). The maximum temperature reached at specific
positions during forward transformation is now close to
60 ◦C. It is important to note here that this 35 ◦C deviation
from Tamb is higher than the maximum deviation of 18 ◦C
obtained in the case of the single interface propagating under
adiabatic conditions described in section 3. During the reverse
transformation, the temperature decreases to 12 ◦C at the
points where interfaces collapse.

In figure 9, experimental and numerical results corre-
sponding to σ–ε curves for three different values of Vext

are compared. Commercial superelastic NiTi wires (SAES
Getters) with a diameter d = 2.46 mm were used in the
experiments. For the numerical simulations a mesh with N =
200 nodes was employed. A value of h = 15 W m−2 K−1 (still
air) was considered appropriate in this case. It can be seen
that there is a reasonable agreement between the experimental
and the simulated σ–ε behavior. The implemented model
is able to reproduce the main qualitative aspects of real
cycles, including the presence of stress drops associated with
the appearance of new fronts and the inclination of the
plateau, which is related to the temperature variation due
to self-heating during forward transformation or self-cooling
during reverse transformation effects.

Finally, the model was applied to the study of
the relationship between the strain rate and the number
of transformation domains. Results from previous work
performed by Zhang et al [17] and He et al [28] were
used here as benchmark cases. These authors studied both
experimentally and analytically the strain rate dependence
of the hysteresis. To facilitate the comparisons, the same
specimen geometry and parameters were considered, i.e., a
NiTi strip 30 mm in length, 2.6 × 0.5 mm in cross section,
1σnuc = 18 MPa, εt = 0.047 and h = 10 W m−2 K−1.
Values for σA–Mref = 400 MPa and σM–Aref = 140 MPa
were taken from results corresponding to the isothermal
experiments reported in figure 9.1 from [17]. For the
simulations performed in the present work, Vext values in
the range from 0.05 to 600 mm min−1 were employed. The
calculated σ–ε curves are shown in figure 10(a). Strain rate
values were also included in the figure; they were calculated
from Vext and the length of the specimen to allow a direct
comparison with results shown in figure 9(a) from [17].
The shape of the calculated σ–ε curves reproduces the
trends observed experimentally. Figure 10(b) shows the mean
value of the mean stress hysteresis plotted as a function
of the velocity Vext (alternatively, strain rate) for h values
of 10 and 100 W m−2 K−1. Following the procedure
described in [17], the mean stress hysteresis was computed
by dividing the whole area enclosed in the superelastic loop
by the transformation strain. The calculated values exhibit
reasonable agreement with those obtained experimentally.

It is worthwhile noticing here that the bell shape
curve associated with the thermal contribution dependence
on Vext and the homogeneous transformation analysis of
section 3 is now obtained under the assumption of localized
transformation and a varying number of interfaces.

The model implemented in the present work allows
calculation of different parameters associated with the
pseudoelastic behavior under dynamic conditions. Figure 11
shows the maximum number of active interfaces as a function
of Vext for the case just described. It can be seen that, in
the intermediate range, the calculated results are in line with
the 0.5 potential dependence obtained from the experiments
reported in [17]. They are also in line with the results
corresponding to the analytical solutions presented in [36]. As
can be expected, the 0.5 potential dependence breaks down as
Vext gets higher due to the exhaustion of the space available
for further nucleation events. This is related to the finite
spatial width associated with an interface, a feature which
is adequately captured by the model proposed in the present
work.

8. Summary and conclusions

A thermomechanical model intended to be used as a
design tool for applications of the superelastic effect
exhibited by 1D NiTi shape memory elements (wires
and ribbons) was developed. The basic mechanical model
assumes the global response of a specimen results from
the serial connection of austenite and martensite elemental
volumes and includes the temperature dependence of the
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Figure 9. Comparison between experimental and simulated σ–ε curves for NiTi wires of d = 2.46 mm. (a) Vext = 1 mm min−1,
L = 91 mm. (b) Vext = 10 mm min−1, L = 75 mm. (c) Vext = 15 mm min−1, L = 94 mm. Simulations were made with a coefficient
h = 15 W m−2 K−1 and Tamb = 25 ◦C.

Figure 10. Simulated superelastic cycles with Vext values ranging from 0.05 to 600 mm min−1. Specimen geometry and parameters were
taken from the experimental work reported in [17]. (a) σ–ε curves obtained with a film coefficient h = 10 W m−2 K−1. (b) Mean stress
hysteresis of the cycles as a function of Vext or the corresponding strain rate for two ambient conditions: h = 10 W m−2 K−1 (still air) and
h = 100 W m−2 K−1 (5 m s−1 air flow velocity).

critical transformation stresses. This basic mechanical model,
together with a scheme for calculating the temperature
along the specimen, a criterion for the nucleation of
new transforming/retransforming domains and a simplified
algorithm to compute residual strains, were assembled to

constitute a coupled 1D thermomechanical model of the
superelastic behavior.

Numerical predictions obtained with the model were con-
trasted with experimental results from different sources. The
simulations performed allowed rationalization of different
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Figure 11. Maximum number of active interfaces as a function of
Vext obtained from simulations.

features observed in experiments and their dependence on
strain rate and environment conditions.

Considering its simplicity and the wide range of
conditions of applicability, the model introduced in the present
work constitutes an interesting tool to be used in a design stage
for the evaluation of different properties associated with the
superelastic effect exhibited by NiTi shape memory alloys.
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