
Noname manuscript No.
(will be inserted by the editor)

Integer Programming Models for the Routing and
Spectrum Allocation problem*

Federico Bertero · Marcelo Bianchetti ·
Javier Marenco

Received: date / Accepted: date

Abstract One of the most promising solutions to deal with huge data traffic
demands in large communication networks is given by flexible optical network-
ing, in particular the flexible grid (flexgrid) technology specified in the ITU-T
standard G.694.1. In this specification, the frequency spectrum of an optical
fiber link is divided into narrow frequency slots. Any sequence of consecutive
slots can be used as a simple channel, and such a channel can be switched in
the network nodes to create a lightpath.

In this kind of networks, the problem of establishing lightpaths for a set of
end-to-end demands that compete for spectrum resources is called the routing
and spectrum allocation problem (RSA). Due to its relevance, this problem
has been intensively studied in the last couple of years. It has been shown to
be NP-hard [2, 9] and several models and formulations have been proposed,
leading to different solution approaches.

In this work we explore integer programming models for RSA, analyzing
their effectiveness over known instances. We resort to several modeling tech-

* Partially supported by D-TEC 0017/13 project.

F. Bertero
Instituto de Ciencias - Universidad Nacional de General Sarmiento
Juan Maŕıa Gutiérrez 1150, 1613 Los Polvorines, Buenos Aires
Tel.: +5411 4469-7528
E-mail: fbertero@ungs.com

M. Bianchetti
Instituto de Ciencias - Universidad Nacional de General Sarmiento
Juan Maŕıa Gutiérrez 1150, 1613 Los Polvorines, Buenos Aires
Tel.: +5411 4469-7528
E-mail: mbianchetti@dc.uba.ar

J. Marenco
Instituto de Ciencias - Universidad Nacional de General Sarmiento
Juan Maŕıa Gutiérrez 1150, 1613 Los Polvorines, Buenos Aires
Tel.: +5411 4469-7528
E-mail: jmarenco@ungs.edu.ar

2 Federico Bertero et al.

niques, in order to find natural formulations of this problem. Since integer
programming techniques are known to provide successful practical approaches
for several combinatorial optimization problems, the aim of this work is to
explore a similar approach for RSA.

Keywords flexgrid optical networks · routing and spectrum allocation ·
integer programming · networks

Mathematics Subject Classification (2000) 90C10 · 94A05

1 Introduction

Optical networks represent a crucial infrastructure for our modern informa-
tion society. Such networks use light as the communication medium between a
sender node and a receiver node. For over two decades, the so-called wavelength-
division multiplexing approach (WDM) has been the most popular technology
in fiber-optic communications. WDM combines multiple wavelengths to simul-
taneously transport signals over a single optical fiber, and therefore enables
capacity multiplication of the network. However, this technology must select
the wavelengths from a fixed grid of frequencies specified by the International
Telecommunication Union (ITU) and in general leads to an inefficient use of
spectral resources.

In response to the sustained growth of data traffic volumes in communica-
tion networks, flexgrid optical networks have been introduced in the last few
years, with the aim of enhancing the spectrum efficiency and thus enlarging
network capacities. In flexgrid optical networks, the frequency spectrum of an
optical fiber is divided into narrow frequency slots of fixed spectrum width.
Any sequence of consecutive slots forms a channel that can be switched in the
network nodes to create a lightpath (i.e., an optical connection). Flexgrid opti-
cal networks enable capacity gain by allocating minimum required bandwidth.

Following this approach, the elastic spectral resource can be represented
using a number of contiguous frequency slots as shown in Figure 1.

The routing and spectrum assignment problem (RSA) [2, 3] consists in es-
tablishing the lightpaths for a set of end-to-end traffic demands that are ex-
pressed in terms of the number of required slots. Since lightpaths are deter-
mined by a route and a selected channel, RSA involves finding a route and
assigning frequency slots to each demand. To comply with the ITU recommen-
dation, the following constraints must to be respected in this setting:

– slot continuity: the slots assigned to a certain demand must remain the
same on all the links of the corresponding route;

– slot contiguity: the slots allocated to each demand must be contiguous;
– non-overlapping slot: a slot can be assigned to various demands if the

routes assigned to these demands do not share any link.

We now define RSA formally. Given a directed graph G = (V,E) repre-
senting the optical fiber network, a set of demands D = {(si, ti, vi)}ki=1 –such

IP Models for the RSA problem 3

Fig. 1: (a), (b) Optical spectrum divided into frequency slots of fixed 12.5Ghz
size. (c) Channels formed by sequences of consecutive slots

that each demand i ∈ {1, . . . , k} has a source si ∈ V , a target ti ∈ V , and
a volume vi ∈ Z+– and a fixed number S ∈ Z+ of available slots, RSA con-
sists in establishing a lightpath associated to each demand, in such a way that
lightpaths do not overlap. In other words, each demand i ∈ {1, . . . , k} must be
assigned a path Pi ∈ E in G between si and ti and an interval Ii consisting of
vi consecutive slots in [1, S] in such a way that if Pi ∩Pj 6= ∅ then Ii ∩ Ij = ∅,
for any two demands i 6= j (i.e., if the paths assigned to i and j share an arc,
then the assigned slot intervals must be disjoint).

Figure 2 presents an example of the routing and spectrum allocation opera-
tion in a 4-node network. The instance asks for an assignment of a route and a
sequence of contiguous slots for three demands given as follows: d1 = (v1, v3, 2),
d2 = (v2, v4, 1) and d3 = (v1, v2, 3).

Many objective functions can be considered for RSA. It is common to try
to minimize the highest used slot as well as the amount of used links. If the
volume of the demands is not fixed by the constraints, then it is also natural
to look for the minimum amount of used slots (and this is going to force to use
just the volume of each demand). In this work we take as objective function
the minimization of the total amount of edges used within all demands, namely
the sum of the lengths of all the paths in the solution. This objective function
avoids the generation of spurious paths in optimal solutions, since such a
solution as few links as possible.

Since RSA is NP-hard, no polynomial-time algorithms for solving this
problem to optimality are known, and it may be the case that no such al-
gorithms exist (namely, if P 6= NP). In this case we can resort to heuristics
but, if optimal solutions are needed, then exact algorithms may have imprac-
tical running times if the instances are not small-sized. In order to tackle
problem sizes of real-world applications to optimality, algorithms have to be
designed that rely on a deeper insight of the problem structure. Integer lin-

4 Federico Bertero et al.

Fig. 2: Example of the routing and spectrum allocation operation for demands
d1 = (v1, v3, 2), d2 = (v2, v4, 1) and d3 = (v1, v2, 3)

ear programming (ILP) approaches, consisting of an in-depth investigation of
polytopes associated with a combinatorial structure and the application of
linear-programming-based cutting plane techniques, have been very successful
in recent years for many combinatorial optimization problems. This motivates
us to explore integer programming ideas for RSA.

The remainder of this paper is organized as follows. In Section 2 we provide
the notation used throughout this work, then we show two ILP formulations
taken from the literature that were used as a reference in the comparison pre-
sented in Section 3. We also present our ILP formulations for this problem,
based on different modeling ideas that, to the best of our knowledge, have not
been explored in previous works. In Section 3 we show performance evalua-
tions of the presented ILP formulations. In order to do that, in the first part
of the section we provide the computational results of testing the presented
formulations over a big set of random generated instances. In the second part,
we study the performance of our formulations and the ones from the literature
over realistic instances. Finally, Section 4 closes the article with concluding
remarks and lines for further development.

2 Integer programming formulations

In this section we present several ILP formulations for RSA. It must be noted
that all formulations model the same variation of RSA, in spite of the fact
that every model resorts to different sets of variables and constraints, hence
has associated a different polytope. This is a typical practice in ILP (see, e.g.,
[1,5,6]): it is usually possible to provide more than one formulation for a given
problem, and their practical performance cannot be predicted beforehand in a
precise way. This leads the practitioner to state alternative ILP formulations
for the same problem and to empirically evaluate running times in order to

IP Models for the RSA problem 5

evaluate them from a computational viewpoint. It is customary to employ the
same objective function in all the considered models, in order to achieve a fair
comparison.

As a consequence of such experiments, it is usual to choose the best-
performing formulation, either in terms of the running time needed to achieve
optimality or in terms of the optimality gap after a prespecified time limit.
Even if it is not possible to achieve optimal solutions within practical running
times, the formulations with the best optimality gaps provide a good starting
point for the development of heuristics since the obtained feasible solutions
have the best optimality guarantees. These considerations deem appropriate
the development of alternative formulations and their empirical evaluation,
which is the main focus of this work.

Figure 3 introduces the notation used throughout this work, including sets,
constants, and variables.

Sets:
V set of network nodes,
E ⊆ V 2 set of directed arcs (links),
D set of demands,
δ−(j) ⊆ E set of incoming arcs to node j,
δ+(j) ⊆ E set of outgoing arcs from node j.
E(j) ⊆ E set of arcs incidents to node j.

Constants:
S ∈ Z+ amount of available slots per arc,
v(d) ∈ {1, . . . , S} volume of demand d,
s(d) ∈ V source of demand d,
t(d) ∈ V destination of demand d.

Variables:
yde Binary. Equal to 1 if arc e is assigned to demand d, and 0 otherwise.
ld Positive integer. Contains the leftmost slot index assigned to demand d.
rd Positive integer. Contains the rightmost slot index assigned to demand d.
pdd′ Binary. Equal to 1 if for two demands d and d′, rd < ld′ , and 0 otherwise.
ndd′ Binary. Equal to 1 if the paths assigned to demands d and d′ share an arc

and rd < ld′ , 0 otherwise.
rds Binary. Equal to 1 if s is the first slot assigned to the demand d, and 0 otherwise.
lds Binary. Equal to 1 if s is the last slot assigned to the demand d, and 0 otherwise.
xds Binary. Equal to 1 if demand d uses slot s, and 0 otherwise.
udes Binary. Equal to 1 if demand d uses slot s over the link e, and 0 otherwise.
ldes Binary. Equal to 1 if demand d uses the slot s over the link e, and s is the starting

slot assigned to d, and 0 otherwise.
ads Binary. Equal to 1 if demand d uses slots that are greater than s, and 0 otherwise.
bds Binary. Equal to 1 if demand d uses slots that are smaller than s, and 0 otherwise.

Fig. 3: Notation table

6 Federico Bertero et al.

2.1 Existing formulations

Several integer programming formulations for RSA can be found in the litera-
ture [2,4,7–9]. In most of them heuristics are presented and in order to reduce
the complexity of ILP formulations a finite set of candidate paths is precom-
puted. In these last cases, to solve the problem to optimality precomputed
sets must contain all allowable routes for each demand or column generation
techniques must be applied.

Since we are interested in obtaining global optimal solutions with compact
ILP formulations, we present two compact formulations taken from the stated
literature that do not use predefined subsets of routes. We adapt these formu-
lations in order to use the same objective function than the ILP formulations
introduced in this work, so the computational comparison is fair.

Node-Link formulation involving slots (NLS)

This formulation is one of those presented in [8], adapted to the variables
names we use in this work. The authors associate arcs and demands in order
to define the paths, and the relation between demands and slots is modeled
by partitioning the available slots for each demand into three disjoint groups:
the non-used lower slots, the used slots and the non-used greater slots. In
order to get these groups, for each demand d ∈ D and each arc e ∈ E, the
binary variable yde is used in such a way that yde = 1 if and only if the path
associated to the demand d uses the arc e. Also, for each demand d ∈ D they
use the binary variables ads, xds, bds, in such a way that ads = 1 if and only if
the demand d uses slots greater than s, bds = 1 if and only if the demand d
uses slots lower than s and xds = 1 if and only if the demand d uses the slot s.
In this setting, a feasible solution of RSA is an assignment of values to these
variables satisfying the following constraints.

IP Models for the RSA problem 7

min
∑
d∈D

∑
e∈E

yde (1)

s.t.∑
e∈δ−(s(d))

yde −
∑

e∈δ+(s(d))

yde = 1 ∀d ∈ D (2)

∑
e∈δ−(j)

yde −
∑

e∈δ+(j)

yde = 0
∀d ∈ D

∀v ∈ V \ {s(d), t(d)} (3)

yde + xds + yd′e + xd′s ≤ 3
∀d, d′ ∈ D, d 6= d′,

∀e ∈ E,
∀s ∈ {1, . . . , S}

(4)

ads ≥ ad,s+1 ∀d ∈ D, ∀s ∈ S \ {S} (5)

bds ≥ ad,s−1 ∀d ∈ D, ∀s ∈ S \ {1} (6)

xds + ads + bds = 1 ∀d ∈ D, ∀s ∈ S (7)

B
∑
s∈S

xds ≥ v(d) ∀d ∈ D (8)

The objective function (1) aims to minimize the number of used links. The
following two constraints, (2) and (3), express the classic law of conservation
of flows. Constraints (4) assures that there not exists a slot shared by two
demands that use the same link. While constraints (5) and (6) assure that
channels are formed by consecutive slots, constraint (7) ensures the demand
satisfaction.

Node-Link CA formulation (NL-CA)

This formulation is adapted from the one presented in [7], which is based on
channel assignment removing the spectrum contiguity from RSA in order the
reduce the problem complexity. In this formulation, the authors precompute
all sets of candidate channels formed by consecutive slots. To find an optimal
solution it is necessary to consider all possible channels for each demand (i.e.
all channels of size v(d) that can be defined in {1, . . . , S} for each demand d).
For the sake of consistency, we present this model in terms of the variables used
in this work, so we replace the w−variables employed in [7] by the l−variables
considered in this work, without altering the model. Such an exchange in
possible since assigning the channel [s, . . . , s + v(d) − 1] to the demand d is
equivalent to asserting that s is the first slots assigned to d. About the objective
function, we removed the z−variables -used to indicate opened links- and a
family of constraints that set these variables to 1 when a link is used, so the
comparison with the models presented in this work is fair. In this setting, a
feasible solution of RSA is an assignment of values to these variables satisfying
the following constraints.

8 Federico Bertero et al.

min
∑
d∈D

∑
e∈E

S−v(d)+1∑
s=1

ldes (9)

s.t.∑
e∈E(v)

S−v(d)+1∑
s=1

ldes = 1 ∀d ∈ D, v ∈ {s(d), t(d)} (10)

∑
e∈E(v)

S−v(d)+1∑
s=1

ldes ≤ 2 ∀d ∈ D, v 6∈ {s(d), t(d)} (11)

∑
e′∈E(d): e′ 6=e

ldes ≥ ldes
∀d ∈ D, ∀s ∈ {1, . . . , S − v(d) + 1},

v 6∈ {s(d), t(d)}, ∀e ∈ E(v)
(12)

The objective function (9) aims to minimize the number of used links. Con-
straints (10) - (12) compute the route through the optical topology and assign
a slot to the demands. The constraint (10) assures that only one slot is used
to transport the demand in any link incident to source and destination nodes.
Finally constraints (11) and (12) perform the routing in intermediate nodes
and implements the spectrum continuity constraint in intermediate nodes.

2.2 New formulations

RSA consists in establishing a route and a sequence of slots that respect the
given constraints, for each demand. We consider two natural ways of modeling
such a solution within an integer programming approach: either we represent
the routing with a set of variables and the slot allocation with a second set of
variables, or we represent both decisions with a single set of variables. We first
state the models that use a set of variables for the assignment of demands to
links and another for the assignment of demands to slots and then we present
the models using a single set of variables for the assignment of demands to
links and slots.

Inside each category, we also consider two ways of dealing with the demand-
channel assignment: on the one hand we make an explicit demand-slot-assignment
using variables that indicate if each slot is used by each demand. On the other
hand, we make an implicit demand-slot-range-assignment using variables that
indicate the first or/and last slot used by the demands. As the volume of the
demands is fixed, if for example the slot s is the first slot used by the demand
d, then the slots s, . . . , s + v(d)− 1 will be also assigned to the demand d.

According to the above comments, we can group our ILP formulations
into four families. On the one hand, the families resorting to different sets
of variables for the routing and the slot allocation are classified to be either
Demand-Range assignment formulations (DR) or Demand-Slot assignment for-
mulations (DS), depending on the distinction of the preceding paragraph. On

IP Models for the RSA problem 9

the other hand, the families containing a single set of variables are classified
to be either Demand-Slot-Link assignment formulations (DSL) or Demand-
Range-Link assignment formulations (DRL), again depending on the distinc-
tion of the preceding paragraph. Given their variables, the existing formula-
tions NLS and NL-CA can be classified into the families Demand-Slot (DS)
and Demand-Range-Link (DRL), respectively.

In each of the following subsections we present one of the families above
stated with a base ILP formulation associated and a set of modifications to
it. Each of these modifications generates a new model that will be tested and
analyzed in Section 3.

2.2.1 Demand-Range assignment formulations (DR)

Base formulation (DR-BF)

In this first model we associate arcs with demands in order to define the paths,
and we also model the first and last slot allocated to each demand. To this
end, for each demand d ∈ D and each arc e ∈ E, we use the binary variable
yde in such a way that yde = 1 if and only if the path associated to the demand
d uses the arc e. Also, for each demand d ∈ D we use the integer variables
ld, rd ∈ {1, . . . , S}, in such a way that the slot interval assigned to the demand
d is given by [ld, rd]. Finally, in order to ensure that intervals associated with
pairs of demands with non-disjoint paths do not overlap, we use the binary
variable pdd′ in such a way that for two demands d and d′, if rd < ld′ then
pdd′ = 1. In this setting, a feasible solution of RSA is an assignment of values
to these variables satisfying the following constraints.

min
∑
d∈D

∑
e∈E

yde (13)

s.t.∑
e∈δ−(j)

yde −
∑

e∈δ+(j)

yde =

 -1 if j = s(d)
1 if j = t(d)
0 otherwise

∀j ∈ V , ∀d ∈ D (14)

pdd′ + pd′d = 1 ∀d, d′ ∈ D, d 6= d′ (15)

rd + 1 ≤ ld′ + S(3− pdd′ − yde − yd′e)
∀d, d′ ∈ D, d 6= d′,

∀e ∈ E
(16)

rd − ld + 1 = v(d) ∀d ∈ D (17)

1 ≤ ld ≤ rd ≤ S ∀d ∈ D (18)

With the objective function (13) we aim to minimize the total number of
arcs in all assigned paths.

Constraints (14) ensure that the y-variables define a path from the source
to the destination of each demand, by imposing flow conservation constraints
to each node in the network. Note that (14) do not prevent the formation of

10 Federico Bertero et al.

spurious cycles, but we do not include constraints explicitly forbidding this
situation since the formation of cycles does not affect feasibility and the ad-
dition of (exponentially many) cycle-breaking constraints may affect solution
times.

Constraints (15) and (16) ensure that if the demands d and d′ share one
arc, then either rd < ld′ or rd′ < ld. Indeed, if d and d′ share the edge e, then
(15) implies that either pdd′ + yde + yd′e = 3 or pd′d + yde + yd′e = 3, thus
imposing the desired condition. Finally, constraints (17) and (18) ensure that
the number of slots assigned to each demand satisfies its required volume.

One slot bound (DR-OSB)

Constraints (17) allow us to eliminate the r-variables, since these variables can
be written in terms of the l-variables. Then, a re-statement of the previous
formulation can be obtained by replacing the constraints (17) and (16) with
the following ones.

ld′ ≥ ld + v(d)− S(3− pdd′ − yde − yd′e) ∀d, d′ ∈ D, ∀e ∈ E (19)

Alternative order variable (DR-AOV)

It could be useful to replace the p−variables with ones that help to ensure
that intervals associated with pairs of demands with non-disjoint paths do not
overlap. The variable ndd′ equals 1 if the paths assigned to d and d′ share an
arc and rd < ld′ . By assigning values to the variables satisfying (13), (14),
(17), (18), and the following constraints, we obtain a feasible solution to RSA.

ndd′ + nd′d ≥ yde + yd′e − 1
∀d, d′ ∈ D, d 6= d′,

∀e ∈ E
(20)

rd + 1 ≤ ld′ + S(1− ndd′) ∀d, d′ ∈ D, d 6= d′ (21)

Constraints (20) specify that if two demands d and d′ share a link (i.e.,
there exists some e with yde = yd′e = 1) then ndd′ = 1 or nd′d = 1. Constraints
(21) impose that if ndd′ = 1 then rd + 1 ≤ ld′ , therefore the slots assigned to
d′ have larger indices than the slots assigned to d, and if nd′d = 1 then the
opposite happens. As both events are disjoint, we cannot have ndd′ = 1 and
nd′d = 1 simultaneously. Thus we guarantee that any pair of two different
demands sharing a link are not assigned to the same slot.

Binary slot assignment (DR-BSA)

An alternative to the assignment of slots to demands through the integer l−
and r− variables is the use of binary variables. We implement this assignment
by using the binary variable lds for each demand d ∈ D and each slot s ∈

IP Models for the RSA problem 11

{1, . . . , S−v(d)+1}, in such a way that lds = 1 if s is the first slot assigned to
the demand d, and lds = 0 otherwise. If lds = 1, then the slots s, . . . , s+v(d)−1
are assigned to the demand d. The use of these variables allows us to state the
following formulation that uses constraints (14) and defines new constraints:

S−v(d)+1∑
s=1

lds = 1 ∀d ∈ D (22)

s+v(d)−1∑
s′=s

ld′s′ ≤ 3− yde − yd′e − lds
∀d, d′ ∈ D, d 6= d′,∀e ∈ E,
∀s ∈ {1, . . . , S − v(d) + 1} (23)

Constraints (22) ensure that each demand has exactly one starting slot. To
deal with the non-overlapping restriction, constraints (23) guarantee that if s
is the starting slot assigned to the demand d, then the next v(d)− 1 slots on
the links used by d are assigned to d too (i.e., none of them is the starting slot
of any other demand sharing a link with d).

Stronger constraints (DR-SC)

Constraints (23) ensure in a single expression that the slots assigned to the
demand d are consecutive. We can formulate the same assertion by replacing
the summation in (23) by v(d) new inequalities, as follows.

ld′(s+i) ≤ 3− yde − yd′e − lds

∀d, d′ ∈ D, d 6= d′, ∀e ∈ E,
∀s ∈ {1, . . . , S − v(d) + 1},

∀i ∈ {0, . . . , v(d)− 1}
(24)

Constraints (24) impose that if yde + yd′e + lds = 3 then ld′s′ = 0 for
s′ = s, . . . , s+v(d)−1. In other words, if two different demands d and d′ share
a link e, and s is the first slot used by d, then no slot in {s, . . . , s + v(d)− 1}
can be the first slot of d′.

2.2.2 Demand-Slot assignment formulations (DS)

Base formulation (DS-BF)

This is the first of a second family of models explicitly representing each slot
assigned to every demand, instead of assigning slot ranges with the l− and
r− variables. For each demand d ∈ D and each slot s ∈ {1, . . . , S}, the binary
variable xds is equal to 1 if the demand d uses the slot s, and xds = 0 otherwise.
To associate arcs with demands, we use the y-variables as in the previous
models. In this setting, a feasible solution to RSA will be an assignment of
values to these two families of variables satisfying the following constraints.

12 Federico Bertero et al.

min
∑
d∈D

∑
e∈E

yde (25)

s.t.

(14)

yde + xds + yd′e + xd′s ≤ 3
∀d, d′ ∈ D, d 6= d′,

∀e ∈ E,
∀s ∈ {1, . . . , S}

(26)

xd,S+1 = 0 ∀d ∈ D (27)
s∑

s′=1+s−v(d)

xds′ ≥ v(d)(xds − xd(s+1))
∀d ∈ D,

∀s ∈ {v(d), . . . , S} (28)

S∑
s=1

xds = v(d) ∀d ∈ D (29)

Constraints (14) are the same used in the previous models to define a path
from the source to the destination of each demand. To ensure that if two
demands share a link then they cannot share a slot, we need at least one of
the variables yde, xds, yd′e and xd′s not to be activated, and constraints (26)
enforce this condition. Constraints (27) and (28) guarantee slots contiguity.
Constraints (28) assert that if the slot s is assigned to the demand d and the
neighboring slot s+ 1 is not assigned to the demand d, then the v(d)− 1 slots
to the left of s must be assigned to d too. In order to simplify the notation, we
assume the existence of the variable xd,S+1 taking value 0. Finally, in order
to satisfy the volume required for each demand, we include constraints (29),
which force the amounts of slots of a demand to be at least the required
volume.

Alternative contiguity constraints (DS-ACC)

Based on the fact that constraints (28) can be unfolded we replace these con-
straints with the following ones:

xds + xds′ ≤ xd,s+1 + 1
∀s, s′ ∈ {1, . . . , S},

s′ > s, ∀d ∈ D
(30)

Constraints (30) impose that if xds − xd,s+1 = 1 then s must be the last
slot assigned to the demand d, hence xds′ = 0 for s′ > s. This ensures that all
slots assigned to a demand are consecutive.

IP Models for the RSA problem 13

Stronger contiguity constraints (DS-SCC)

These new constraints are based on another way to state constraints (28).

∑
s∈{1,...,S}:

s ≡ j (mod v(d))

xds = 1
∀d ∈ D,

∀j ∈ {1, . . . , v(d)} (31)

∑
s∈{1,...,i}:

s ≡ i (mod v(d))

xds ≥
∑

s∈{1,...,i−1}:
s+1 ≡ i (mod v(d))

xds

∀d ∈ D,
S′ = S + 1− v(d),
∀i ∈ {1, . . . , S′}

(32)

Constraints (31) and (32) ensure that for each demand and for each link
there are exactly v(d) consecutive variables taking value 1, and that the re-
maining variables take null values. This fact is not straightforward, therefore
in the Appendix we provide a proof showing that these constraints suffice to
enforce such a configuration.

2.2.3 Demand-Slot-Link formulations (DSL)

Base formulation (DSL-BF)

As explained before, it is possible to model the routing and the resource allo-
cation with just one family of variables. The u-variables relate demands with
links and slots in the following way. For every demand d ∈ D, every link e ∈ E
and every slot s ∈ {1, . . . , S}, we use the variable udes such that udes = 1 if
the demand d uses the slot s over the link e. In this setting, a feasible solution
to RSA is an assignment of values to these variables satisfying the following
constraints.

14 Federico Bertero et al.

min
∑
d∈D

∑
e∈E

S∑
s=1

udes/v(d) (33)

s.t.∑
e∈δ−(j)

udes −
∑

e∈δ+(j)

udes = 0
∀j ∈ V , j 6= s(d), j 6= t(d),
∀d ∈ D, ∀s ∈ {1, . . . , S} (34)

∑
e∈δ−(j)

udes = 0
∀j ∈ V , j = s(d),

∀d ∈ D, ∀s ∈ {1, . . . , S} (35)

∑
e∈δ+(j)

S∑
s=1

udes ≥ v(d)
∀j ∈ V , j = s(d),

∀d ∈ D
(36)

∑
d∈D

udes ≤ 1 ∀e ∈ E, ∀s ∈ {1, . . . , S} (37)

ude,S+1 = 0 ∀d ∈ D, ∀e ∈ E (38)
s∑

s′=s−v(d)+1

udes′ ≥ v(d)(udes − ude,s+1)
∀d ∈ D, ∀e ∈ E,
∀s ∈ {v(d), . . . , S} (39)

The objective function (33) aims to minimize the total number of links
used in the routing.

Constraints (34), (35), and (36) ensure that the u-variables define a path
from the source to the destination of each demand. Specifically, (34) impose
flow conservation constraints to each node in the network, except for the source
and sink of the corresponding demand. Constraints (35) prevent using arcs
entering the source node of the corresponding demand, and constraints (36)
avoid empty flows (i.e., all the u-variables taking null values).

The main advantage of the u-variables is that it is easy to guarantee that
each slot is used at most once in every link. Indeed, constraints (38) and (39)
ensure slot contiguity and demand satisfaction in a quite natural way. When
udes − ude,s+1 6= 0 we have that the slot s is the last slot used by the demand
d on the link e, so we ensure that all the variables udei for i in the interval
between s− v(d) and s are activated. Because we need to cover every possible
combination of two consecutive slots, including the rightmost one, we include
in this model the fictional variable ude,S+1, which always takes value zero.

Alternative satisfiability and contiguity constraints (DSL-ASCC)

Constraints (38) and (39), which ensure slot contiguity and satisfiability of
demands, can be replaced by the following alternative constraints

IP Models for the RSA problem 15

v(d) udes ≤
S∑

s′=1

udes′ ∀d ∈ D, ∀e ∈ E, ∀s ∈ {1, . . . , S} (40)

udes1 + udes2 ≤ ude(s1+1) + 1
∀d ∈ D, ∀e ∈ E,

∀s1, s2 ∈ {1, . . . , S}, s2 > s1
(41)

If the demand d uses the slot s on the link e, then udes = 1 and constraint
(40) guarantees that the number of slots used for d in e is greater than or
equal to v(d). Therefore, these constraints ensure that each demand is satisfied.
Moreover, if the demand d is assigned the slots s1 and s2 (with s1 < s2) on
the link e, then every slot in the range {s1, . . . , s2} must also be assigned to d
on the link e, and this is enforced by constraints (41).

Adding slots bounds (DSL-ASB)

Instead of using the integer variables ld and rd to represent the slot interval
assigned to the demand d, in this model we resort to binary variables associated
with each demand and each slot. For d ∈ D and s ∈ {1, . . . , S}, we use the
binary variable lds (resp. rds) in such a way that lds = 1 (resp. rds = 1) if s is
the first (resp. last) slot assigned to d. In this setting, formulation DSL-ASB
uses constraints (33), (34), (35), (36), (37), (40) and the following constraints:

S∑
s=1

s(rds − lds) = v(d) ∀d ∈ D (42)

S∑
s=1

lds = 1 ∀d ∈ D (43)

S∑
s=1

rds = 1 ∀d ∈ D (44)

udes ≤
s∑

s′=1

lds′ ∀d ∈ D, ∀e ∈ E, ∀s ∈ {1, . . . , S} (45)

udes ≤
S∑

s′=s

rds′ ∀d ∈ D, ∀e ∈ E, ∀s ∈ {1, . . . , S} (46)

If s1, s2 are the leftmost and rightmost slots assigned to the demand d, then
lds1 = rds2 = 1 while lds′ = 0 for all slots s′ different from s1, and fds′ = 0
for all slots s′ different from s2. Then the left-hand-side of constraints (42)
reduces to s2 − s1, implying that the range assigned to the demand satisfies
its volume. Constraints (43) and (44) guarantee that each demand has exactly
one leftmost and one rightmost slot. Finally, constraints (45) and (46) relate
the u-variables with the l- and r- variables, by assuring that any slot used by a
demand belongs to the range specified by the corresponding l- and r-variables.

16 Federico Bertero et al.

2.2.4 Demand-Range-Link formulations (DRL)

Base formulation (DRL-BF)

Instead of explicitly assigning slots to demands and links, in this formulation
we represent the starting slot assigned to each demand in each link. To this
end, we use the binary variable ldes for each d ∈ D, e ∈ E, and s ∈ {1, . . . , S−
v(d) + 1}, in such a way that ldes = 1 if and only if the demand d uses the
slot s over the link e, and s is the starting slot assigned to d. In this setting, a
feasible solution to RSA is an assignment of values to the l-variables satisfying
the following constraints.

min
∑
d∈D

∑
e∈E

S∑
s=1

ldes (47)

s.t.∑
e∈δ−(j)

ldes −
∑

e∈δ+(j)

ldes = 0
∀j ∈ V , j 6= s(d), j 6= t(d),
∀d ∈ D, ∀s ∈ {1, . . . , S} (48)

∑
e∈δ−(j)

S∑
s=1

ldes = 0 ∀j ∈ V , j = s(d), ∀d ∈ D (49)

∑
e∈δ+(j)

S∑
s=1

ldes = 1 ∀j ∈ V , j = s(d), ∀d ∈ D (50)

∑
d′∈D:d6=d′

min{S, s+v(d)−1}∑
s′=s

ld′es′ ≤ S(1− ldes)
∀d ∈ D, ∀e ∈ E,
∀s ∈ {1, . . . , S} (51)

In this formulation we try to minimize the objective function (47), looking
to minimize the total number of links used in the routing.

Constraints (48), (49), and (50) ensure the existence of a feasible path for
each demand, eliminate cycles starting and ending in the source node, and
guarantee that each demand is assigned to exactly one starting slot, respec-
tively.

Constraints (51) ensure that if the demand d is assigned to the slot s as
its starting slot over the link e, then s and the next v(d) − 1 slots cannot
be assigned to any other demand d′ over the same link, thus avoiding slot
overlapping.

2.3 Discussion

In the previous sections we have considered many formulations for the same
variation of RSA. A first characteristic to take into account is the model size,

IP Models for the RSA problem 17

i.e., the number of variables and constraints employed by each formulation.
Table 1 shows the number of variables and constraints of the formulations
presented in Section 2. We show these values associated to the families of
models, since all the models within the same family have the same order of
magnitude for variables and constraints.

Family Variables Constraints

Demand-Range (DR) Θ(|D|2) Θ(|D|2|E|)
Demand-Slot (DS) Θ(|D|S) Θ(|D|2|E|S)
Demand-Slot-Link (DSL) Θ(|D||E|S) Θ(|D||E|S)
Demand-Range-Link (DRL) Θ(|D||E|S) Θ(|D||E|S)

Table 1: Number of variables and constraints of the formulations presented in
Section 2

The number of constraints associated to the family DS makes quite im-
practical to generate ILP models with large instances. As an example, with
S = 100, |D| = 100 and |E| = 10, we are trying to handle a set of approxi-
mately 10 millions of constraints, while with the families DR, DSL, DRL, we
are talking about sets of approximately 100.000 constraints. In section 3 we
solve instances of different sizes with the models of the family DS in order
to show a detailed behavior of all the formulations. The sizes of the sets of
variables are not so different between the different families as with the sets of
constraints. With the same configuration as above, DR and DS formulations
have approximately 10.000 variables, while DSL and DRL have approximately
100.000 variables. As we will see in the following sections, these values asso-
ciated to the families influence in the model generation, in some cases with
critical consequences.

It is not possible in general to perform a theoretical analysis concerning
the practical performance of an ILP model, and this motivates the empirical
analysis in Section 3. Although the model size is not a good predictor of the
performance of an ILP solver, if a model has a very large number of variables
or constraints then it may be difficult or impossible to generate for medium-
or large-sized instances.

Nevertheless, it is usual to consider the strength of the linear relaxation
compared to the convex hull of feasible solutions. In this sense, constraints (14)
are the well-known flow conservation constraints and, isolated, generate an in-
teger convex hull, a very desirable property in this kind of models. This fact
motivated us to look for formulations featuring this kind of constraints. Al-
though not generating integer convex hulls, some constraints are known to
provide stronger relaxations than alternative versions as, e.g., constraints (24)
versus constraints (23) in models DR-SC and DR-BSA, respectively, or con-
straints (30) versus constraints (28) in models DS-ACC and DS-BF, respec-
tively. In these cases, the models with stronger relaxations are more appealing
from a theoretical perspective.

18 Federico Bertero et al.

3 Computational experiments with ILP formulations

In this section we report the results of our experimental comparison of the
models presented in Section 2. On the one hand, Section 3.1 systematically
explores the performance of the models for different parameters generating the
number of slots and the number of demands. Each ILP model was tested with
eight network topologies taken from the optical fiber literature, using different
combinations of demands and slots sets. On the other hand, Section 3.2 reports
computational results on realistic instances.

The models were implemented in OPL and solved with IBM ILOG CPLEX
12.6, on a 2.10 GHz Intel core i5 computer.

Network topologies

Each network topology is given by a graph GT = (VT , ET) where the set
of vertices VT and edges ET are the set of nodes and links of the network,
respectively. The information of each graph GT = (VT , ET), with T in the set
of fiber optical network topologies, can be seen in Table 2. The last column
of this table denotes the sparsity coefficient of the graph GT and is given
by SparsityT = |ET |/EdgesCompleteT , where EdgesCompleteT = (|VT | ∗
(|VT | − 1))/2 (i.e., the amount of edges of the complete graph).

Topology (T) Nodes (VT) Edges (ET) SparsityT

British Telecom 20 32 0.16
COST239 11 26 0.47

Deutsche Telekom-14 14 23 0.25
Deutsche Telekom-21 21 32 0.15

EON 19 35 0.20
NSF 14 21 0.23

Spanish Telefonica 21 34 0.16
UKNET 21 39 0.18

Table 2: Number of nodes and edges and sparsity coefficient of each network
topology.

3.1 Exploration of the parameter space

In order to compare the performance of our ILP formulations, we evaluate
them using a big set of generated instances. For each of the network topologies
above presented we use the values { 10, 20, 40} and {2 ∗ |D|, 2 ∗ |D| +
10, 2 ∗ |D| + 20, 2 ∗ |D| + 30} for |D| and S, respectively. Each d ∈ D has
an associated volume, generated with uniform distribution from {1, . . . , S},
and an associated source and destination, generated with uniform distribution

IP Models for the RSA problem 19

in V . Then, an instance is defined by a specific network topology, a set of
demands to satisfy, and a number of available slots which depends on the
number of demands.

We show the results of that vast set of experiments in a summarized way in
Table 3. The first column corresponds to the ILP formulation. Due to the big
number of tests we have done in this subsection -approximately 1200 runs-,
Time limit is set to 600 seconds so if the optimal solution is not reached within
that time, the execution is stopped. If the size of the generated model is such
that CPLEX cannot handle it, an out of memory exception is reported and we
jump to the next experiment. Also, since the volume, source, and destination
of demands are randomly generated, the created instance may be infeasible.
The second, third, and fourth columns of Table 3 show the percentage of
instances solved to optimality, of instances not solved in the proposed time,
and of instances where an out of memory exception was reached, respectively,
for each formulation. Infeasible instances are not taken into account when
these percentages are calculated. The last column corresponds to the bigger
size of |D| solved to optimality.

Formulation % Solved % Time Limit % Out of memory Solved Size Limit

DR-BF 86 14 0 40
DR-OSB 85 15 0 40
DR-AOV 90 10 0 40
DR-BSA 37 4 59 20
DR-SC 22 0 78 10
DS-BF 34 18 48 10
DS-ACC 38 3 59 20
DS-SCC 46 2 52 20
DSL-BF 46 52 2 20
DSL-ASCC 17 17 64 10
DSL-ASB 21 32 47 10
DRL-BF 35 9 56 10

Table 3: Summarized results for the presented ILP formulations.

In order to show a more exhaustive analysis, we choose the formulations
with the best performance in their respective families and present a detailed
behavior of them. We do not take a representative of the family DRL because
of their similarities in terms of the characteristics to be evaluated with the
DSL family. The formulations DR-AOV, DS-SCC and DSL-BF were chosen
and Figures 4, 5 and 6 compare their average of variables, constraints and
solving times, respectively. The results are shown according to the sizes of the
instances (combination of |D| and S), and the average is performed over all the
instances, i.e., the sum is calculated over all the instances of each size divided
by the total number of instances of each size. The model sizes, represented by
their numbers of variables and constraints, are shown in a logarithmic scale
and as we can see they are exponential in the instance size.

20 Federico Bertero et al.

In these figures, the bar associated with the formulation DS-SCC no longer
appears starting at instance (40, 90), since the formulations could not be gen-
erated due to their size. The same happens with the formulation DSL-BF
starting at instance (80, 160).

Fig. 4: Average number of variables for Models DS-SCC, DSL-BF and DR-
AOV .

Figure 4 shows that Model DSL-BF has a large number of variables. This is
due to the way in which the assignment is represented in the family of models
this formulation belongs to. As in the rest of the models of the DSL family,
a set of variables is used for the assignment of demands to links and slots,
which has a size equal to |D||E|S. The other model families represent on the
one hand the assignment of demands to links and on the other the assignment
of demands to slots, so the number of variables is considerably less. In the
case of Model DS-SCC, we find a theoretical number of variables equal to
|D|(|E| + S) which is smaller than the DR-AOV’s amount which is equal to
|D||E|+ 2|D|+ |D||D|.

Figure 5 shows the remarkable big number of constraints Model DS-SCC
contains. This is due to the family of constraints added in order to ensure
the non-overlapping property, which asks that each pair of demands is not
assigned the same slot at any link (|D||D||E|S constraints). This large number
of constraints, which is one order of magnitude bigger than the amount of
variables of the DSL-BF, causes from a certain number of demands and slots
(size of set |D| and value of S), the associated formulations cannot even be
generated by CPLEX, raising out of memory exceptions.

In both aspects, Model DR-AOV was the best model in our first evaluation
stage. In terms of the number of variables, a difference that can reach up to
two orders of magnitude comparing with Model DSL-BF can be seen and a
small difference comparing with Model DS-SCC. It should be noted that as
we are using integer variables for the assignment of demands with slots, the
number of variables does not increase as S grows. In terms of the number of

IP Models for the RSA problem 21

Fig. 5: Average number of constraints for Models DS-SCC, DSL-BF and DR-
AOV.

constraints, it is possible to see a difference that can reach up to two orders of
magnitude comparing with the Model DS-SCC and of one order of magnitude
comparing with Model DSL-BF. As with the number of variables, the number
of constraints is not altered by modifying S, this is because no constraint
depends on this value.

Fig. 6: Average solving time for Models DS-SCC, DSL-BF and DR-AOV.

Finally, as we can see in Figure 6, Model DR-AOV is the only model
that could solve all the instances and the one with the best execution time.
Model DS-SCC was the model with the least number of instances solved to
optimality. This is because, on the one hand, as it has already been mentioned,
formulations cannot even be generated for many instances due to their size.
On the other hand, Model DSL-BF has a smaller number of instances not

22 Federico Bertero et al.

solved to optimality but this is because of time limits exceptions, which can
be substantially reduced by setting a higher maximum resolution time.

The e-companion to this manuscript (Online Resource 1) contains detailed
results of all the experiments performed in this section.

3.2 Performance comparison in real scenarios

Along this section we will show the results of computational experiments we
have done with all the formulations of Section 2 in real scenarios. We use
British Telecom and NSF as topologies network for the instances, trying to
cover different sparsity coefficients. We consider slots of 12.5GHz and two
optical spectrum widths: 400GHz and 4000GHz, which could be generated
using a laser diode and LED as optical source, respectively. For this second
stage of computational experiments, S could be 32 or 320. For each element in
the demand set, the requested bandwidth is 10, 40, or 100Gbps. That is, for
each d ∈ D, the associated volume vd was generated with uniform distribution
from {1, 2, 4}, and the associated source and destination was generated with
uniform distribution in V . The length of D depends on the topology and S:
for the network NSF and S equal to 32, we use 30, 50 and 80 as values for |D|
while with S equal to 320, we use the values 100, 150 and 180; for the British
network the values used for |D| will be 30, 50 and 70 when S is 32, and 30,
50 and 70 when S is 320. We use different values for |D| depending on the
topology and S in order to keep the difficulty and size under control. On one
hand, instances generated with British, S = 32 and |D| = 80 are not possible
to solve for any model, even using 1 hour as time limit. On the other hand,
NSF has 14 nodes so we could not generate more than 182 demands without
repeating demands.

Tables 4 and 5 show the performance of the formulations in experiments
that use NSF and British as network topology, respectively. For this second
stage of evaluation we set Time limit to 1800 seconds, so if a resolution exceeds
this bound the label Time is used. Also, if it is not possible for CPLEX to
generate the formulation due to the instance size, we use the character “-”.
Again, the formulations BF, OSB, and AOV of the family DR beside DSL-BF
present the best performance, this time taking into account the solving times
and the size of the instances that can be handled without getting a memory
exception. For all the formulations of the family DS and most of DSL, CPLEX
cannot generate the models to be solved. As we see in Table 1, this is because
of the big set of constraints this formulations constain.

Comparing with the formulations taken from the literature and under this
set of experiments, most of our formulations present better solution times and
could deal with bigger instances. For NLS, with NSF as topology and S equal
to 32, the results of the experiments are almost the same as the ones from
our formulations. However, with S equal to 320 it is not possible for CPLEX
to generate the ILP models for all the sizes of D, since the non-overlapping
constraints have a large number of elements in this case. As an example and

IP Models for the RSA problem 23

as remarked before, with S = 320, |D| = 100 and |E| = 30, we are trying to
handle a set of approximately 100 millions of constraints. For NL-CA, only for
two instances could we get an optimal solution, in all the other cases a time
out was reached.

Formulation S = 32 S = 320
|D| = 30 |D| = 50 |D| = 80 |D| = 100 |D| = 150 |D| = 180

DR-BF 1 5 18 21 100 109
DR-OSB 2 6 18 30 76 296
DR-AOV 1 3 6 13 42 365
DR-BSA 33 129 594 - - -
DR-SC 51 179 - - - -
DS-BF 17 50 - - - -
DS-ACC 20 65 - - - -
DS-SCC 14 49 - - - -
DSL-BF 3 4 22 243 Time Time
DSL-ASCC 18 29 161 - - -
DSL-ASB 11 21 Time - - -
DRL-BF 13 26 104 Time Time Time
NLS 12 46 162 - - -
NL-CA 24 64 Time Time Time Time

Table 4: Computational times of ILP formulations in realistic experiments
with NSF as network topology, in seconds. (Nodes: 14, Edges: 21)

Formulation S = 32 S = 320
|D| = 30 |D| = 50 |D| = 70 |D| = 100 |D| = 150 |D| = 200

DR-BF 2 11 261 51 285 923
DR-OSB 2 9 19 81 349 Time
DR-AOV 2 5 9 23 60 122
DR-BSA 64 1200 Time - - -
DR-SC 201 Time Time - - -
DS-BF 51 335 Time - - -
DS-ACC 37 1148 Time - - -
DS-SCC 65 362 Time - - -
DSL-BF 10 27 151 Time Time Time
DSL-ASCC 48 72 Time - - -
DSL-ASB 59 240 Time - - -
DRL-BF 27 50 656 Time Time -
NLS 26 285 Time - - -
NL-CA Time Time Time Time Time Time

Table 5: Computational times in seconds of ILP formulations in realistic ex-
periments with British Telecom as network topology. (Nodes: 20, Edges: 32)

24 Federico Bertero et al.

4 Conclusion

In this work we have presented several integer programming models that solve
the same version of RSA. We have tried with different families of variables and
constraints, obtaining mixed results.

It is important to note that for our formulations we did not take into
account the common two-slot guard between channels. It is easy to solve real
instances by just adding a slot to each side of each demand and doing the
same to the channels (i.e., if we have S available slots per channel, we allow
S+2 slots). Also we did not take into account the problems related to distance
(trade-off modulation format adaptation), assuming that all of them are going
to be taken into account when setting the topology and the amount of available
slots per channel. Without loss of generality we used the same amount of slots
for every channel. Fixing that amount with the maximum value, given the case
in which there were channels with less capacity, just adding restrictions that
enforce to be set the last not existent slots we get a feasible solution.

As the computational tests were made using OPL and the solver as a black
box, the experiments of Section 3 give for each model an approximate idea
of the instance size that it is able to solve without more sophisticated integer
linear programming techniques. Our computational experiments, both real
and random, suggest that Models DR-BF, DR-OSB and DR-AOV outperform
the other formulations, solving almost 90% of the proposed instances without
memory issues and getting optimal values over the biggest instances even one
order of magnitude faster than the others. This may be due to the way in which
the slot and link assignments are represented in these formulations, namely
the assignment of slots to demands is implicitly represented. In these models,
an integer variable indicates the first slot assigned to a demand and, being
its volume a fixed value, we know which other slots will be assigned to the
demand as well. Another factor that can contribute to the good performance
of these formulations is the “ordering” that is established between the demands
in order to avoid slot overlappings.

As an ongoing work, we are currently exploring the combinatorial and
geometrical structures of the polytopes associated with the most promising
formulations, in order to gain knowledge that might be useful in cutting-plane
environments.

References

1. S. Altinakar, G. Caporossi, and A. Hertz, A comparison of integer and constraint
programming models for the deficiency problem. Computers & Operations Research 68
(2016) 89-96.

2. K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, Elastic bandwidth allo-
cation in flexible OFDM-based optical networks. IEEE J. Lightw. Technol., vol. 29, no.
9, pp. 1354–1366, 2011.

3. M. Jinno Distance-adaptive spectrum resource allocation in spectrum-sliced elastic op-
tical path network IEEE Communications Magazine, vol. 48, no. 8, pp. 138-145, 2010.

25

4. M. Klinkowski and K. Walkowiak, Routing and spectrum assignment in spectrum
sliced elastic optical path network. IEEE Commun. Lett., vol. 15, no. 8, pp. 884–886,
2011.

5. C. Moreno-Camacho, J. Montoy a-Torres, and M. Vélez-Gallego, A compari-
son of mixed-integer linear programming models for workforce scheduling with position-
dependent processing times. Engineering Optimization 50-6 (2018) 917-932.

6. O. Koné, C. Artigues, P. Lopez, and M. Mongeau, Comparison of mixed integer
linear programming models for the resource-constrained project scheduling problem with
consumption and production of resources. Flexible Services and Manufacturing Journal
25/1-2 (2013) 24-47.

7. L. Velasco, M. Klinkowski, M. Ruiz, and J. Comellas, Modeling the routing and
spectrum allocation problem for flexgrid optical networks. Photonic Netw. Commun.,
vol. 24, pp. 177–186, 2012.

8. L. Velasco, M. Klinkowski, M. Zotkiewicz, and M. Pioro, Optimization models for
flexgrid elastic optical networks, proceedings of the 15th International Conference on
Transparent Optical Networks (ICTON 2013), Cartagena, Spain, 23 - 27 June 2013.

9. Y. Wang, X. Cao, Q. Hu, and Y. Pan, Towards elastic and fine-granular bandwidth
allocation in spectrum-sliced optical networks. IEEE J. Opt. Commun. Netw., vol. 4, no.
11, pp. 906–917, 2012.

Appendices
A Consecutive ones proposition

Fix a demand and a link used by this demand. Let S ∈ N be the amount of
available slots. If s ∈ {1, . . . , S} is a slot then call Xs the binary variable equal
to one if and only if the slot s is used by the demand. Fix the demand volume
h such that h ≤ S and consider the following constraints:

∑
s∈{1,...,S}:

s ≡ j (mod h)

Xs = 1 ∀j ∈ {1, . . . , h} (52)

∑
s∈{1,...,i}:

s ≡ i (mod h)

Xs ≥
∑

s∈{1,...,i−1}:
s+1 ≡ i (mod h)

Xs ∀i ∈ {1, . . . , S + 1− h} (53)

Theorem 1 Constraints (52) and (53) ensure that there are exactly h con-
secutive variables in {X1, . . . , XS} taking value 1.

Proof Using constraints (53) and a property of constraints (52) we shall prove
that there are at least h consecutive variables taking value 1, and using (52)
we shall prove that those h variables are the only ones taking this value.

For i = 1, . . . , s + 1 − h, let Ci be the constraint (53) associated to the
index i, and let LHSi and RHSi be the left-hand and the right-hand side of
Ci respectively, i.e.,

Ci : LHSi ≥ RHSi.

26

Since LHSi = RHSi+1 for i = 1, . . . , s− h, then Ci takes the form

LHSi+1 ≥ LHSi. (54)

Let Li be the set of indices of LHSi, such that Xs appears in LHSi if and
only if s ∈ Li. We have i ∈ Li but i 6∈ Li+1, . . . , i 6∈ Li+h−1, implying that
i is the largest element in Li, i.e., i = max(Li). For q = 0, . . . , h − 1 and
i = 1, . . . , S− q, we conclude that the only index larger than i in Li+q is i+ q,
i.e.,

{i′ : i′ ≥ i, i′ ∈ Li+q} = {i + q} (55)

Now we use these results to prove that any feasible solution that satisfies
constraints (52) and (53) has at least h consecutive variables set to 1. For
i = 1, . . . , S, we have

{s ∈ {1, . . . , i} : s ≡ i (mod h)} ⊆ {s ∈ {1, . . . , S} : s ≡ i (mod h)}.

Thus, constraints (52) imply:

LHSi ≤ 1 (56)

for i = 1, . . . , S + 1− h.
Let X∗ ∈ {0, 1}S be a feasible solution, and let p be the lowest index such

that X∗p = 1. Let i∗ be the lowest index such that X∗p ∈ LHSi∗ . Because of
(56) and since xp = 1 then LHSi∗ = 1. Likewise, because of (54) and (56), we
have LHSk = 1 for every k ≥ i∗. In particular,

LHSk = 1 for k = i∗, . . . , i∗ + h.

By the definition of p, we have Xp′ = 0 for p′ < p. This implies that in
LHSk such that i∗ < k < i∗+h only variables with indices greater than p can
take value 1; but because of (55) those are {Xp+1, . . . , Xp+h−1}.

Therefore, we have at least h consecutive variables taking value 1. Consider
now the union of the sets {s ∈ {1, . . . , S} : s ≡ j (mod h)} for j ∈ {1, . . . , h}.
Since all their elements are disjoint, then

h⋃
j=1

{s ∈ {1, . . . , S} : s ≡ j (mod h)} =

{s ∈ {1, . . . , S} : s ≡ j (mod h), j ∈ {1, . . . , h}} = {1, . . . , S}.

This implies that there are at most h variables taking value 1, i.e.,∑
j∈{1,...,h}

∑
s∈{1,...,S}:

s ≡ j (mod h)

Xs ≤ h

Since there are at least and at most h consecutive variables taking value 1,
there are exactly h variables taking value 1, hence concluding the proof.

