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DYNAMICS OF NON CONVOLUTION OPERATORS AND HOLOMORPHY

TYPES

SANTIAGO MURO, DAMIÁN PINASCO, MARTÍN SAVRANSKY

Abstract. In this article we study the hypercyclic behavior of non convolution operators de-

fined on spaces of analytic functions of different holomorphy types over Banach spaces. The

operators in the family we analyze are a composition of differentiation and composition oper-

ators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The

dynamics of this class of operators, in the context of one and several complex variables, was

further investigated by many authors. It turns out that the situation is somewhat different

and that some purely infinite dimensional difficulties appear. For example, in contrast to the

several complex variable case, it may happen that the symbol of the composition operator has

no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem

for holomorphy types on Banach spaces.

Introduction

An operator T : X → X is said to be hypercyclic if there exists some vector x ∈ X, called

hypercyclic vector of T , such that the orbit Orb(x, T ) := {x, T (x), . . . , Tn(x), . . . } is dense

in X. The first examples of hypercyclic operators appeared in the works by Birkhoff [7] and

MacLane [32]. Birkhoff’s result states that the translation operator T : H(C) → H(C) defined

by T (h)(z) = h(z + 1) is hypercyclic. Likewise, MacLane’s result says that the differentiation

operator on H(C) is hypercyclic.

Several criteria to determine if an operator is hypercyclic have been studied. It is known that

a large supply of eigenvectors implies hypercyclicity. In particular, if the eigenvectors associated

to the eigenvalues of modulus less than 1 and the eigenvectors associated to the eigenvalues of

modulus greater than 1 span dense subspaces, then the operator is hypercyclic. This result is due

to Godefroy and Shapiro [25]. In the same article, they also prove that non-trivial convolution

operators, i.e. operators that commute with translations which are not multiples of the identity,

on the space of entire functions on Cn are hypercyclic. Birkhoff’s translation operators and

MacLane’s differentiation operators are special examples of non-trivial convolution operators.

This result has also been extended to some spaces of entire functions of infinitely many variables
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by several authors (see [3, 6, 11, 18–21, 29, 35, 38, 39]). Some of these extensions even hold for

spaces of functions associated to very wide classes of holomorphy types. The Godefroy - Shapiro

theorem has been improved by Bonilla and Grosse-Erdmann in [9]. They showed that non-trivial

convolution operators are frequently hypercyclic (see also [21,35]).

Recent work developed by Bayart and Matheron [5] provides other eigenvector criteria to

determine whether a given continuous map T : X → X acting on a topological vector space

X admits an ergodic probability measure, or a strongly mixing one. If the measure is strictly

positive on any non void open sets of X, ergodic properties on T imply topological counterparts.

In particular, if a continuous map T : X → X happens to be ergodic with respect to a Borel

probability measure μ with full support, then almost every x ∈ X, relative to μ, has a dense

orbit. Moreover, from Birkhoff’s ergodic theorem, we can obtain frequent hypercyclicity.

In [4], Aron and Markose studied the following class of operators in the seek of examples of

non convolution hypercyclic operators on H(C) : f �→ [z → f(λz + b)]. This class of operators,

or variants of it, has also been studied in [22, 28, 31, 36, 40]. In [36] we extended the work of [4]

analyzing the hypercyclic behavior of some non-convolution operators on the space H(CN ).

Given φ(z) = Az + b a diagonal affine linear map on CN and α ∈ NN
0 , we proved that the

operator Cφ ◦ Dα is hypercyclic if and only if either
∏

i |Aii|αi ≥ 1 or φ has no fixed points.

In this article we study the hypercyclic behavior of the analogous class of operators defined on

the general context of holomorphy types on infinite dimensional Banach spaces. Some purely

infinite dimensional difficulties appear, for example, the non existence of a fixed point of the

affine maps does not longer guarantee the hypercyclicity of these operators.

A Runge approximation theorem valid for holomorphy types had to be developed, which we

think is of independent interest. For the proof of the latter result, a classical theorem about the

Bohr radius of an entire function was applied.

The structure of the article goes as follows. In the Preliminaries section we recall some

concepts of linear dynamics. In Section 2 we recall the definition of holomorphy types and of

the spaces of holomorphic functions associated to it. We introduce the family of operators that

we will study and prove some properties there, including some Cauchy estimates valid for general

holomorphy types, as well as a Runge type approximation theorem for holomorphic functions of

a given type on Banach spaces. In the final section we prove our main results on the dynamics

induced by the operators in the family that concerns us. Finally, we focus in the holomorphy

type that determines the space Hbc(E), of entire functions of compact type.

1. Preliminaries

In this section we state some results that ensure the existence of an invariant Borel probability

measure with full support on complex separable Fréchet spaces, with respect to which an operator

is strongly mixing. First we recall some basic definitions. In what follows X denotes a Fréchet

space.
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Definition 1.1. An operator T on X is called mixing if for every pair of non void open sets U

and V , there exists N ∈ N such that TnU ∩ V �= ∅ for every n ≥ N .

A Borel probability measure on X is Gaussian if and only if it is the distribution of an almost

surely convergent random series of the form ξ =
∑∞

0 gnxn, where (xn) ⊂ X and (gn) is a

sequence of independent, standard complex Gaussian variables.

Definition 1.2. An operator T ∈ L(X) is strongly mixing in the Gaussian sense if there exists

some Gaussian T -invariant probability measure μ on X with full support such that for any

measurable sets A, B ⊂ X,

lim
n→∞μ(A ∩ T−n(B)) = μ(A)μ(B).

We will use the following result, which is a corollary of a theorem due to Bayart and Matheron

(see [5]) and which states that the existence of sufficiently many eigenvectors associated to

unimodular eigenvalues implies that the operator is strongly mixing in the Gaussian sense.

Theorem 1.3 (Bayart, Matheron). Let X be a complex separable Fréchet space, and let T ∈
L(X). Assume that for any set D ⊂ T such that T \ D is dense in T, the linear span of⋃

λ∈T−D ker(T − λ) is dense in X. Then T is strongly mixing in the Gaussian sense.

The following result, which is [33, Theorem 1], says that operators satisfying the Frequent

Hypercyclicity Criterion are strongly mixing with respect to an invariant Borel measure with

full support.

Theorem 1.4 (Murillo-Arcila, Peris). Let X be a separable, Fréchet space and T ∈ L(X).

Suppose that there exists a dense subspace X0 ⊂ X such that
∑

n∈N Tnx is unconditionally

convergent for all x ∈ X0. Suppose further that there exist a sequence of maps Sk : X0 → X,

k ∈ N such that T ◦ S1 = Id, T ◦ Sk = Sk−1 and
∑

k Sk(x) is unconditionally convergent for

all x ∈ X0. Then there exist a Borel probability measure μ in X, T -invariant, such that the

operator T is strongly mixing respect to μ.

The hypotheses of Theorem 1.4 imply the corresponding ones of the Theorem 1.3. So both

theorems allow us to conclude the existence of an invariant Gaussian probability measure for

linear operators of full support which are strongly mixing. Finally, the next proposition states

that the existence of such measures is preserved by linear conjugation.

Proposition 1.5. Let X and Y be separable, Fréchet spaces and T ∈ L(X), S ∈ L(Y ). Suppose

that SJ = JT for some linear mapping J : X → Y of dense range then, if T has an invariant

Borel measure then so does S. Moreover, if T has an invariant Borel measure that is Gaussian,

strongly mixing, ergodic or of full support, then so does S.
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2. Holomorphy types. Holomorphic functions of A-bounded type

From now on, E denotes a complex Banach space and BE(x, r) denotes the open ball of radius

r and center x ∈ E. We denote by Pk(E) the Banach space of all continuous k-homogeneous

polynomials from E to C. The space P0(E) is just C.

We define, for each P ∈ Pk(E), a ∈ E and 0 ≤ j ≤ k the polynomial Paj ∈ Pk−j(E) by

Paj (x) =
∨
P (aj , xk−j) =

∨
P (a, ..., a︸ ︷︷ ︸

j

, x, ..., x︸ ︷︷ ︸
k−j

),

where
∨
P is the symmetric k-linear form associated to P . We write Pa instead of Pa1 .

Let us recall the definition of polynomial ideal [23, 24].

Definition 2.1. A Banach ideal of (scalar-valued) continuous k-homogeneous polynomial, k ≥
0, is a pair (Ak, ‖ · ‖Ak

) such that:

(i) For every Banach space E, Ak(E) = Ak ∩ Pk(E) is a linear subspace of Pk(E) and

‖ · ‖Ak(E) is a norm on it. Moreover, (Ak(E), ‖ · ‖Ak(E)) is a Banach space.

(ii) If T ∈ L(E1, E) and P ∈ Ak(E), then P ◦ T ∈ Ak(E1) with

‖P ◦ T‖Ak(E1) ≤ ‖P‖Ak(E)‖T‖k.

(iii) z �→ zk belongs to Ak(C) and has norm 1.

We use the following version of the concept of holomorphy type, originally defined by Nachbin

in [37] (see also [34]).

Definition 2.2. Consider the sequence A = {Ak}∞k=0, where for each k, Ak is a Banach ideal

of k-homogeneous polynomials. We say that {Ak}k is a holomorphy type if for each 0 ≤ l ≤ k

there exist a positive constant ck,l such that for every Banach space E, the following hold:

(1) if P ∈ Ak(E), a ∈ E then Pal belongs to Ak−l(E) and ‖Pal‖Ak−l(E) ≤ ck,l‖P‖Ak(E)‖a‖l.

Remark 2.3. Sometimes we require that the constants satisfy, for every k, l,

(2) ck,l ≤ (k + l)k+l

(k + l)!

k!

kk
l!

ll
.

These constants are more restrictive than Nachbin’s constants (the constants considered by

Nachbin were of the form ck,l =
(
k
l

)
Ck for some fixed constant C), but on the other hand, the

constants ck,l of every usual example of holomorphy type satisfy (2).

There is a natural way to associate to a holomorphy type A spaces of holomorphic functions

of bounded type on a Banach space E, namely the holomorphic functions that have a given

A-radius of convergence at each point of E (see for example [11,16,18,35]).
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Definition 2.4. Let A = {Ak}k be a holomorphy type, E be a Banach space, x ∈ E, and

0 < r ≤ ∞. We define the space of holomorphic functions of A-bounded type on B(x, r) by

HbA(B(x, r)) =

{
f ∈ H(B(x, r)) : dkf(x) ∈ Ak(E) and lim sup

k→∞

∥∥∥dkf(x)
k!

∥∥∥1/k
Ak

≤ 1

r

}
.

The case r = ∞ correspond to the space of entire functions of bounded A-type, HbA(E).

We consider in HbA(B(x, r)) the seminorms pxt , for 0 < t < r, given by

pxt (f) =
∞∑
k=0

∥∥∥dkf(x)
k!

∥∥∥
Ak

tk,

for all f ∈ HbA(B(x, r)). It is easy to show that
(
HbA(B(x, r)), {pxt }0<t<r

)
is a Fréchet space.

There are many usual spaces of entire functions of bounded type that may be constructed in

this way.

Example 2.5. We mention the following spaces of entire functions: (i) Hb(E) of all bounded

type functions, (ii) of nuclear bounded type functions [27], (iii) of Hilbert-Schmidt type func-

tions [17,38], (iv) of compact bounded type functions [1, 3], (v) of weakly uniformly continuous

functions on bounded sets [1], (vi) of extendible functions of bounded type [10] and (vii) of

integral functions of bounded type [15].

Our objective is to define on HbA(E) analogues of the operators studied by Aron and Markose

in [4] in the one variable case and to determine the dynamics they induce. It is clear that the

space HbA(E) must be separable in order to support an hypercyclic operator. Since E′ is a

subspace of HbA(E), we need to restrict ourselves to the class of Banach spaces with separa-

ble dual space. On the other hand, if E′ is separable and if we assume that the finite type

polynomials are dense in each Ak(E), it is a simple exercise to prove that HbA(E) is separable.

Also, in order to be able to define partial derivatives we will assume that the space E has an

unconditional basis. Recall (see for example [26]) that a basis (es)s∈N is C-unconditional if there

exist a positive constant C such that for every sequence of scalars (an)n∈N and every sequence

of scalars (εn)n∈N of modulus at most 1, we have the inequality

‖
∞∑
n=1

εnanen‖ ≤ C‖
∞∑
n=1

anen‖.

Let E be a Banach space with basis (es)s∈N. Recall that the basis is shrinking if for every

e′ ∈ E′ the norm of the restriction of e′ to the span of (es)s≥n, goes to 0 as n → ∞.

Let E be a Banach space with unconditional basis (es)s∈N. The dual system of linear func-

tionals associated to the basis (es)s∈N is defined by the relation e′m(en) = δm,n. Let {Ps}s∈N be

the natural projections associated to the basis (es)s∈N. For every choice of scalars (as)s∈N and

for all integers n < m we have P ∗
n(
∑

s≤m ase
′
s) =

∑
s≤n ase

′
s. Since, ‖P ∗

n‖ = ‖Pn‖, we get that

(e′s)s∈N is a basic sequence in E′, whose basis constant is identical to that of (es)s∈N. Recall that
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(e′s)s∈N form a basis of E′ if and only if (es)s∈N is shrinking [30, Proposition 1.b.1]. Note that if

E has unconditional basis and E′ is separable, then the basis is shrinking, because �1 � E.

In order to apply the hypercyclicity criterion, we will need a convenient dense subset. In

many cases, we will use the span of the monomials.

Definition 2.6. If β = (βi)i∈N is a finite multi-index, we define the monomial zβ ∈ HbA(E) as

zβ =
∏
i

(e′i)
βi .

The next lemma tell us that under suitable assumptions on the holomorphy type, the mono-

mials span a dense set in HbA(E). First recall the following definition from [11,12].

Definition 2.7. We say that the holomorphy type A = {Ak}∞k=0 is coherent if for each k ≥ 0

there exist a positive constant dk such that for every Banach space E, the following hold:

(3) if P ∈ Ak(E), γ ∈ E′ then γP belongs to Ak+1(E) and ‖γP‖Ak+1(E) ≤ dk‖P‖Ak(E)‖γ‖E′ .

Lemma 2.8. Let E be a Banach space with unconditional basis (es)s∈N and let A be a coherent

holomorphy type such that finite type polynomials are dense in Ak(E) for each k. Then, the

linear span of the monomials is dense in HbA(E) if and only if the basis is shrinking.

Proof. Since A is coherent, if ϕ1, . . . , ϕn ∈ E′, we get that

‖ϕ1 . . . ϕn‖An(E) ≤ dn−1‖ϕ1‖A1(E)‖ϕ2 . . . ϕn‖An−1(E)

≤
⎛⎝n−1∏

j=1

dj

⎞⎠ n∏
j=1

‖ϕj‖E′ .

Since the basis of E is shrinking and (e′s)s∈N form a basis of E′, we get that each ϕj ∈ E′ can
be written as

ϕj =
∞∑
s=1

a(j)s e′s.

Now, given ε > 0 and N > 0 , we fix εi <
ε

nKi−1
∏n−1

j=1 dj
∏

j �=i ‖ϕj‖E′
and ξj :=

∑N
s=1 a

(j)
s e′s ∈ E′

such that ‖ϕj − ξj‖E′ < εj .

Note that
∏n

j=1 ξ
j is a linear combination of monomials because,

n∏
j=1

ξj =
n∏

j=1

N∑
s=1

a(j)s e′s =
N∑

s1,...,sn=0

a(1)s1 . . . a(n)sn

n∏
j=1

e′sj .

Also, since (e′s)s∈N is a basis, there exist a constant K such that

‖ξj‖E′ =

∥∥∥∥∥
N∑
s=1

a(j)s e′s

∥∥∥∥∥
E′

≤ K‖ϕj‖E′ .



DYNAMICS OF NON CONVOLUTION OPERATORS AND HOLOMORPHY TYPES 7

Thus, we have

‖ϕ1 . . . ϕn − ξ1 . . . ξn‖An(E) ≤
n∑

i=1

∥∥∥∥∥∥
⎛⎝i−1∏

j=1

ξj

⎞⎠⎛⎝ n∏
j=i

ϕj

⎞⎠−
⎛⎝ i∏

j=1

ξj

⎞⎠⎛⎝ n∏
j=i+1

ϕj

⎞⎠∥∥∥∥∥∥
An(E)

=
n∑

i=1

∥∥∥∥∥∥
⎛⎝i−1∏

j=1

ξj

⎞⎠ (ϕi − ξi)

⎛⎝ n∏
j=i+1

ϕj

⎞⎠∥∥∥∥∥∥
An(E)

≤
n∑

i=1

⎛⎝n−1∏
j=1

dj

⎞⎠⎛⎝i−1∏
j=1

‖ξj‖E′

⎞⎠ ‖ϕi − ξi‖E′

⎛⎝ n∏
j=i+1

‖ϕj‖E′

⎞⎠
≤

n∑
i=1

⎛⎝n−1∏
j=1

dj

⎞⎠Ki−1

⎛⎝∏
j �=i

‖ϕj‖E′

⎞⎠ ‖ϕi − ξi‖E′

So, we get that ‖ϕ1 . . . ϕn − ξ1 . . . ξn‖An(E) < ε.

Reciprocally, suppose that the linear span of the monomials of degree k is dense in Ak(E),

for all k ∈ N. Since the norm of A1(E) coincides with the norm in E′, the linear span of the

monomials of degree 1 is dense in E′. But, this means that (e′s)s∈N is a basis of E′. �

In the spaces ii), iii) and iv) of Example 2.5 finite type polynomials are dense for arbitrary

Banach spaces. For the other spaces of holomorphic functions appearing in Example 2.5 finite

type polynomial are dense for specific Banach spaces (see [14,35]).

Let us also remark that holomorphy types in which finite type polynomials are dense are

called α-β-holomorphy types in [16] and π1 holomorphy types in [6, 18–21]

Now we define the family of operators we will study and prove that they are bounded on

HbA(E). Let E be a Banach space with a C-unconditional shrinking basis, (es)s∈N. Let A

be a holomorphy type such that the finite type polynomials are dense in each Ak(E). Fix a

finite multi-index α = (αi)i∈N, |α| = m, which counts how many times the operator T partially

differentiates in each variable, where the partial derivative in the s−th variable is

Desf(z) = lim
h→0

f(z + hes)− f(z)

h
.

Also, for fix vectors, λ = (λj)j∈N ∈ �∞ and b =
∑

j∈N bjej ∈ E, let λb denote the vector

λb =
∑

j∈N λjbjej ∈ E. The operator T : HbA(E) → HbA(E) is defined by

Tf(z) = Dαf(λz + b).(4)

Proposition 2.9. Let A be a holomorphy type with constants as in (2), and T defined as in

(4), then T is a continuous linear operator on HbA(E). Moreover, for each f ∈ HbA(E), x ∈ E,

and r, ε > 0,

pxr (Tf) ≤
C(α)

ε|α|
pλ·x+b
rC‖λ‖∞+ε(f),(5)
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where C(α) is a positive constant depending only on α, which can be taken equal to e|α|+1(
∏

αi �=0 αi)
1/2.

Observe that we can think T as a composition of three operators. Indeed, let Λ : x �→ λ · x
be the coordinate-wise multiplication operator on E, which satisfies ‖Λ‖ ≤ C‖λ‖∞. Then Λ

induces a composition operator Mλ : HbA(E) → HbA(E), defined by Mλ(f) = f ◦ Λ. Then,

Tf = Mλ ◦ τb ◦Dα(f),

where τb : HbA(E) → HbA(E) is the translation operator defined by τb(f)(z) = f(z + b).

To prove the above proposition we will show that the three operators are continuous on

HbA(E). For the partial differentiation operator Dα we will need two lemmas. The first one,

which should be well known, shows that partial differentiation coincides with taking differentials

and the second is a generalization of the Cauchy inequalities to holomorphy types.

Lemma 2.10. Let E be a Banach space with basis (en)n and let f ∈ H(E) be a holomorphic

function on E. Then

(i) Desf(z) = df(z)(es),

(ii) d[dkf(·)∨(es1 , . . . , esk)](z)(el) = [dk+1f(z)]∨(el, es1 , . . . , esk).
(iii) Dαf(z) = [d|α|f(z)]∨(eα1

1 , . . . , eαl
l ), if αj = 0 for every j > l.

Proof. To prove (i), we write f(w) =
∑

k≥0
dkf(z)

k! (w − z). Thus we have that

f(z + hes)− f(z)

h
=

1

h

∑
k≥1

dkf(z)

k!
(hes) =

∑
k≥1

hk−1d
kf(z)

k!
(es)

= df(z)(es) + h

⎡⎣∑
k≥2

hk−2d
kf(z)

k!
(es)

⎤⎦−→
h→0

df(z)(es).

The last assertion is true because since f ∈ H(E), it satisfies that lim sup
∥∥∥dkf(z)

k!

∥∥∥1/k < ∞, and

thus
∑

k≥2 h
k−2 d

kf(z)
k! (es) is a power series with positive radius of convergence.

For (ii), observe that if z ∈ E,

∞∑
k=0

dkf(a)

k!
(x) = f(x+ a) =

∞∑
j=0

djf(z)

j!
(x+ a− z)

=

∞∑
j=0

j∑
k=0

(
j

k

)[
djf(z)

j!

]∨
((a− z)j−k, xk)

=

∞∑
k=0

∞∑
j=k

(
j

k

)[
djf(z)

j!

]∨
((a− z)j−k, xk).

Thus we get that

dkf(a)(x) = k!
∞∑
j=1

(
j

k

)[
djf(z)

j!

]∨
((a− z)j−k, xk),
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from which we conclude that if g(z) = dkf(z)∨(es1 , . . . , esk), then

g(z + hel)− g(z)

h
=

1

h

⎡⎣k! ∞∑
j=k

(
j

k

)[
djf(z)

j!

]∨
((hel)

j−k, es1 , . . . , esk)− dkf(z)∨(es1 , . . . , esk)

⎤⎦
=

1

h

⎡⎣k! ∞∑
j=k+1

(
j

k

)
hj−k

[
dkf(z)

k!

]∨
(ej−k

l , es1 , . . . , esk)

⎤⎦
−→
h→0

[dk+1f(z)]∨(el, es1 , . . . , esk),

because f has positive radius of convergence at z.

(iii) follows from (i) and (ii). �

Using the previous lemma it is immediate to translate a result in [34, Lemma 4.5] to conclude

that Dα is a bounded operator on HbA(E).

Lemma 2.11 (Cauchy estimates for holomorphy types). Let A be a holomorphy type with

constants as in (2), E be a Banach space with basis (en)n. Then for f ∈ HbA(E), x ∈ E and

r, ε > 0, we have

pxr (D
αf) ≤ C(α)

ε|α|
pxr+ε(f),

where C(α) is a positive constant depending only on α, we can take C(α) to be equal to

e|α|+1(
∏

αi �=0 αi)
1/2.

Proof of Proposition 2.9. Let us first show estimates for Mλ in terms of the seminorms pxr . If

f =
∑

k Pk then

‖Mλ(Pk)‖Ak(E) = ‖Pk ◦ Λ‖Ak(E) ≤ ‖Pk‖Ak(E)(C‖λ‖∞)k,

and

dj(Mλf)(x)

j!
=
∑
k≥j

(
k

j

)
(MλPk)xk−j .

Thus, using that Aj is an ideal, we have

pxr (Mλf) =
∑
j≥0

rj
∥∥∥∥dj(Mλf)(x)

j!

∥∥∥∥
Aj(E)

=
∑
j≥0

rj

∥∥∥∥∥∥
∑
k≥j

(
k

j

)
(MλPk)xk−j

∥∥∥∥∥∥
Aj(E)

=
∑
j≥0

rj

∥∥∥∥∥∥Mλ

⎛⎝∑
k≥j

(
k

j

)
(Pk)Λ(x)k−j

⎞⎠∥∥∥∥∥∥
Aj(E)

≤
∑
j≥0

(rC‖λ‖∞)j

∥∥∥∥∥∥
∑
k≥j

(
k

j

)
(Pk)(Λ(x))k−j

∥∥∥∥∥∥
Aj(E)

= p
Λ(x)
rC‖λ‖∞(f).
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For the translation operator we have,

pxr (τbf) =
∑
j≥0

∥∥∥∥dj(τbf)(x)j!

∥∥∥∥
Aj(E)

rj

=
∑
j≥0

rj
∥∥∥∥djf(x+ b)

j!

∥∥∥∥
Aj(E)

= px+b
r (f).

To finish the proof just apply the Cauchy inequalities (Lemma 2.11) together with the esti-

mates for Mλ and τb. �

2.1. A Runge type approximation theorem. We will also need in the next section a version

of Runge’s Theorem for the space HbA(E). Recall that the classical Runge’s approximation

theorem states that if K is a compact subset of C and C \ K is connected then, any function

that is holomorphic in a neighbourhood ofK can be uniformly approximated onK by polynomial

functions.

In [29], A. Hallack proved that the translations are hypercyclic in the space Hbc(E) of entire

functions of compact bounded type. For that, the following version of Runge’s approximation

theorem is proved: Let B1 and B2 be two disjoint closed balls in a complex Banach space E. If

f is a holomorphic and bounded function in a uniform neighborhood of B1 ∪B2, then f can be

uniformly approximated by polynomials on B1 ∪B2.

We wish to have a result in which if f is a holomorphic function of a given type A on two

disjoint balls, then f may be approximated by polynomials, but in the topology of HbA. In

order to obtain a result in this direction, we need to work with multiplicative holomorphy types,

which is a slightly more restrictive concept than that of coherent sequence.

Definition 2.12. Let {Ak}k be a sequence of polynomial ideals. We say that {Ak}k is multi-

plicative at E if there exist constants ck,l > 0 such that for each P ∈ Ak(E) and Q ∈ Al(E), we

have that PQ ∈ Ak+l(E) and

‖PQ‖Ak+l(E) ≤ ck,l‖P‖Ak(E)‖Q‖Al(E).

All the examples mentioned in Example 2.5 are multiplicative with constants as in (2), see

[13, 34].

Remark 2.13. Suppose that A is multiplicative with constants ck,l as in (2), and E is a Banach

space. Then, each seminorm pxs is “almost” multiplicative in the following sense. Given ε > 0

there exists a constant c = c(ε, s) > 1 such that

(6) pxs (fg) ≤ cpxs (g)p
x
s+ε(f).

This was proved in [34, Proposition 3.3].

Finally we recall Bohr’s inequality [8] for analytic functions defined on C.
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Theorem 2.14. [Bohr’s inequality] For every analytic function in H(C), f(z) =
∑

n≥0 anz
n

and any 0 ≤ r ≤ 1/3, the following inequality holds

∑
n≥0

|an|rn ≤ sup
|z|≤1

∣∣∣∣∣∣
∑
n≥0

anz
n

∣∣∣∣∣∣ .
Now we can state and prove Runge’s approximation theorem for HbA(E).

Theorem 2.15. Let A = {Ak}k be a holomorphy type, E be a Banach space, x ∈ E, and r, s

and δ be positive real numbers. Suppose that finite type polynomials are dense in each Ak and

that A is multiplicative with constants as in (2). If f is a holomorphic function of A-bounded

type on the disjoint balls B(0, r + δ) and B(a, s + δ), then there are polynomials in HbA(E)

which approximate f in HbA(B(0, r/3)) and HbA(B(a, s/3)).

Proof. Let ε > 0. First, since f is holomorphic of A-bounded type in B(0, r) and B(a, s), there

exist polynomials P1 and P2 in HbA(E) such that p0r/3(P1−f) < ε/3 and that pas/3(P2−f) < ε/3.

Let M = c(p0r/3+1(P1) + p0r/3+1(P2) + pas/3+1(P1) + pas/3+1(P2)), where c is a positive constant

such that p0r/3(gh) ≤ cp0r/3+1(g)p
0
r/3(h) and pas/3(gh) ≤ cpas/3+1(g)p

a
s/3(h) for any polynomials

g, h in HbA(E), (see Remark 2.13).

By the Hahn-Banach separation theorem, there exists ϕ ∈ E′ such that K1 = ϕ(B(0, r)) and

K2 = ϕ(B(a, s)) are disjoint convex compact sets in C. In fact, since K1 and K2 are closed,

convex, balanced sets in C, we get that K1 = D(0, r‖ϕ‖) and K2 = D(ϕ(a), s‖ϕ‖). Now we can

apply Runge’s Theorem to the compact set K = K1 ∪K2 ⊂ C and find a polynomial q ∈ C[z]

such that |q(z)− 1| < ε
3M for every z ∈ K1 and |q(z)| < ε

3M for every z ∈ K2.

Consider h = q◦ϕ ∈ HbA(E). Suppose that q(z) =
∑m

j=0 ajz
j , then applying Bohr’s inequality

in C, we get that

p0r/3(h− 1) = |a0 − 1|+
m∑
j=1

(r
3

)j |aj |‖ϕ‖j ≤ sup
z∈D(0,r‖ϕ‖)

|q(z)− 1| ≤ ε

3M
.

Suppose also that q(z) =
∑m

j=0 bj(z − ϕ(a))j . Applying Bohr’s inequality again we get that

pas/3(h) =
m∑
j=0

(s
3

)j |bj |‖ϕ‖j ≤ sup
z∈D(ϕ(a),s‖ϕ‖)

|q(z)| ≤ ε

3M
.

Finally, define P = P1h+ P2(1− h) ∈ HbA(E), thus

p0r/3(P − f) ≤ p0r/3(P1(h− 1)) + p0r/3(P1 − f) + p0r/3(P2(1− h))

< cp0r/3+1(P1)p
0
r/3(h− 1) +

ε

3
+ cp0r/3+1(P2)p

0
r/3(1− h)

≤ ε,

and
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pas/3(P − f) ≤ pas/3(P1h) + pas/3(P2 − f) + pas/3(P2h))

< cpas/3+1(P1)p
a
s/3(h) +

ε

3
+ cpas/3+1(P2)p

a
s/3(h)

≤ ε.

�

3. Dynamics of non convolution operators in HbA(E)

In this section we are concerned with the hypercyclic behavior of the family of operators

T = Mλ ◦ τb ◦ Dα defined in the previous section. If λj = 0 for some j, then we have that

d(Tnf)(·)(ej) = 0, for every n ∈ N and every f ∈ HbA(E). Since, the application g �→ dg(·)(ej)
is continuous, we conclude that the orbit of f under T cannot be dense. We will thus always

suppose that λj �= 0 for all j ∈ N.

The next result describes the hypercyclicity of the operator Tf = Mλ ◦ τb ◦Dα(f) in terms

of the parameters involved. Let us denote λα =
∏

i λ
αi
i . When no coordinate of the map

φ(z) = (λjzj + bj)j is a translation, we denote ζ := (b1/(1 − λ1), b2/(1 − λ2), b3/(1 − λ3), . . . )

the sequence in CN formed by the fixed points of every coordinate of the map φ. It is worth to

notice that if bi = 0 and λi = 1, then the fixed point of the i-coordinate of φ is 0, thus we will

assume that in this case, ζi = 0. Our main theorem reads as follows.

Theorem 3.1. Let E be a Banach space with a 1-unconditional shrinking basis, (es)s∈N. Let A
be a multiplicative holomorphy type with constants as in (2), such that finite type polynomials

are dense in each Ak(E) for every k. Let T be the operator on HbA(E), defined by Tf(z) =

Mλ ◦ τb ◦Dαf(z), with α �= 0 and λi �= 0 for all i ∈ N.

a) If |λα| ≥ 1, then T is strongly mixing in the Gaussian sense.

b) If ‖λ‖∞ = 1 and bi �= 0 and λi = 1 for some i ∈ N, then T is mixing.

c) If ‖λ‖∞ = 1, no coordinate of φ is a translation and ζ /∈ E′′, then T is mixing.

d) If |λα| < 1 and ζ ∈ E′′, then T is not hypercyclic.

Remark 3.2. Note that the assumptions on E are, in some sense, necessary. Indeed, the

unconditionality of the basis is needed to guarantee the continuity of Mλ. On the other hand,

if E is a Banach space with a non shrinking unconditional basis then E contains a isomorphic

copy of �1 and thus, HbA(E) cannot be separable.

Note also that, from case d), we see that, in contrast to the finite dimensional case [36], it is

possible that the affine map Mλ ◦ τb does not have a fixed point in E and that the operator fails

to be hypercyclic.
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Since the basis of E, (es)s∈N, is shrinking the bidual of E can be identified (see [30, Proposition

1.b.2]) with the sequences of complex numbers (z1, z2, z3, . . . ) such that

sup
n

∥∥∥∥∥
n∑

i=1

ziei

∥∥∥∥∥ < ∞.

This correspondence is given by

z′′ ↔ (z′′(e′1), z
′′(e′2), z

′′(e′3), . . . ),

and the norm of z′′ is equivalent to supn ‖
∑n

i=1 z
′′(e′i)ei‖.

We will divide the proof of the theorem in several cases. Lemmas 3.3 and 3.4 prove case a),

cases b), c) and d) are proven in Lemma’s 3.5, 3.7 and 3.6, respectively. Let A := {n ∈ N :

λn = 1} and B := {n ∈ N : λn �= 1}. If w ∈ CN, we write wA = (wi)i∈A and wB = (wi)i∈B.
We have that N = A∪̇B. We can also decompose E = E(A) + E(B) (where, for C ⊂ N, we

denote by E(C) to the closure of the subspace spanned by the ej ’s with j ∈ C). We will show

that the conditions of the hypercyclicity criteria are satisfied with dense subspaces of the form

span{eγzβ : γ ∈ E′, β ∈ N(N), γB = 0, βA = 0}. Since the basis (es)s∈N is shrinking, we can

think of the elements of E′ as sequences in (e′s)s∈N, the dual system of the basis of E. The

vectors γ appearing in the dense subspaces will only have finite non-zero coordinates.

Lemma 3.3. Let E be a Banach space with unconditional shrinking basis, (es)s∈N. Let A be

a coherent holomorphy type such that the finite type polynomials are dense in each Ak(E).

Suppose that |λα| ≥ 1 and αB = 0. Then T is strongly mixing in the Gaussian sense.

Proof. We show that T satisfies the conditions of Theorem 1.3. Take a function of the form eγzβ ,

with γB = 0 and βA = 0. Define cβ ∈ E as, cβ(n) = 0 if βn = 0, and cβ(n) =
bn

λn−1 if βn �= 0

and define τβ as the translation operator by cβ (note that cβ has finite non zero coordinates).

Then τ−1
β ◦ T ◦ τβ(eγzβ) = γαe〈γA,bA〉λβeγzβ . Therefore,

T (τβe
γzβ) = γαe〈γA,bA〉λβ τβe

γzβ ,

that is, the functions τβe
γzβ are eigenvectors of T .

Let D ⊂ S1 a dense subset. It is enough to prove that

span{τβeγzβ : with γB = 0, βA = 0, γαe〈γA,bA〉λβ ∈ D}
is dense in HbA(E). Define fβ(γ) = γαe〈γA,bA〉λβ . For each β finite with βA = 0, the function fβ

is holomorphic on E(A)′ and not constant. By [35, Lemma 2.4], we get that {eγ : fβ(γ) ∈ D}
spans a dense subspace in HbA(E(A)), for each β finite with βA = 0. Also, note that for k ∈ N0

span{τβ(zβ) : |β| ≤ k} = span{zβ : |β| ≤ k}.
This is clear for k = 0, because both sets are C, and if |β| = k

(z − cβ)
β =

∏
i

βi∑
j=0

zi
βi−jcβi

βi

(
βi
j

)
= zβ + g(z),
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where g has monomials of degree < k. Also, note that τβB
(zβAzβB ) = zβAτβB

(zβB ), and so

span{τβB
(zβAzβB )} is dense in HbA(E), because by Lemma 2.8, the monomials span a dense

subspace of HbA(E). Gathering the previous observations we get that the eigenvectors of T with

eigenvalues in D span a dense subspace in HbA(E). Thus, we have seen that the conditions of

Theorem 1.3 are satisfied, and so the operator T is strongly mixing in the Gaussian sense. �

To finish the case when |λα| ≥ 1, it remains to prove when T differentiates in some coordinate

with λn �= 1.

Lemma 3.4. Let E be a Banach space with unconditional shrinking basis, (es)s∈N. Let A be

a coherent holomorphy type such that the finite type polynomials are dense in each Ak(E).

Suppose that |λα| ≥ 1 and αB �= 0. Then T is strongly mixing in the Gaussian sense.

Proof. We will show that T satisfies the conditions of Theorem 1.4. Let D := {n ∈ N : λn �=
1, αn �= 0}, note that D is a finite set. Then T is topologically conjugate to

T0f(z) = Dαf(λz + b̃)

through a translation, where b̃n = bn for all n /∈ D and b̃n = 0 for all n ∈ D. Indeed, defining

c ∈ E as cn = 0 for n /∈ D and cn = −bn
λn−1 for n ∈ D, we get that T0 ◦ τc = τc ◦ T . We may thus,

by Proposition 1.5, assume that bn = 0 for every n such that λn �= 1 and αn �= 0. So we can

split N into three disjoint sets,

A := {n ∈ N : λn = 1},
C := {n ∈ N : λn �= 1, αn = 0},
D := {n ∈ N : λn �= 1, αn �= 0}.

Note that |λα| = |λαD
D | ≥ 1. Define the subspace

X0 = span{eγzβ : γ ∈ E′, γD = γC = 0, βA = 0}.
We can see that X0 is dense in HbA(E) proceeding as in the previous lemma. We have that

T (eγAz
βDzβC ) = γA

αAe〈γA,bA〉eγA
βD!

(βD − αD)!
zβD−αDλβD−αD

D (λz + b)βC .

Denote L(z) = λz+b, then we can write (λz+b)βC = CL(z
βC ) with CL the composition operator

associated to L. We also have

Tn(eγAz
βDzβC ) = γA

nαAen〈γA,bA〉eγA
βD!

(βD − nαD)!
zβD−nαDλ

nβD−n(n−1)
2

αD

D CL
n(zβC ).

Then
∑

n T
n(eγAz

βDzβC ) is unconditionally convergent because it is a finite sum.

Define a sequence of operators Sn on X0 by

Sn(eγAz
βDzβC ) =

βD!

γAnαAen〈γA,bA〉(βD + nαD)!λ
nβD+

n(n+1)
2

αD

D

eγAz
βD+nαD(CL−1)n(zβC ),

where L−1(z) = z−b
λ . The operators Sn are defined so that they satisfy T ◦ S1 = Id and

T ◦ Sn = Sn−1 on X0.
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Observe that, if ‖z‖E ≤ R

|CL−1
n(zβC )| ≤

(
1

|λC
βC |

)n(
‖z‖E + ‖bC‖E |λC |n + 1

|λC − 1|
)βC

≤ Mn|β| R|β|

|λβC
C |n

,

where M is a positive constant depending only on λC and bC . Thus, since |λD
αD |n(n+1)/2 ≥ 1,

we have

|Sn(eγAz
βDzβC )| ≤ Kn

(βD + nαD)!

1

|λβC
C |n

.

Since Sn(eγAz
βDzβC ) depends only on a finite number of variables, this implies unconditionally

convergence in HbA(E). In fact, suppose that Q ∈ Ak(E) depends only on N variables and

consider the following diagram

E
Q

��

π
��

C

CN
Q̃

���������

Since A is a Banach ideal, we get that

‖Q‖Ak(E) ≤ ‖Q̃‖Ak(CN )‖π‖k ≤ Nk‖π‖k‖Q̃‖∞ = Nk‖π‖k‖Q‖∞.

Then
∑

n Sn(eγAz
βDzβC ) is unconditionally convergent in HbA(E). Thus, we have proved that

T satisfies the conditions of Theorem 1.4. �

The two previous lemmas prove that T is strongly mixing in the Gaussian sense, in the case

|λα| ≥ 1. In order to study the hypercyclicity of the operator when |λα| < 1, we need to apply

the version of Runge’s Theorem for the space HbA(E) proved in the previous section.

Denote by φ(z) = λz+ b for z ∈ E and φi(z) = λiz+ bi for z ∈ C. In the next Lemma we will

prove case b) of Theorem 3.1, which is the case that one coordinate of the map φ is a translation.

Lemma 3.5. Let E be a Banach space with a 1-unconditional shrinking basis, (es)s∈N. Let A be

a multiplicative holomorphy type with constants as in (2), such that the finite type polynomials

are dense in each Ak(E). Let T : HbA(E) → HbA(E) be defined by Tf = Mλ ◦ τb ◦Dα(f), and

suppose that ‖λ‖∞ = 1 and that there exists some coordinate with λk = 1 and bk �= 0. Then T

is a mixing operator.

Proof. If |λα| = 1 this is implied by Lemma’s 3.3 and 3.4. Thus, we may suppose that |λα| < 1.

We want to show that T is a mixing operator, i.e, for every pair of open sets U and V in

HbA(E), there exists a positive integer n0 for which TnU ∩ V �= ∅, for all n ≥ n0. Without loss

of generality we can suppose that

U = {h ∈ HbA(E) such that p0r(h− f) < δ} and V = {h ∈ HbA(E) such that p0r(h− g) < δ},
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for f, g ∈ HbA(E) and r, δ positive numbers. Since, E has a shrinking basis, by Lemma 2.8, we

can assume that f is a finite linear combination of monomials. Define an inverse for T over the

span of the monomials by integrating each monomial and denote it by S.

Applying n times inequality (5) with εj = 2−j at the j-step, j = 1, . . . , n, we get that for all

x ∈ E

pxr (T
nf) ≤ C(n, α)p

φn(x)
r+1 (f).

Thus,

p0r(T
nq − f) = p0r(T

n(q − Snf)) ≤ C(n, α)p
φn(0)
r+1 (q − Snf).

The fact that λk = 1 and bk �= 0, implies that (φn(0))k = nbk. Since E has a 1-unconditional

basis we get that,

‖φn(0)‖E ≥ n|bk|.
Then if n is such that |φn(0)k| > 6r + 5 we get that, B(0, 3r + 1) ∩ B(φn(0), 3(r + 1) + 1) = ∅.
Thus, by Theorem 2.15, there exists a polynomial q ∈ HbA(E), such that

p0r(q − g) < δ and p
φn(0)
r+1 (q − Snf) <

δ

C(n, α)
.

Then, we get that for all n ∈ N such that n|bk| > 6r + 5, there exists a polynomial q ∈ HbA(E),

such that

p0r(q − g) < δ and p0r(T
nq − f) < δ.

So, we have proved that there is a positive integer n0 for which TnU ∩V �= ∅, for all n ≥ n0. �

Now will we take care of the cases c) and d) of our main theorem, in which no coordinate

of the function φ is a translation. Note that the fact that φi(z) = λiz + bi is not a translation

implies that φi has a fixed point at bi/(1− λi) (or at 0 if λi = 1 and bi = 0).

Recall that we denote by ζ = (b1/(1− λ1), b2/(1− λ2), b3/(1− λ3), . . . ) ∈ CN the sequence of

the fixed points of each φi. We are going to consider the cases in which ζ ∈ E′′ and ζ /∈ E′′. We

start with the case ζ ∈ E′′.

Lemma 3.6. Let E be a Banach space with a shrinking basis, (es)s∈N. Let X ⊂ Hb(E)

be a Fréchet space of holomorphic functions of bounded type. Suppose that T : X → X,

Tf = Mλ ◦ τb ◦Dα(f), with |λα| < 1 and ζ ∈ E′′ is well defined. Then T is not hypercyclic.

Proof. Let us denote the Aron-Berner extension [2], defined onHb(E) by AB : Hb(E) → Hb(E
′′).

Also denote by qr the seminorms on Hb(E),

qr(f) =
∑
k≥0

rk‖Pk‖Pk(E),

for f =
∑

k Pk. Recall that AB is a continuous map and

qr

(
AB

(∑
k

Pk

))
=
∑
k≥0

rk‖AB(Pk)‖Pk(E′′) =
∑
k≥0

rk‖Pk‖Pk(E) = qr

(∑
k

Pk

)
.
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Finally, denote the evaluation at ζ by δζ : Hb(E
′′) → C, δζ(g) = g(ζ). If g =

∑
k Pk ∈ Hb(E

′′),
we get that

|g(ζ)| = |
∑
k≥0

Pk(ζ)| ≤
∑
k≥0

‖ζ‖kE′′‖Pk‖Pk(E′′) = q‖ζ‖(g).

Under this assumptions, we can prove that no orbit of T can be dense. First recall that every

orbit of T has the following form:

Tnf(z) = λ
n(n−1)

2
αDnαf (φn(z)) = λ

n(n−1)
2

αDnαf

(
λnz + b

1− λn

1− λ

)
.

Thus, since φn is an affine map and since the Aron-Berner extension of a composition of a

function with an affine map is the composition of the Aron-Berner extensions, we get that

δζAB(Dnαf ◦ φn) = AB(Dnαf)(AB(φn)(ζ)) = AB(Dnαf)
(
δζ(z �→ AB(λnz + b

1− λn

1− λ
)
)

= AB(Dnαf)
(
λnζ + b

1− λn

1− λ

)
= AB(Dnαf)(ζ).

Now, we are able to show that T is not hypercyclic,

|δζAB(Tnf)| = |λα|n(n−1)
2 |δζAB(Dnαf ◦ φn)| = |λα|n(n−1)

2 |AB(Dnαf)(ζ)|

≤ |λα|n(n−1)
2 q‖ζ‖(Dnαf)

≤ |λα|n(n−1)
2 en|α|+1n|α|/2

⎛⎝∏
αi �=0

αi

⎞⎠1/2

q‖ζ‖+1(f) →
n→∞ 0,

where we used the Cauchy inequalities for the current holomorphy type in the last inequality.

Since, δζ ◦ AB is a surjective continuous map, then no orbit of T can be dense in Hb(E).

Thus, T is not hypercyclic. �

The last case it remains to be shown is when ζ /∈ E′′. We will restrict ourselves to the case

‖λ‖∞ = 1. Note that if ‖λ‖∞ < 1, then ζ ∈ E, thus T is not hypercyclic. If ‖λ‖∞ > 1, then

the inequality (5) for the operator in HbA(E) is not useful for us, because we are not able to

prove that φ is runaway. If we restrict to ‖λ‖∞ = 1, we can prove that the operator is mixing in

HbA(E). Furthermore, if A is the sequence of ideals of approximable polynomials, that is, when

HbA(E) = Hbc(E), the space of entire functions of compact bounded type, we can dispense the

condition on ‖λ‖∞. This will be proved at the end of this section.

Lemma 3.7. Let E be a Banach space with a 1-unconditional shrinking basis, (es)s∈N. Let A be

a multiplicative holomorphy type with constants as in (2), such that the finite type polynomials

are dense in each Ak(E). Let T : HbA(E) → HbA(E) be defined by Tf = Mλ ◦ τb ◦Dα(f), and

suppose that ‖λ‖∞ = 1 and that ζ /∈ E′′. Then T is a mixing operator.
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Proof. By Lemma’s 3.3 and 3.4, it remains to prove the case |λα| < 1.

Just like in the proof of Lemma 3.5, we fix a pair of open sets U and V in HbA(E). We will

show the existence of a positive integer k0 for which T kU ∩ V �= ∅, for all k ≥ k0. Without loss

of generality we can suppose that

U = {h ∈ HbA(E) such that p0r(h− f) < δ} and V = {h ∈ HbA(E) such that p0r(h− g) < δ},
for f, g ∈ HbA(E) and r, δ positive numbers. Since, E has a shrinking basis, by Lemma 2.8, we

can assume that f is a finite linear combination of monomials. Define an inverse for T over the

span of the monomials by integrating each monomial and denote it by S.

Applying (5) several times, with ε = 2−j at each step we get that for all x ∈ E

pxr (T
kf) ≤ C(k, α)p

φk(x)
r+1 (f).

Thus,

p0r(T
kq − f) = p0r(T

k(q − Skf)) ≤ C(k, α)p
φk(0)
r+1 (q − Skf).

It is enough to show that the sequence φk(0) is not bounded, because in that case, there exists

some k0 ∈ N such that the balls B(0, 3r+1) and B(φk(0), 3(r+1)+1) are disjoint for all k ≥ k0.

By an application of Theorem 2.15, it follows that T kU ∩ V �= ∅ for all k ≥ k0.

A simple calculation shows that

φk(0) =
∑
j∈N

bj
λk
j − 1

λj − 1
ej ,

if λj �= 1, and φk(0)j = 0 if λj = 1 (recall that we are assuming here that there are no

translations, so if λj = 1 then bj = 0).

Note that we can decompose N = N1 ∪N2, in two disjoint subsets with

N1 = {n ∈ N : |λn| = 1} and N2 = {n ∈ N : |λn| < 1}.
Define then for i = 1, 2 the vector ζi with ζin = ζn for n ∈ Ni and ζin = 0 for n /∈ Ni. Note

that ζ = ζ1 + ζ2.

We will divide the proof in two cases. First we will prove that the sequence φk(0) is not

bounded if ζ1 /∈ E′′, and then we will do so if ζ2 /∈ E′′.
Suppose first that ζ1 /∈ E′′. Denote by |||z||| = supk

∥∥∥∑k
i=1 ziei

∥∥∥, which is an equivalent norm

in E. Suppose that there exists some positive constant C such that
∣∣∣∣∣∣φk(0)

∣∣∣∣∣∣ ≤ C for all k ∈ N.

Then we get that, for every N ,

1

N

N∑
j=1

∣∣∣∣∣∣φj(0)
∣∣∣∣∣∣ ≤ C.

We will show that this leads to a contradiction. Since ζ1 /∈ E′′, let A ∈ N be a finite subset on

N1 such that λn �= 1 if n ∈ A and such that∥∥∥∥∥∑
l∈A

bl
λl − 1

el

∥∥∥∥∥ ≥ 2C.
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Since E has a 1-unconditional basis, we get that

1

N

N∑
j=1

∣∣∣∣∣∣φj(0)
∣∣∣∣∣∣ ≥ 1

N

N∑
j=1

∥∥∥∥∥∑
l∈N

(λj
l − 1)

bl
λl − 1

el

∥∥∥∥∥ ≥ 1

N

N∑
j=1

∥∥∥∥∥∑
l∈A

(λj
l − 1)

bl
λl − 1

el

∥∥∥∥∥
≥
∥∥∥∥∥∥ 1

N

N∑
j=1

∑
l∈A

(λj
l − 1)

bl
λl − 1

el

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
l∈A

bl
λl − 1

el

⎡⎣ 1

N

N∑
j=1

(λj
l − 1)

⎤⎦∥∥∥∥∥∥
Since |λl| = 1 and λl �= 1 for all l ∈ N1, we can write λl = eiρl . Thus, if l ∈ A, we get that,

for every N ,

1

N

∣∣∣∣∣∣
N∑
j=1

(λj
l − 1)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
⎛⎝ 1

N

N∑
j=1

λj
l

⎞⎠− 1

∣∣∣∣∣∣ =
∣∣∣∣∣ 1N ei(N+1)ρl − e2iρl

eiρl − 1
− 1

∣∣∣∣∣
≥ 1− 1

N

∣∣∣∣∣ei(N+1)ρl − e2iρl

eiρl − 1

∣∣∣∣∣
Now, given η > 0, we can fix K ∈ N such that

1

K

∣∣∣∣∣ei(K+1)ρl − e2iρl

eiρl − 1

∣∣∣∣∣ ≤ 2

Kminl∈A |eiρl − 1| ≤ η.

Finally, we get that for l ∈ A

1

K

∣∣∣∣∣∣
K∑
j=1

(λj
l − 1)

∣∣∣∣∣∣ ≥ 1− η,

which means that

1

K

K∑
j=1

∣∣∣∣∣∣φj(0)
∣∣∣∣∣∣ ≥

∥∥∥∥∥∥
∑
l∈A

bl
λl − 1

el

⎡⎣ 1

K

K∑
j=1

(λj
l − 1)

⎤⎦∥∥∥∥∥∥
≥
∥∥∥∥∥∑
l∈A

(1− η)
bl

λl − 1
el

∥∥∥∥∥
> (1− η)2C.

It follows that the sequence φk(0) is not bounded.

Now we assume that ζ2 /∈ E′′. If j ∈ N2, we have that |λj | < 1, which implies that

lim
k→∞

φk(0)j = lim
k→∞

bj
λk
j − 1

λj − 1
=

bj
1− λj

= ζ2j .
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Suppose that φk(0) is bounded. It follows that φk(0) has a w∗-accumulation point z ∈ E′′ and
that

lim
k→∞

φk(0)j = ζ2j = zj ,

for all j ∈ N2. It follows that ζ
2 ∈ E′′, which is a contradiction. This proves that the sequence

φk(0) is not bounded, hence the operator T is mixing as we wanted to prove. �

3.1. Holomorphic functions of compact bounded type. In this section we deal with the

case in which A = A, is the sequence of ideals of approximable polynomials. Then HbA(E) is

the space Hbc(E) of entire functions on E of compact type that are bounded on bounded subsets

of E. The space Hbc(E) is endowed with the topology of uniform convergence on bounded sets

of E. Hence, we consider the following family of seminorms that generates the topology of this

space. Given a bounded set A ⊂ E and f ∈ Hbc(E), we define

pA(f) = sup
z∈A

|f(z)|.

Our objective is to prove the following strengthen version of Theorem 3.1, where in the state-

ments (b) and (c) of our main theorem we may drop the condition ‖λ‖∞ = 1, thus, completely

characterizing the hypercyclicity of T . We will just point out the changes needed to prove this

case.

As we mentioned previously, A is a multiplicative holomorphy type in which the finite type

polynomials are dense in each Ak(E).

Theorem 3.8. Let E be a Banach space with a 1-unconditional shrinking basis, (es)s∈N. Let

T be the operator on Hbc(E), defined by Tf(z) = Mλ ◦ τb ◦Dαf(z), with α �= 0 and λi �= 0 for

all i ∈ N. Then,

a) If |λα| ≥ 1 then T is strongly mixing in the Gaussian sense.

b) If for some i ∈ N we have that bi �= 0 and λi = 1, then T is mixing.

c) If ζ := (b1/(1− λ1), b2/(1− λ2), b3/(1− λ3), . . . ) /∈ E′′, then T is mixing.

d) In any other case, T is not hypercyclic.

The key point to prove this new statements is that under this assumptions the affine symbol

φ will result to be runaway. Then, applying Theorem 2.15 we will be able to prove that the

operator is mixing. During this section E will denote a Banach space with separable dual and

suppose that (es)s∈N is a 1-unconditional shrinking basis. In order to prove that the operator

T is mixing on Hbc(E) we need to give bounds for pA(D
αf) in terms of pA(f), eventually by

enlarging if necessary the set A. For this we will assume that the space E is of the form CN ×F ,

and that α only have nonzero coordinates in corresponding to the coordinates of CN .

Remark 3.9. Let A = A1 × A′ be a bounded subset of E = CN × F and suppose that αi = 0

for every i > N . If f ∈ Hbc(E) and z = (z1, . . . , zN , z′) ∈ E, then
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Dαf(z1, . . . , zN , z′) =
α!

(2πi)N

∫
|w1−z1|=r1

· · ·
∫
|wN−zN |=rN

f(w1, . . . , wN , z′)∏N
i=1(wi − zi)αi+1

dw1 . . . dwN .

Therefore, we can estimate the seminorm of Dαf over A = B(z1, r1) × · · · × B(zN , rN ) × A′,
where B(zj , rj) denotes the closed disk of center zj ∈ C and radius rj . Fix positive real numbers

ε1, . . . , εN , then

(7) pA(D
αf) ≤ α!

(2π)N
p(A1+ε,A′)(f)

εα1+1
1 . . . εαN+1

N

.

The case b) follows the lines of the case b) of [36, Theorem 3.4]. Actually the same proof

remains valid adapting the bounded sets to this case. To prove the case c) we proceed in

a similar way to the proof of it counterpart on Theorem 3.1. We can decompose the hole

space E in two subspaces corresponding to the different sizes of the modulus of λi. Decompose

N = N1 ∪N2, into two disjoint subsets with

N1 = {n ∈ N : |λn| ≤ 1} and N2 = {n ∈ N : |λn| > 1}.

We have that E = E(N1)+E(N2). Define for i, i = 1, 2 the vector ζi with ζin = ζn for n ∈ Ni and

ζin = 0 for n /∈ Ni. Note that ζ = ζ1+ζ2. If ζ1 /∈ E′′, then following the lines of the proof of part

c) in Theorem 3.1, we can conclude that φ is runaway, so that the operator Cφ ◦Dα is mixing.

Otherwise, if ζ2 /∈ E′′ and since |λi| > 1 for every i ∈ N2, we can consider φ−1
2 : E(N2) → E(N2).

It is easy to see that ζ2 is the fixed point of φ2 and that φ2(z) =
1
λ(z − b). Since, |λi| > 1 for

every i ∈ N2, we may again follow the proof of part c) of Theorem 3.1 to conclude that φ2 is

runaway. Now, since the topology on Hbc(E) is the topology of uniform convergence on bounded

sets, we get that φ is runaway and thus Cφ ◦Dα is mixing by Theorem 2.15.
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[8] Harald Bohr. A theorem concerning power series. Proceedings of the London Mathematical Society, 2(1):1–5,

1914.

[9] Antonio Bonilla and Karl-G. Grosse-Erdmann. On a theorem of Godefroy and Shapiro. Integral Equations

Operator Theory, 56(2):151–162, 2006.

[10] Daniel Carando. Extendibility of polynomials and analytic functions on lp. Studia Math., 145(1):63–73, 2001.

[11] Daniel Carando, Verónica Dimant, and Santiago Muro. Hypercyclic convolution operators on Fréchet spaces
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[20] Vińıcius V Fávaro and Jorge Mujica. Hypercyclic convolution operators on spaces of entire functions. Journal

of Operator Theory, 76(1):141–158, 2016.
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[39] Henrik Petersson. Hypercyclic subspaces for Fréchet space operators. J. Math. Anal. Appl., 319(2):764–782,

2006.

[40] Henrik Petersson. Supercyclic and hypercyclic non-convolution operators. Journal of Operator Theory, pages

135–151, 2006.

Santiago Muro
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