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DYNAMICS OF NON CONVOLUTION OPERATORS AND HOLOMORPHY
TYPES

SANTIAGO MURO, DAMIAN PINASCO, MARTIN SAVRANSKY

ABSTRACT. In this article we study the hypercyclic behavior of non convolution operators de-
fined on spaces of analytic functions of different holomorphy types over Banach spaces. The
operators in the family we analyze are a composition of differentiation and composition oper-
ators, and are extensions of operators in H(C) studied by Aron and Markose in 2004. The
dynamics of this class of operators, in the context of one and several complex variables, was
further investigated by many authors. It turns out that the situation is somewhat different
and that some purely infinite dimensional difficulties appear. For example, in contrast to the
several complex variable case, it may happen that the symbol of the composition operator has
no fixed points and still, the operator is not hypercyclic. We also prove a Runge type theorem

for holomorphy types on Banach spaces.

INTRODUCTION

An operator T : X — X is said to be hypercyclic if there exists some vector x € X, called
hypercyclic vector of T, such that the orbit Orb(z,T) := {z,T(z),...,T"(x),...} is dense
in X. The first examples of hypercyclic operators appeared in the works by Birkhoff [7] and
MacLane [32]. Birkhoff’s result states that the translation operator 7' : H(C) — H(C) defined
by T'(h)(z) = h(z + 1) is hypercyclic. Likewise, MacLane’s result says that the differentiation
operator on H(C) is hypercyclic.

Several criteria to determine if an operator is hypercyclic have been studied. It is known that
a large supply of eigenvectors implies hypercyclicity. In particular, if the eigenvectors associated
to the eigenvalues of modulus less than 1 and the eigenvectors associated to the eigenvalues of
modulus greater than 1 span dense subspaces, then the operator is hypercyclic. This result is due
to Godefroy and Shapiro [25]. In the same article, they also prove that non-trivial convolution
operators, i.e. operators that commute with translations which are not multiples of the identity,
on the space of entire functions on C" are hypercyclic. Birkhoff’s translation operators and
MacLane’s differentiation operators are special examples of non-trivial convolution operators.

This result has also been extended to some spaces of entire functions of infinitely many variables
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by several authors (see [3,6,11,18-21,29,35,38,39]). Some of these extensions even hold for
spaces of functions associated to very wide classes of holomorphy types. The Godefroy - Shapiro
theorem has been improved by Bonilla and Grosse-Erdmann in [9]. They showed that non-trivial
convolution operators are frequently hypercyclic (see also [21,35]).

Recent work developed by Bayart and Matheron [5] provides other eigenvector criteria to
determine whether a given continuous map 7' : X — X acting on a topological vector space
X admits an ergodic probability measure, or a strongly mixing one. If the measure is strictly
positive on any non void open sets of X, ergodic properties on 7" imply topological counterparts.
In particular, if a continuous map 7' : X — X happens to be ergodic with respect to a Borel
probability measure p with full support, then almost every x € X, relative to p, has a dense
orbit. Moreover, from Birkhoff’s ergodic theorem, we can obtain frequent hypercyclicity.

In [4], Aron and Markose studied the following class of operators in the seek of examples of
non convolution hypercyclic operators on H(C) : f — [z — f(Az+ b)]. This class of operators,
or variants of it, has also been studied in [22,28,31,36,40]. In [36] we extended the work of [4]
analyzing the hypercyclic behavior of some non-convolution operators on the space H(CY).
Given ¢(z) = Az + b a diagonal affine linear map on CV and a € N}, we proved that the
operator Cy o D® is hypercyclic if and only if either [, [A4;]* > 1 or ¢ has no fixed points.
In this article we study the hypercyclic behavior of the analogous class of operators defined on
the general context of holomorphy types on infinite dimensional Banach spaces. Some purely
infinite dimensional difficulties appear, for example, the non existence of a fixed point of the
affine maps does not longer guarantee the hypercyclicity of these operators.

A Runge approximation theorem valid for holomorphy types had to be developed, which we
think is of independent interest. For the proof of the latter result, a classical theorem about the
Bohr radius of an entire function was applied.

The structure of the article goes as follows. In the Preliminaries section we recall some
concepts of linear dynamics. In Section 2 we recall the definition of holomorphy types and of
the spaces of holomorphic functions associated to it. We introduce the family of operators that
we will study and prove some properties there, including some Cauchy estimates valid for general
holomorphy types, as well as a Runge type approximation theorem for holomorphic functions of
a given type on Banach spaces. In the final section we prove our main results on the dynamics
induced by the operators in the family that concerns us. Finally, we focus in the holomorphy

type that determines the space Hp.(F), of entire functions of compact type.

1. PRELIMINARIES

In this section we state some results that ensure the existence of an invariant Borel probability
measure with full support on complex separable Fréchet spaces, with respect to which an operator
is strongly mixing. First we recall some basic definitions. In what follows X denotes a Fréchet

space.
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Definition 1.1. An operator T on X is called mizing if for every pair of non void open sets U
and V, there exists N € N such that T"U NV # () for every n > N.

A Borel probability measure on X is Gaussian if and only if it is the distribution of an almost
surely convergent random series of the form & = > 7 gpy, where (z,) C X and (gy) is a

sequence of independent, standard complex Gaussian variables.

Definition 1.2. An operator T' € L£(X) is strongly mizing in the Gaussian sense if there exists
some Gaussian T-invariant probability measure g on X with full support such that for any

measurable sets A, B C X,

lim p(ANT"(B)) = p(A)u(B).

n—o0

We will use the following result, which is a corollary of a theorem due to Bayart and Matheron
(see [5]) and which states that the existence of sufficiently many eigenvectors associated to

unimodular eigenvalues implies that the operator is strongly mixing in the Gaussian sense.

Theorem 1.3 (Bayart, Matheron). Let X be a complex separable Fréchet space, and let T €
L(X). Assume that for any set D C T such that T \ D is dense in T, the linear span of

User_p ker(T' — X) is dense in X. Then T is strongly mizing in the Gaussian sense.

The following result, which is [33, Theorem 1], says that operators satisfying the Frequent
Hypercyclicity Criterion are strongly mixing with respect to an invariant Borel measure with

full support.

Theorem 1.4 (Murillo-Arcila, Peris). Let X be a separable, Fréchet space and T € L(X).
Suppose that there exists a dense subspace Xo C X such that ) T"x is unconditionally
convergent for all x € Xy. Suppose further that there exist a sequence of maps S : Xg — X,
k € N such that T oSy = Id, T o Sj, = Sp_1 and ), Sip(x) is unconditionally convergent for
all x € Xg. Then there exist a Borel probability measure p in X, T-invariant, such that the

operator T is strongly mizing respect to p.

The hypotheses of Theorem 1.4 imply the corresponding ones of the Theorem 1.3. So both
theorems allow us to conclude the existence of an invariant Gaussian probability measure for
linear operators of full support which are strongly mixing. Finally, the next proposition states

that the existence of such measures is preserved by linear conjugation.

Proposition 1.5. Let X andY be separable, Fréchet spaces andT € L(X), S € L(Y). Suppose
that SJ = JT for some linear mapping J : X — Y of dense range then, if T has an invariant
Borel measure then so does S. Moreover, if T has an invariant Borel measure that is Gaussian,

strongly mixing, ergodic or of full support, then so does S.
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2. HOLOMORPHY TYPES. HOLOMORPHIC FUNCTIONS OF 2-BOUNDED TYPE

From now on, E denotes a complex Banach space and Bg(x,r) denotes the open ball of radius
r and center x € E. We denote by P*(E) the Banach space of all continuous k-homogeneous
polynomials from E to C. The space PY(E) is just C.

We define, for each P € P¥(E), a € F and 0 < j < k the polynomial P,; € P*=/(E) by

Voo
P,(z) = P(a?,2"7) = P(a,...,a,z,...,x),

v
where P is the symmetric k-linear form associated to P. We write P, instead of P,1.

Let us recall the definition of polynomial ideal [23,24].

Definition 2.1. A Banach ideal of (scalar-valued) continuous k-homogeneous polynomial, k >
0, is a pair (A, || - ||a,) such that:
(i) For every Banach space E, Ax(E) = 20, N P¥(E) is a linear subspace of P¥(E) and
| llot (&) is @ norm on it. Moreover, (U (E), || - [l (z)) is a Banach space.
(ii) IfT e L(E,E) and P € Qlk(E), then PoT € A (F) with

1P o Tllagy () < 1Pl () I T
(iii) z — 2* belongs to 2 (C) and has norm 1.

We use the following version of the concept of holomorphy type, originally defined by Nachbin
in [37] (see also [34]).

Definition 2.2. Consider the sequence A = {}72,, where for each k, 2, is a Banach ideal
of k-homogeneous polynomials. We say that {2}y is a holomorphy type if for each 0 <1 < k

there exist a positive constant ¢ ; such that for every Banach space E, the following hold:
(1) if P e Qlk(E), a € FE then Paz belongs to Qlk,l(E) and HPalHQ[k_l(E) < Ck,lHPHQlk(E)HaHZ

Remark 2.3. Sometimes we require that the constants satisty, for every k, I,

(k+ DR kLD

2 <Xty Mo
2) TE=Th D) KR

These constants are more restrictive than Nachbin’s constants (the constants considered by
Nachbin were of the form ¢ ; = (]lc) C* for some fixed constant C'), but on the other hand, the

constants ¢ of every usual example of holomorphy type satisfy (2).

There is a natural way to associate to a holomorphy type 2l spaces of holomorphic functions
of bounded type on a Banach space F, namely the holomorphic functions that have a given

2-radius of convergence at each point of E (see for example [11,16,18,35]).
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Definition 2.4. Let 21 = {20}, be a holomorphy type, E be a Banach space, z € E, and
0 <7 < oco. We define the space of holomorphic functions of 2-bounded type on B(x,r) by

oy 23y

k!
The case 7 = oo correspond to the space of entire functions of bounded A-type, Hyy(E).

Hyy(B(x,r)) = {f € H(B(z,r)) :d"f(z) € Ax(E) and limsup

k—o0

We consider in Hyy(B(x,r)) the seminorms pf, for 0 < ¢t < r, given by

=3 |55

t*,
A

for all f € Hyy(B(z,r)). It is easy to show that <Hbm(B($, ), {pf}0<t<T> is a Fréchet space.
There are many usual spaces of entire functions of bounded type that may be constructed in

this way.

Example 2.5. We mention the following spaces of entire functions: (i) Hy(FE) of all bounded
type functions, (ii) of nuclear bounded type functions [27], (iii) of Hilbert-Schmidt type func-
tions [17,38], (iv) of compact bounded type functions [1,3], (v) of weakly uniformly continuous
functions on bounded sets [1], (vi) of extendible functions of bounded type [10] and (vii) of

integral functions of bounded type [15].

Our objective is to define on Hyy(E) analogues of the operators studied by Aron and Markose
in [4] in the one variable case and to determine the dynamics they induce. It is clear that the
space Hyy(F) must be separable in order to support an hypercyclic operator. Since E’ is a
subspace of Hyy(FE), we need to restrict ourselves to the class of Banach spaces with separa-
ble dual space. On the other hand, if E’ is separable and if we assume that the finite type
polynomials are dense in each 20, (FE), it is a simple exercise to prove that Hyy(FE) is separable.
Also, in order to be able to define partial derivatives we will assume that the space E has an
unconditional basis. Recall (see for example [26]) that a basis (es)sen is C-unconditional if there
exist a positive constant C such that for every sequence of scalars (a,)nen and every sequence

of scalars (£, )nen of modulus at most 1, we have the inequality

oo o0
| Zgnanen” <C| ZanenH-
n=1 n=1

Let E be a Banach space with basis (es)sen. Recall that the basis is shrinking if for every
¢/ € E' the norm of the restriction of €’ to the span of (es)s>n, goes to 0 as n — oc.

Let E be a Banach space with unconditional basis (es)sen. The dual system of linear func-
tionals associated to the basis (es)sen is defined by the relation €, (e,) = 0y n. Let {Ps}sen be
the natural projections associated to the basis (es)sen. For every choice of scalars (as)sen and
as€y) = D ocp s€s. Since, [Pyl = || Py, we get that

(el)sen is a basic sequence in E’, whose basis constant is identical to that of (es)sen. Recall that

for all integers n < m we have Pi(>" ..,
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(€%)sen form a basis of E’ if and only if (es)sen is shrinking [30, Proposition 1.b.1]. Note that if
F has unconditional basis and E’ is separable, then the basis is shrinking, because ¢ ¢ E.
In order to apply the hypercyclicity criterion, we will need a convenient dense subset. In

many cases, we will use the span of the monomials.

Definition 2.6. If 3 = (;);en is a finite multi-index, we define the monomial 2% € Hyy(E) as

& =[]

i
The next lemma tell us that under suitable assumptions on the holomorphy type, the mono-

mials span a dense set in Hyy(E). First recall the following definition from [11,12].

Definition 2.7. We say that the holomorphy type 2 = {2(;}7°, is coherent if for each £ > 0

there exist a positive constant di such that for every Banach space F, the following hold:
(3) if P €A(E), v € E' then vP belongs to Ay 1(E) and ||7P||21k+1(E) < dk||PH2lk(E)||’Y||E/-

Lemma 2.8. Let E be a Banach space with unconditional basis (es)sen and let 2 be a coherent
holomorphy type such that finite type polynomials are dense in 2 (E) for each k. Then, the

linear span of the monomials is dense in Hyy(E) if and only if the basis is shrinking.
Proof. Since 2 is coherent, if p!,..., " € E’, we get that

lo* - "ot () < dn-1ll@" oty () 197 - - " Nt ()

n—1 n '
L4 | IT1¥)e-
j=1 j=1

IN

Since the basis of E is shrinking and (e},)sen form a basis of E', we get that each ¢/ € E' can

be written as
o
ol = allel.
s=1

Now, given e > 0 and N > 0, we fix ¢; < and & = Zivzl agj)e’s € F

13
| | nkKi—1 H?;ll dj [Tz 1071 g/
such that ||¢? — &g <e;.

Note that H?zl ¢’ is a linear combination of monomials because,

n n N N n

J — 7). 1 n /
[[e=T[> %= 3 ol []e,.
j=1 j=1s=1 51,...,8n,=0 j=1

Also, since (€})sen is a basis, there exist a constant K such that

N
1€ = |>_aPe,| < K|¢||e
s=1

E/
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Thus, we have

n i—1 n 7 n
It =&l < DO TT€ ) (TT# ) - (11 ) | 1T #

i=1 J=1 J=i Jj=1 j=i+1 A, ()
n 1—1 . ' . n .

=S III¢ )= | 11 ¢
i=1 || \j=t j=itl o0, ()
n n—1 i—1 ' ' . n .

< de HH&JHE " — &'l e H ¢’ || e
i=1 \ j=1 j=1 j=i+1
n n—1 ' . \ '

<SS I | & [ T]1€Me | e - €lle
i=1 \j=1 G

So, we get that [[p!... " — & & |y, (p) <&
Reciprocally, suppose that the linear span of the monomials of degree k is dense in ;(F),
for all k € N. Since the norm of 2;(F) coincides with the norm in E’, the linear span of the

monomials of degree 1 is dense in F’. But, this means that (e})sen is a basis of F'. O

In the spaces ii), iii) and iv) of Example 2.5 finite type polynomials are dense for arbitrary
Banach spaces. For the other spaces of holomorphic functions appearing in Example 2.5 finite
type polynomial are dense for specific Banach spaces (see [14,35]).

Let us also remark that holomorphy types in which finite type polynomials are dense are

called a-B-holomorphy types in [16] and w1 holomorphy types in [6,18-21]

Now we define the family of operators we will study and prove that they are bounded on
Hyy(E). Let E be a Banach space with a C-unconditional shrinking basis, (es)sen. Let 2
be a holomorphy type such that the finite type polynomials are dense in each 20 (F). Fix a
finite multi-index o = (;)en, || = m, which counts how many times the operator 7" partially
differentiates in each variable, where the partial derivative in the s—th variable is

. f<z+hes)_f(z)
D*s =1 :
f(z) = lim A
Also, for fix vectors, A = (Aj)jen € log and b = > . ybje; € E, let A\b denote the vector
Ab =3 ey Ajbje; € E. The operator T : Hyy(E) — Hpo(E) is defined by

(4) Tf(z) =D*f(Az+ D).

Proposition 2.9. Let 2 be a holomorphy type with constants as in (2), and T defined as in
(4), then T is a continuous linear operator on Hyy(E). Moreover, for each f € Hy(FE), x € E,
and r,e > 0,

Cla
(5) i) < St L)
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where C(«) is a positive constant depending only on «, which can be taken equal to e|a|+1(Haﬁ£0 ai)1/2.

Observe that we can think 7" as a composition of three operators. Indeed, let A : z +— A -z
be the coordinate-wise multiplication operator on E, which satisfies |A]] < C|[A|lco. Then A
induces a composition operator My : Hyy(F) — Hpy(F), defined by My(f) = f o A. Then,

Tf = M)om,oDf),

where 7, : Hyg(E) — Hpy(F) is the translation operator defined by 7,(f)(2) = f(z + b).

To prove the above proposition we will show that the three operators are continuous on
Hyy (E). For the partial differentiation operator D we will need two lemmas. The first one,
which should be well known, shows that partial differentiation coincides with taking differentials

and the second is a generalization of the Cauchy inequalities to holomorphy types.

Lemma 2.10. Let E be a Banach space with basis (ey,), and let f € H(E) be a holomorphic

function on E. Then

(i) D% f(z) = df(z)(es),
(ii) d[dkf(')v(eslv s 76816)}('2)(61) = [dk+1f(z)]v(elv €syy--- 7€3k)‘
(iif) Df(z) = [dlf(2)]V (S, .. e)), if aj = 0 for every j > [

Proof. To prove (i), we write f(w) =3;~q ﬂ,];(—z)(w — z). Thus we have that

f(Z + hes) — f(Z) _ 1 Z dkf(z) (hes) _ th,1 dkf(z) (es)

h h k! k!
k>1 k>1
d"f(z)
— k—2
= df()(ea) + b | S WL ) |y dp(a)(e).
k>2
. . . . . . dFf(z) 1/k
The last assertion is true because since f € H(FE), it satisfies that lim sup HT < 0o, and

k
thus ) ;< hk_Q%!(z)(es) is a power series with positive radius of convergence.

For (ii), observe that if z € E,

L 2
- ggo (i:) [djﬁl(Z)}v ((a—2)7*, ")
S

Thus we get that
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from which we conclude that if g(z) = d*f(2)"(es,, - - -, es, ), then

z+ hey) — g(z 1 N & F()1Y . v
A = () [552] erhen = e e
L& (k[ FOT
= — k' h.] (e 6817 GSk)
X ()5
— [dk+1f(z)]v(ela €515 esk)

because f has positive radius of convergence at z.
(iii) follows from (i) and (ii). O

Using the previous lemma it is immediate to translate a result in [34, Lemma 4.5] to conclude
that D% is a bounded operator on Hpygy (F).

Lemma 2.11 (Cauchy estimates for holomorphy types). Let 2 be a holomorphy type with
constants as in (2), E be a Banach space with basis (ey)n. Then for f € Hyy(E), v € E and
r,e >0, we have

%pf—i-a (f)v

where C(a) is a positive constant depending only on «, we can take C(a) to be equal to
elal+1 (Haﬁéo 041’)1/2-

pr(Df) <

Proof of Proposition 2.9. Let us first show estimates for M) in terms of the seminorms py. If
f =72 Px then

IMA(Pi) (2 = 1P © Allay () < [1Pellan ) (ClIAIo0) ",

and

POLN ) _ 5 (’;) (MPi)

!
I k=)
Thus, using that 2(; is an ideal, we have
M k
pE(Myf) = 3 % iy ( ) (MyPy) s
>0 J: j>0 k>j J 2, (E)
j k

= My (D7) (Pe)ageyis

7>0 k>j J A (E)
Az

< S0 |5 () B =0

7>0 k>j ']

A;(E)
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For the translation operator we have,

PICT D D LauZEa I
>0 J: A; (E)
_3 djf UEICALY P )
7>0 2A;(E)

To finish the proof just apply the Cauchy inequalities (Lemma 2.11) together with the esti-
mates for M, and 7. O

2.1. A Runge type approximation theorem. We will also need in the next section a version
of Runge’s Theorem for the space Hyy(FE). Recall that the classical Runge’s approximation
theorem states that if K is a compact subset of C and C \ K is connected then, any function
that is holomorphic in a neighbourhood of K can be uniformly approximated on K by polynomial
functions.

In [29], A. Hallack proved that the translations are hypercyclic in the space Hp.(E) of entire
functions of compact bounded type. For that, the following version of Runge’s approximation
theorem is proved: Let By and Bs be two disjoint closed balls in a complex Banach space E. If
f is a holomorphic and bounded function in a uniform neighborhood of By U B, then f can be
uniformly approximated by polynomials on B; U Bs.

We wish to have a result in which if f is a holomorphic function of a given type 2l on two
disjoint balls, then f may be approximated by polynomials, but in the topology of Hpgy. In
order to obtain a result in this direction, we need to work with multiplicative holomorphy types,

which is a slightly more restrictive concept than that of coherent sequence.

Definition 2.12. Let {2} be a sequence of polynomial ideals. We say that {2 }x is multi-
plicative at E if there exist constants c; > 0 such that for each P € A, (E) and Q € ;(E), we
have that PQ € A;4;(F) and

1PQllay By < kil Pllag )| Qlla ()

All the examples mentioned in Example 2.5 are multiplicative with constants as in (2), see
[13,34].

Remark 2.13. Suppose that 2 is multiplicative with constants c;; as in (2), and E is a Banach
space. Then, each seminorm p? is “almost” multiplicative in the following sense. Given € > 0

there exists a constant ¢ = ¢(e,s) > 1 such that

(6) Ps(fg) < ep(9)psye(f)-

This was proved in [34, Proposition 3.3].

Finally we recall Bohr’s inequality [8] for analytic functions defined on C.
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Theorem 2.14. [Bohr’s inequality] For every analytic function in H(C), f(2) = >_, g an2"
and any 0 < r < 1/3, the following inequality holds

Z]anlr < sup Zan

n>0 l21<1 >0
Now we can state and prove Runge’s approximation theorem for Hpygy (F).

Theorem 2.15. Let 2 = {2}, be a holomorphy type, E be a Banach space, z € E, and r, s
and § be positive real numbers. Suppose that finite type polynomials are dense in each 2l; and
that 2( is multiplicative with constants as in (2). If f is a holomorphic function of 2-bounded
type on the disjoint balls B(0,r + ¢) and B(a,s + d), then there are polynomials in Hpygy(F)
which approximate f in Hyy(B(0,7/3)) and Hyy(B(a,s/3)).

Proof. Let € > 0. First, since f is holomorphic of 2-bounded type in B(0,7) and B(a, s), there
exist polynomials P; and P in Hpy(FE) such that p8/3(P1 —f) < ¢/3 and that p‘sl/3(P2 —f) <e/3.

Let M = ¢(p 8/3+1(P1) —|—p2/3+1(P2) + 0531 (P1) + 983, (P2)), where ¢ is a positive constant
such that p /3(gh) < Cpr/3+1( )pg/s(h) and pg‘/3(gh) < cp§/3+1(g)pg/3(h) for any polynomials
g, h in Hyy(E), (see Remark 2.13).

By the Hahn-Banach separation theorem, there exists ¢ € E' such that K; = ¢(B(0,7)) and
K> = ¢(B(a,s)) are disjoint convex compact sets in C. In fact, since K; and K are closed,
convex, balanced sets in C, we get that K1 = D(0,7||¢||) and K2 = D(¢(a), s||¢|). Now we can
apply Runge’s Theorem to the compact set K = K; U Ko C C and find a polynomial g € C[z]
such that |g(z) — 1| < 557 for every z € K7 and |q(z)| < 55; for every z € K».

Consider h = qop € Hyy(E). Suppose that ¢(z) = Z;":O a;jz’, then applying Bohr’s inequality
in C, we get that

Path =0 =lao= 11+ () lasllel’ < sup o)1/ < 337
j=1 z€D(0,r]|el])

Suppose also that g(z) = >_"" isobj (z — ¢(a))?. Applying Bohr’s inequality again we get that

m

S &
Pas( ) b5l < sup lq(2)] < —.
/ JZ (3) 2€D((a),sll) 3M

Finally, define P = Pih + Py(1 — h) € Hpy(F), thus

23 (P = ) < 00 pa(Prlh = 1)) + 93 (Pr = f) + 00 3 (Pa(1 = 1))
9
<epl sy (POPY5(h — 1) + 3t Py g1 (Po)p) 5 (1 = h)

<eg,

and



12 SANTIAGO MURO, DAMIAN PINASCO, MARTIN SAVRANSKY

Pss3(P = f) S pgss(Prh) + p5/5(P2 — f) + p5/3(F2h))

a a € a a
< epg 3 (P)pgs(h) + 37" Ps/341(P2)p5/5(h)

<e.

3. DYNAMICS OF NON CONVOLUTION OPERATORS IN Hyy(FE)

In this section we are concerned with the hypercyclic behavior of the family of operators
T = M)y o7,o D defined in the previous section. If A\; = 0 for some j, then we have that
d(T"f)(-)(e;) = 0, for every n € N and every f € Hyy(F). Since, the application g — dg(-)(e;)
is continuous, we conclude that the orbit of f under 1" cannot be dense. We will thus always
suppose that \; # 0 for all j € N.

The next result describes the hypercyclicity of the operator T'f = My o1, 0 D(f) in terms
of the parameters involved. Let us denote A* = [], AJ". When no coordinate of the map
#(2) = (N\jzj + bj); is a translation, we denote ¢ := (b1/(1 — A1),b2/(1 — A2),b3/(1 — A3),...)
the sequence in CY formed by the fixed points of every coordinate of the map ¢. It is worth to
notice that if b; = 0 and \; = 1, then the fixed point of the i-coordinate of ¢ is 0, thus we will

assume that in this case, (; = 0. Our main theorem reads as follows.

Theorem 3.1. Let F be a Banach space with a 1-unconditional shrinking basis, (es)sen. Let 2
be a multiplicative holomorphy type with constants as in (2), such that finite type polynomials
are dense in each 2A;(FE) for every k. Let T be the operator on Hpy(FE), defined by T'f(z) =
My o1p0Df(z), with a # 0 and \; # 0 for all ¢ € N.

a) If []A\*| > 1, then T is strongly mixing in the Gaussian sense.

b) If [|A\|lcc = 1 and b; # 0 and \; = 1 for some ¢ € N, then 7' is mixing.

¢) If || Ao = 1, no coordinate of ¢ is a translation and ¢ ¢ E”, then T' is mixing.

d) If ]\*| < 1 and ¢ € E”, then T is not hypercyclic.

Remark 3.2. Note that the assumptions on E are, in some sense, necessary. Indeed, the
unconditionality of the basis is needed to guarantee the continuity of M. On the other hand,
if E is a Banach space with a non shrinking unconditional basis then F contains a isomorphic

copy of ¢1 and thus, Hpy(F) cannot be separable.

Note also that, from case d), we see that, in contrast to the finite dimensional case [36], it is
possible that the affine map M) o7, does not have a fixed point in E and that the operator fails
to be hypercyclic.



DYNAMICS OF NON CONVOLUTION OPERATORS AND HOLOMORPHY TYPES 13

Since the basis of F, (es)sen, is shrinking the bidual of E can be identified (see [30, Proposition

1.b.2]) with the sequences of complex numbers (z1, 22, 23, ... ) such that

n

E 2i€;

i=1

sup < 00.

n

This correspondence is given by

2 ((e), 2" (€h), 2 (€), ),

and the norm of z” is equivalent to sup,, || >, 2" (e})e;.

We will divide the proof of the theorem in several cases. Lemmas 3.3 and 3.4 prove case a),
cases b), ¢) and d) are proven in Lemma’s 3.5, 3.7 and 3.6, respectively. Let A := {n € N :
A =1}and B := {n € N: \, # 1}. If w € CY, we write wa = (w;)ica and wp = (w;)ieB.
We have that N = AUB. We can also decompose F = FE(A) + E(B) (where, for C C N, we
denote by E(C') to the closure of the subspace spanned by the e;’s with j € C). We will show
that the conditions of the hypercyclicity criteria are satisfied with dense subspaces of the form
span{e’z? 1y € E', 3 € NN 45 =0, B4 = 0}. Since the basis (es)sen is shrinking, we can
think of the elements of E’ as sequences in (€})sen, the dual system of the basis of E. The

vectors v appearing in the dense subspaces will only have finite non-zero coordinates.

Lemma 3.3. Let E be a Banach space with unconditional shrinking basis, (es)sen. Let 2 be
a coherent holomorphy type such that the finite type polynomials are dense in each ;(FE).

Suppose that [A\*| > 1 and ap = 0. Then T is strongly mixing in the Gaussian sense.

Proof. We show that T satisfies the conditions of Theorem 1.3. Take a function of the form e72”,

with yp = 0 and 84 = 0. Define cg € E as, cg(n) = 0 if 3, = 0, and cz(n) = /\:711 it B8, #0

and define 73 as the translation operator by cg (note that cg has finite non zero coordinates).
Then Tﬁ_l 0T o 75(e728) = y¥e1aba) \3e7 28 Therefore,

T(T/geﬂyzﬁ) = yelraba) N8 7/56725,
that is, the functions 7'56725 are eigenvectors of T
Let D C S' a dense subset. It is enough to prove that
span{Tge“’z'B . with v = 0,84 = 0,ye14040 )8 ¢ D}

is dense in Hyg(F). Define fg(7v) = ~e7abA) NP For each B finite with 84 = 0, the function /3
is holomorphic on E(A)" and not constant. By [35, Lemma 2.4], we get that {¢? : f3(y) € D}
spans a dense subspace in Hyy(E(A)), for each § finite with S4 = 0. Also, note that for k € Ny

span{rs(z%) : 8| < k} = span{=" : || < k}.

This is clear for k = 0, because both sets are C, and if |f| = k

Bi
(z — 05)5 = H Z ziﬁifjclgiﬁi (§Z> =4 9(2),

i j=0
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where g has monomials of degree < k. Also, note that 75, (2742°8) = 2P475_ (2P7), and so
span{7s, (2°42°B)} is dense in Hyy(E), because by Lemma 2.8, the monomials span a dense
subspace of Hyy(F). Gathering the previous observations we get that the eigenvectors of T with
eigenvalues in D span a dense subspace in Hpy(F). Thus, we have seen that the conditions of

Theorem 1.3 are satisfied, and so the operator T is strongly mixing in the Gaussian sense. [

To finish the case when |A%| > 1, it remains to prove when 7" differentiates in some coordinate
with A, # 1.

Lemma 3.4. Let E be a Banach space with unconditional shrinking basis, (es)sen. Let 21 be
a coherent holomorphy type such that the finite type polynomials are dense in each 2 (FE).
Suppose that [A\*| > 1 and ap # 0. Then T is strongly mixing in the Gaussian sense.

Proof. We will show that T satisfies the conditions of Theorem 1.4. Let D := {n € N : \, #
1,y # 0}, note that D is a finite set. Then T is topologically conjugate to

Tof(z) = D f(Az+b)

through a translation, where by, = by, for all n ¢ D and b, = 0 for all n € D. Indeed, defining
ceEasc,=0forn¢ D and ¢, = /\_n—b_"l for n € D, we get that Ty o 7. = 7. o T. We may thus,
by Proposition 1.5, assume that b, = 0 for every n such that A, # 1 and «a, # 0. So we can
split N into three disjoint sets,
A:={neN: )\, =1},

C:={neN:\, #1,a, =0},

D:={neN:\, #1,a, #0}.
Note that |A\*| = |[A3?| > 1. Define the subspace

Xo = span{e’z” 1y € E', yp = 70 = 0, Ba = 0}.

We can see that X is dense in Hypy(FE') proceeding as in the previous lemma. We have that

Bp!
(6p — ap)!
Denote L(z) = Az+b, then we can write (Az+b)°¢ = Cp(25¢) with C, the composition operator

associated to L. We also have

T(ey, »BD Zﬁc) - ryAaA€<'YA,bA>6,YA Bp—ap )ﬁDD*‘XD (Az + b)ﬁc.

| _n(n—1)
T"(e,YAzﬁDzBC) =y, 04 enﬁA,bMem G fDn'aD)' ,Bp—nap /\gﬁD 2 aDC’L"(zBC).

Then ", T"(e,, 2P 27¢) is unconditionally convergent because it is a finite sum.

Define a sequence of operators S,, on Xy by
Bp!
rYAnaAen("fA7bA>(ﬁD + nOlD)

where L~1(z) = ZT_b. The operators S,, are defined so that they satisfy 7' o S; = Id and
ToS,=5,_1o0n Xp.

Sn(e’YAzﬁDzﬁc) = n(n+1) e’YAZﬁDJrnaD (CL_l)n(ZBC)7
!)\ZﬁD-I—TOéD
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Observe that, if ||z|g < R

1 \" IAc|™ 4+ 1\ 7€ RIAI
c —1"<zﬁc>|s( ) (qumwan—) < prll B
’ AP Ao 1] AEe|n

where M is a positive constant depending only on A¢ and be. Thus, since [Ap2P[(H+1/2 > 1,
we have

K" 1
(Bp + nap)!|\fe

|Sn(ey,27P2P9)| <

Since Sy (e, 290 2P¢) depends only on a finite number of variables, this implies unconditionally
convergence in Hyy(E). In fact, suppose that @ € i(F) depends only on N variables and

consider the following diagram

Since 2l is a Banach ideal, we get that

1Qlla () < @t oMl < N¥lrl ¥ Qoo = N*|ll|* | Q-

Then Y, Sn(e,,2°P25¢) is unconditionally convergent in Hyy(FE). Thus, we have proved that
T satisfies the conditions of Theorem 1.4. O

The two previous lemmas prove that T is strongly mixing in the Gaussian sense, in the case
A% > 1. In order to study the hypercyclicity of the operator when |A%| < 1, we need to apply
the version of Runge’s Theorem for the space Hyg(E) proved in the previous section.

Denote by ¢(z) = Az+0b for z € E and ¢;(z) = \jz+b; for z € C. In the next Lemma we will

prove case b) of Theorem 3.1, which is the case that one coordinate of the map ¢ is a translation.

Lemma 3.5. Let F be a Banach space with a 1-unconditional shrinking basis, (es)sen. Let 2 be
a multiplicative holomorphy type with constants as in (2), such that the finite type polynomials
are dense in each A (E). Let T': Hyy(E) — Hpy(F) be defined by T'f = My o 7, 0 D*(f), and
suppose that ||A|lcc = 1 and that there exists some coordinate with A\, = 1 and by # 0. Then T’

is a mixing operator.

Proof. If [A\*| = 1 this is implied by Lemma’s 3.3 and 3.4. Thus, we may suppose that |A\%| < 1.
We want to show that T is a mixing operator, i.e, for every pair of open sets U and V in
Hyy(E), there exists a positive integer ng for which T7"U NV # (), for all n > ng. Without loss

of generality we can suppose that

U = {h € Hy(F) such that p’(h — f) <8} and V = {h € Hy(F) such that p(h — g) < §},
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for f, g € Hy(F) and r, § positive numbers. Since, E has a shrinking basis, by Lemma 2.8, we
can assume that f is a finite linear combination of monomials. Define an inverse for 17" over the
span of the monomials by integrating each monomial and denote it by S.

Applying n times inequality (5) with e; = 277 at the j-step, j = 1,...,n, we get that for all
reFl

pE(T"f) < Clna)py 7 (f).
Thus,
PUT"q = f) = p(T"(a = 5"f)) < Cln, a)p " (a = S f).

The fact that Ay = 1 and by # 0, implies that (¢"(0)), = nby. Since E has a 1-unconditional

basis we get that,
16"(0)]| & > b
Then if n is such that [¢"(0)g| > 6r + 5 we get that, B(0,3r + 1) N B(¢™(0),3(r +1) +1) = 0.
Thus, by Theorem 2.15, there exists a polynomial ¢ € Hyy(FE), such that
9" (0) n J
pr(q g) <6 and p, ;" (g —S"f) < m~
Then, we get that for all n € N such that n|by| > 6r + 5, there exists a polynomial ¢ € Hyy(E),
such that
pl(g—g) <6 and p(T"q— f) <.

So, we have proved that there is a positive integer ng for which T"U NV # (), for all n > ng. O

Now will we take care of the cases ¢) and d) of our main theorem, in which no coordinate
of the function ¢ is a translation. Note that the fact that ¢;(z) = \;z + b; is not a translation
implies that ¢; has a fixed point at b;/(1 — A;) (or at 0 if A; = 1 and b; = 0).

Recall that we denote by ¢ = (b1/(1 — A1),b2/(1 — A2),b3/(1 —A3),...) € CN the sequence of
the fixed points of each ¢;. We are going to consider the cases in which ¢ € E” and ( ¢ E”. We
start with the case ¢ € E”.

Lemma 3.6. Let E be a Banach space with a shrinking basis, (es)sen. Let X C Hy(E)
be a Fréchet space of holomorphic functions of bounded type. Suppose that T : X — X,
Tf = Myomr,0D*f), with |]A*| < 1 and ¢ € E” is well defined. Then T is not hypercyclic.

Proof. Let us denote the Aron-Berner extension [2], defined on Hy(E) by AB : Hy(E) — Hy(E").
Also denote by ¢, the seminorms on Hy(E),

= 3 | Pullpr sy
k>0

for f =", Pr. Recall that AB is a continuous map and

qT(AB@Pk)) S rHIAB(PY ok oy = 3 ¥ Pillpr s -qr<zpk>.

k>0 k>0 k
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Finally, denote the evaluation at ¢ by d¢ : Hy(E") — C, d¢(g) = g(¢). If g =", P € Hy(E"),
we get that

91 = 1D Pl < 1Kl I Pillpr iy = ajc(9)-
k>0 k>0
Under this assumptions, we can prove that no orbit of 7" can be dense. First recall that every

orbit of T" has the following form:

n(n— n(n— 1 — n
Crtapnapgn(z)) = A5 e pra <)\”z—|—b ¢ ) .

T"f(z) = A T

Thus, since ¢" is an affine map and since the Aron-Berner extension of a composition of a

function with an affine map is the composition of the Aron-Berner extensions, we get that

SAB(D™f 0 6") = AB(D" [)(AB(6")(¢)) = AB(D™ 1) (5:(= = AB("z + b5 1))

1—=A"
1—-A

= AB(D" f) (X"¢ + b=— ) = AB(D" f)(¢).

Now, we are able to show that T" is not hypercyclic,

n(n—1) n(n—1)

0 AB(T" f)| = [A%[" 27 [0 AB(D" f 0 ¢")| = |A*[2 [AB(D"* f)(¢)]

n(n—1)

<A g (D)

1/2
n(n—1)
< |)\a| . 1 en\a|+1n|a|/2 H o Q||CH+1(f) — 0,

n—o00
a; 70

where we used the Cauchy inequalities for the current holomorphy type in the last inequality.
Since, d; o AB is a surjective continuous map, then no orbit of 7' can be dense in Hy(E).

Thus, T is not hypercyclic. U

The last case it remains to be shown is when ¢ ¢ E”. We will restrict ourselves to the case
Al = 1. Note that if || Mo < 1, then ¢ € E, thus T is not hypercyclic. If ||A] > 1, then
the inequality (5) for the operator in Hyy(E) is not useful for us, because we are not able to
prove that ¢ is runaway. If we restrict to ||A||oc = 1, we can prove that the operator is mixing in
Hyy (E). Furthermore, if 20 is the sequence of ideals of approximable polynomials, that is, when
Hyy (E) = Hy(E), the space of entire functions of compact bounded type, we can dispense the

condition on ||A||sc. This will be proved at the end of this section.

Lemma 3.7. Let E be a Banach space with a 1-unconditional shrinking basis, (es)sen. Let 2 be
a multiplicative holomorphy type with constants as in (2), such that the finite type polynomials
are dense in each A (E). Let T : Hyy(E) — Hpy(F) be defined by T'f = M) o1, 0 D(f), and
suppose that ||A|lcc = 1 and that ¢ ¢ E”. Then T is a mixing operator.
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Proof. By Lemma’s 3.3 and 3.4, it remains to prove the case || < 1.
Just like in the proof of Lemma 3.5, we fix a pair of open sets U and V' in Hyy(E). We will
show the existence of a positive integer ko for which T*U NV # 0, for all k > ko. Without loss

of generality we can suppose that
U = {h € Hy(E) such that p’(h — f) <6} and V = {h € Hyy(E) such that p’(h — g) < 6},

for f, g € Hyy(E) and r, § positive numbers. Since, F has a shrinking basis, by Lemma 2.8, we
can assume that f is a finite linear combination of monomials. Define an inverse for 7" over the
span of the monomials by integrating each monomial and denote it by S.

Applying (5) several times, with ¢ = 277 at each step we get that for all x € F

PE(TH ) < Clk, @pl ().
Thus,
PUT g — f) = p(T*(g = S*1)) < Cls )i (g — S*F).
It is enough to show that the sequence ¢*(0) is not bounded, because in that case, there exists
some ko € N such that the balls B(0,3r+1) and B(¢*(0),3(r+41)+1) are disjoint for all k& > k.
By an application of Theorem 2.15, it follows that T*U NV # 0 for all k > k.

A simple calculation shows that

k )‘? —1
¢"(0) = ij)‘j _ 1ej7
jJEN
if \; # 1, and ¢*(0); = 0 if \; = 1 (recall that we are assuming here that there are no

translations, so if A\; =1 then b; = 0).

Note that we can decompose N = N; U Ny, in two disjoint subsets with
Ni={neN:|\| =1} and Na={neN:|\,| <1}

Define then for i = 1,2 the vector (¢ with ¢! = ¢, for n € N; and ¢! = 0 for n ¢ N;. Note
that ¢ = ¢! + ¢2

We will divide the proof in two cases. First we will prove that the sequence ¢*(0) is not
bounded if ¢! ¢ E”, and then we will do so if ¢? ¢ E".

Suppose first that ¢! ¢ E”. Denote by ||z]| = supy HZL zie;
in E. Suppose that there exists some positive constant C such that md)k(O)m < (C forall k € N.

, which is an equivalent norm

Then we get that, for every N,
N
1 .
LY [leo <c.
j=1

We will show that this leads to a contradiction. Since ¢! ¢ E”, let A € N be a finite subset on
Ni such that A\, # 1 if n € A and such that

b
Z)\lilel

> 2C.
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Since E has a 1l-unconditional basis, we get that

Ly J’(o)>1 (N 1)bl >1N
N;W6M_N222r-hqm_ﬁz

leN

[V
=z~
Mz
(]
el
|
=
>
||
—
Q2

Since [N\;| =1 and \; # 1 for all [ € Ny, we can write \; = ¢”'. Thus, if [ € A, we get that,
for every N,

]_ ei(N+1)pl — e2i/~7l

N er —1

1| 1
NZ)\J—l = NZA{ — 1=
7j=1 7=1

1 | et(N+D)pr _ o2ip;
>1-—
- N

err — 1

Now, given n > 0, we can fix K € N such that

ei(K+1)pl - ezipl 2

~ K minjey |etrr — 1|

1

K

<.

et — 1

Finally, we get that for [ € A
K
Z N —1)|>1-n,

which means that

K
—ZWHVZAZ_1 =301
j=1

[V
-
|
=
P
||
—_
S

> (1 —n)2C.

It follows that the sequence ¢¥(0) is not bounded.
Now we assume that (3 ¢ E”. If j € Ny, we have that |\;| < 1, which implies that

M1y,
: k J _ 2
Jim ¢7(0); = Jim b]/\ 1 1—>\j_<j'
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Suppose that ¢*(0) is bounded. It follows that ¢*(0) has a w*-accumulation point z € E” and
that

. k 2.
Jim ¢ (0); = (G = 2,

for all j € Ny. It follows that ¢? € E”, which is a contradiction. This proves that the sequence

#*(0) is not bounded, hence the operator 7" is mixing as we wanted to prove. O

3.1. Holomorphic functions of compact bounded type. In this section we deal with the
case in which 2 = A, is the sequence of ideals of approximable polynomials. Then Hj4(F) is
the space Hy.(E) of entire functions on E of compact type that are bounded on bounded subsets
of E. The space Hy.(F) is endowed with the topology of uniform convergence on bounded sets
of E. Hence, we consider the following family of seminorms that generates the topology of this
space. Given a bounded set A C E and f € Hy.(EF), we define

pa(f) = sup|f(2)].

zEA

Our objective is to prove the following strengthen version of Theorem 3.1, where in the state-
ments (b) and (c) of our main theorem we may drop the condition ||A||s = 1, thus, completely
characterizing the hypercyclicity of T. We will just point out the changes needed to prove this
case.

As we mentioned previously, A is a multiplicative holomorphy type in which the finite type

polynomials are dense in each Ay (E).

Theorem 3.8. Let F be a Banach space with a 1-unconditional shrinking basis, (es)sen. Let
T be the operator on Hy.(F), defined by T'f(z) = My o1, 0 D*f(z), with o # 0 and \; # 0 for
all ¢ € N. Then,

a) If []A\%| > 1 then T is strongly mixing in the Gaussian sense.

b) If for some i € N we have that b; # 0 and A\; = 1, then T is mixing.

¢) If C:=(b1/(1 — A1),b2/(1 — A2),b3/(1 — A3),...) ¢ E”, then T is mixing.

d) In any other case, T is not hypercyclic.

The key point to prove this new statements is that under this assumptions the affine symbol
¢ will result to be runaway. Then, applying Theorem 2.15 we will be able to prove that the
operator is mixing. During this section E will denote a Banach space with separable dual and
suppose that (es)sen is a l-unconditional shrinking basis. In order to prove that the operator
T is mixing on Hy.(E) we need to give bounds for p4(D“f) in terms of pa(f), eventually by
enlarging if necessary the set A. For this we will assume that the space E is of the form CN x F,

and that o only have nonzero coordinates in corresponding to the coordinates of CV.

Remark 3.9. Let A = A; x A’ be a bounded subset of E = CN x F and suppose that o; = 0
for every i > N. If f € Hyp.(F) and z = (21,...,2n,2") € E, then
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al Wy, WN, 2
Daf(zl,...,zN,z’):,N/ / f(Nl’ N )dwl...dwN.
(27TZ) |lwi—z1]=r1 lwn—2zN|=rN Hizl(wi — Zi)aﬁ_l
Therefore, we can estimate the seminorm of D*f over A = B(z1,71) X --- X B(zn,rn) x A,

where B(zj,r;) denotes the closed disk of center z; € C and radius ;. Fix positive real numbers

€1,...,EN, then

N ! Pay4e,an(f)
(7) pA(D f) < (27T)N €<13¢1+1 o EOéN‘f‘l ’

The case b) follows the lines of the case b) of [36, Theorem 3.4]. Actually the same proof
remains valid adapting the bounded sets to this case. To prove the case ¢) we proceed in
a similar way to the proof of it counterpart on Theorem 3.1. We can decompose the hole
space F in two subspaces corresponding to the different sizes of the modulus of A\;. Decompose
N = N; U Ny, into two disjoint subsets with

Ni={neN:|\| <1} and Na={neN:|\,| > 1}.

We have that E = E(N;)+E(Ns). Define for 4, i = 1,2 the vector ¢* with ¢}, = ¢, for n € N; and
¢t =0forn ¢ N;. Note that ¢ = ¢t +(¢2. If ¢! ¢ E”, then following the lines of the proof of part
c) in Theorem 3.1, we can conclude that ¢ is runaway, so that the operator Cy o D® is mixing.
Otherwise, if (? ¢ E” and since |\;| > 1 for every i € Ny, we can consider ¢, ' : E(Ng) — E(Nz).
It is easy to see that (? is the fixed point of ¢o and that ¢o(z) = (2 — b). Since, |A;| > 1 for
every i € Ny, we may again follow the proof of part ¢) of Theorem 3.1 to conclude that ¢o is
runaway. Now, since the topology on Hy.(FE) is the topology of uniform convergence on bounded

sets, we get that ¢ is runaway and thus Cy o D is mixing by Theorem 2.15.
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