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Abstract. We study the Hochschild and cyclic homology of non-
commutative monogenic extensions. As an application we compute
the Hochschild and cyclic homology of the rank 1 Hopf algebras
introduced in [K-R].

Introduction

Let k be a commutative ring with 1. A monogenic extension of k
is a k-algebra k[x]/〈f〉, where f ∈ k[x] is a monic polynomial. In
[F-G-G] this concept was generalized to the noncommutative setting.
Examples are the rank 1 Hopf algebras in characteristic zero, recently
introduced in [K-R]. In the paper [F-G-G], mentioned above, it was
computed the Hochschild cohomology ring of these extensions. In the
present paper we study their Hochschild and cyclic homology groups.
The main result obtained by us, is that, for any monogenic extension A
of a k-algebra K, there exists a small mixed complex (CS

∗ (A), d∗, D∗),
giving the Hochschild and cyclic homology of A relative to K. When
K is a separable k-algebra this gives the absolute Hochschild and cyclic
homology groups. The mixed complex (CS(A), d∗, D∗) is enough simple
to allow us to compute the homology of each rank 1 Hopf algebras.

The paper is organized as follows: In Section 1 we give some pre-
liminaries we need. In particular we recall the simple Υ-projective
resolution of a monogenic extension A/K (where Υ is the family of
all A-bimodule epimorphisms which split as K-bimodule map), built
in [F-G-G]. Let M and A-bimodule (symmetric over k). In Section 2
we use the mentioned above resolution to build a complex CS(A, M) =
(CS

∗ (A,M), d∗) giving the Hochschild homology of A relative to K, with
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coefficients in M . Then, we obtain explicit computations under suit-
able hypothesis. In Section 3 we prove that CS(A,A) is the Hochschild
complex of a mixed complex. This generalizes the main result of [B].
Then, we use this fact to compute the cyclic homology of A in several
cases, including the rank 1 Hopf algebras.

1. Preliminaries

In this Section we recall some well known definitions and results that
we will use in the rest of the paper

1.1. A simple resolution for a noncommutative monogenic ex-
tension. In the sequel we recall the definition of noncommutative
monogenic extension and we give a brief review of some of its proper-
ties (for details and proof we refer to [F-G-G]). Let k be a commutative
ring, K an associative k-algebra and α a k-algebra endomorphism of K.
Consider the Ore extension E = K[x, α], that is the algebra generated
by K and x subject to the relations

xλ = α(λ)x for all λ ∈ K.

Let f = xn +
∑n

i=1 λix
n−i be a monic polynomial of degree n ≥ 2,

where each coefficient λi ∈ K satisfies α(λi) = λi and λiλ = αi(λ)λi

for every λ ∈ K. Sometimes we will write f =
∑n

i=0 λix
n−i, assuming

that λ0 = 1. The monogenic extension of K associated with α and f
is the quotient A = E/〈f〉. It is easy to see that {1, x, . . . , xn−1} is a

left K-basis of A. Moreover, given P ∈ E, there exist unique P and
...

P
in E such that

P = Pf+
...

P and
...

P= 0 or deg
...

P< n.

In this paper, unadorned tensor product ⊗ means ⊗K , all the maps
are k-linear and all the K-bimodule are assumed to be symmetric over
k. Given a K-bimodule M , we let M⊗ denote the quotient M/[M, K],
where [M, K] is the k-module generated by the commutators mλ−λm,
with λ ∈ K and m ∈ M . Let A2

αr = Aαr ⊗A, where Aαr is A endowed
with the regular left A-module structure and with the right K-module
structure twisted by αr, that is, if a ∈ Aαr and λ ∈ K, then a · λ =
aαr(λ). We recall that

T

Tx
: E → A2

α

is the unique K-derivation such that Tx
Tx

= 1⊗ 1. Notice that

Txi

Tx
=

i−1∑

`=0

x` ⊗ xi−`−1.
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Let Υ be the family of all A-bimodule epimorphisms which split as
K-bimodule maps.

Theorem 1.1. The complex

C ′
S(A) = · · · // A2

α2n+1

d′5 // A2
α2n

d′4 // A2
αn+1

d′3 // A2
αn

d′2 // A2
α

d′1 // A2 ,

where

d′2m+1 : A2
αmn+1 → A2

αmn and d′2m : A2
αmn → A2

α(m−1)n+1 ,

are defined by

d′2m+1(1⊗ 1) = x⊗ 1− 1⊗ x,

d′2m(1⊗ 1) =
Tf

Tx
=

n∑
i=1

λn−i

i−1∑

`=0

x` ⊗ xi−`−1,

is a Υ-projective resolution of A.

Let (A⊗A
⊗∗ ⊗A, b′) be the canonical Hochschild resolution relative

to K (here A = A/K).

Theorem 1.2. There are comparison maps

φ′∗ : C ′
S(A) → (A⊗A

⊗∗ ⊗A, b′) and ψ′∗ : (A⊗A
⊗∗ ⊗A, b′) → C ′

S(A),

which are inverse one of each other up to homotopy. These maps are
given by

φ′0(1⊗ 1) = 1⊗ 1,

φ′1(1⊗ 1) = 1⊗ x⊗ 1,

φ′2m(1⊗ 1) =
∑

i∈Im
λn−i

∑

`∈Ji
x|i−`|−m ⊗ x̃`m,1 ⊗ 1,

φ′2m+1(1⊗ 1) =
∑

i∈Im
λn−i

∑

`∈Ji
x|i−`|−m ⊗ x̃`m,1 ⊗ x⊗ 1,

ψ′2m(1⊗ xi1,2m ⊗ 1) = xi1+i2 xi3+i4 · · ·xi2m−1+i2m ⊗ 1,

ψ′2m+1(1⊗ xi1,2m+1 ⊗ 1) = xi1+i2 xi3+i4 · · ·xi2m−1+i2m
T (xi2m+1)

Tx
,

where

• Im = {(i1, . . . , im) ∈ Zm : 1 ≤ ij ≤ n for all j},
• Ji = {(`1, . . . , `m) ∈ Zm : 1 ≤ `j < ij for all j},
• λn−i = λn−i1 · · ·λn−im,

• x̃`m,1 = x⊗ x`m ⊗ · · · ⊗ x⊗ x`1,
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• |i− `| = ∑m
j=1(ij − `j).

• xi1r = xi1 ⊗ · · · ⊗ xir ,

Proposition 1.3. ψ′∗φ
′
∗ = id and a homotopy ω′∗+1 from φ′∗ψ

′
∗ to id is

recursively defined by ω′1 = 0 and

ω′r+1(x⊗ 1) = (−1)r+1(φ′rψ
′
r − id− ω′rb

′
r)(x⊗ 1)⊗ 1

= (−1)r+1φ′rψ
′
r(x⊗ 1)⊗ 1 + ω′r(x)⊗ 1,

for x ∈ A⊗ A
⊗r

.

Proof. The equality ψ′∗φ
′
∗ = id follows immediately from the definitions.

For the second assertion see [G-G, Proposition 1.2.1]. ¤

1.2. The suspension. The s-th suspension of a chain complex (X, d)
is the complex (X, d)[s] = (X[s], d[s]), defined by X[s]∗ = X∗−s and
d[s]∗ = (−1)sd∗−s.

1.3. Mixed complexes. In this subsection we recall briefly the notion
of mixed complex. For more details about this concept we refer to [K]
and [Bu].

A mixed complex (X, b,B) is a graded C-module (Xr)r≥0, endowed
with morphisms b : Xr → Xr−1 and B : Xr → Xr+1, such that

bb = 0, BB = 0 and Bb + bB = 0.

A morphism of mixed complexes f : (X, b, B) → (Y, d, D) is a family
fr : Xr → Yr of maps, such that df = fb and Df = fB. A mixed
complex X = (X, b, B) determines a double complex

BP(X ) =

...

b
²²

...

b
²²

...

b
²²

...

b
²²

. . . X3
Boo

b
²²

X2
Boo

b
²²

X1
Boo

b
²²

X0
Boo

. . . X2
Boo

b
²²

X1
Boo

b
²²

X0
Boo

. . . X1
Boo

b
²²

X0
Boo

. . . X0
Boo

By deleting the positively numbered columns we obtain a subcomplex
BN(X ) of BP(X ). Let BN′(X ) be the kernel of the canonical surjection
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from BN(X ) to (X, b). The quotient double complex BP(X )/ BN′(X )
is denoted by BC(X ). The homology goups HC∗(X ), HN∗(X ) and
HP∗(X ), of the total complexes of BC(X ), BN(X ) and BP(X ) respec-
tively, are called the cyclic, negative and periodic homology of X (the
n-th module of the total complex is the product of all the modules
which are in the n-th diagonal). The homology HH∗(X ), of (X, b), is
called the Hochschild homology of X .

If we truncate BP(X ) to the left of the p-th column we obtain a
complex BC(X )[2p]. Note that

BC(X )[0] = BC(X ), Tot(BC(X )[2p]) = Tot(BC(X ))[2p]

and that there is a natural epimorphism

S : BC(X )[2p] → BC(X )[2p + 2] for each p.

It is immediate that Tot(BP(X )) = limp Tot BC(X )[2p] and that there
is a diagram of short exact sequences

0 // BN(X ) //

²²

BP(X ) //

²²

BC(X )[2]

=

²²

// 0

0 // (X∗, b∗) // BC(X ) // BC(X )[2] // 0

Taking homology in the above diagram we obtain the following com-
mutative diagram with exact rows

· · · B // HNn(X )
i //

²²

HPn(X )
S //

²²

HCn−2(X )

=

²²

B // HNn−1(X )

²²

i // · · ·

· · · B // HHn(X )
i // HCn(X )

S // HCn−2(X )
B // HHn−1(X )

i // · · ·
The rows in this diagram are name the SBI Connes periodicity exact
sequences of X . Finally, it is clear that a morphism f : X → Y of
mixed complexes induces a morphism from the double complex BP(X )
to the double complex BP(Y). Let A be a noncommutative monogenic
extension of K. The normalized mixed complex of A relative to K is

(A⊗ A
⊗∗⊗, b, B),

where b is the canonical Hochschild boundary map and

B([a0 ⊗ · · · ⊗ ar]) =
r∑

i=0

(−1)ir[1⊗ ai ⊗ · · · ⊗ ar ⊗ a0 ⊗ · · · ⊗ ai−1],

in which [a0⊗· · ·⊗ar] denotes the class of a0⊗· · ·⊗ar in A⊗A
⊗r

⊗. The
cyclic, negative, periodic and Hochschild homology groups HCK

∗ (A),
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HNK
∗ (A), HPK

∗ (A) and HHK
∗ (A) of A, are the respective homology

groups of (A⊗ A
⊗∗⊗, b, B).

1.4. The perturbation lemma. Next we recall the perturbation le-
mma. We give the version introduced in [C].

A homotopy equivalence data

(1) (Y, ∂)
i

// (X, d)
poo

, h : X∗ → X∗+1,

consists of the following:

(1) Chain complexes (Y, ∂), (X, d) and quasi-isomorphisms i and p
between them,

(2) A homotopy h from ip to id.

A perturbation δ of (1) is a map δ : X∗ → X∗−1 such that (d+ δ)2 = 0.
We call it small if id− δh is invertible. In this case we write

∆ = (id− δh)−1δ

and we consider

(2) (Y, ∂1)
i1

// (X, d + δ)
p1

oo
, h1 : X∗ → X∗+1,

with

∂1 = ∂ + p∆i, i1 = i + h∆i, p1 = p + p∆h, h1 = h + h∆h.

A deformation retract is a homotopy equivalence data such that pi = id.
A deformation retract is called special if hi = 0, ph = 0 and hh = 0.

In the case considered in this paper the map δh is locally nilpotent,
and so (id− δh)−1 =

∑∞
j=0(δh)j.

Theorem 1.4. ([C]) If δ is a small perturbation of the homotopy equiv-
alence data (1), then the perturbed data (2) is a homotopy equivalence.
Moreover, if (1) is a special deformation retract, then (2) is also.

2. Hochschild homology of A

Let k, K, α, f = Xn+λ1X
n−1+· · ·+λn and A be as in Subsection 1.1.

Given an A-bimodule M , we let [M, K]αj denote the k-submodule of
M generated by the twisted commutators [m,λ]αj = mαj(λ)−λm. As
usual, we let Ae and HK

∗ (A,M) denote the enveloping algebra A⊗k Aop

of A and the Hochschild homology of A relative to K, with coefficients
in M , respectively. When M = A we will write HHK

∗ (A) instead of
HK
∗ (A,A).
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Theorem 2.1. Let M be an A-bimodule. With the notations introduced
in Theorem 1.2, we have:

(1) The chain complex

CS(A,M) = · · · d4 // M
[M,K]αn+1

d3 // M
[M,K]αn

d2 // M
[M,K]α

d1 // M
[M,K]α0

,

where the boundary maps d∗ are defined by

d2m+1([m]) = [mx− xm],

d2m([m]) =
n∑

i=1

i−1∑

`=0

[λn−ix
i−`−1mx`],

in which [m] denotes the class of m ∈ M in M
[M,K]αmn+1

and
M

[M,K]αmn
respectively, computes HK

∗ (A,M).

(2) The maps

φ∗ : CS(A,M) → (M ⊗ A
⊗∗⊗, b∗),

ψ∗ : (M ⊗ A
⊗∗⊗, b∗) → CS(A,M),

defined by

φ0([m]) = [m],

φ1([m]) = [m⊗ x],

φ2m([m]) =
∑

i∈Im

∑

`∈Ji
[λn−imx|i−`|−m ⊗ x̃`m,1 ],

φ2m+1([m]) =
∑

i∈Im

∑

`∈Ji
[λn−imx|i−`|−m ⊗ x̃`m,1 ⊗ x],

ψ2m([m⊗ xi1,2m ]) = [mxi1+i2 · · · xi2m−1+i2m ],

ψ2m+1([m⊗ xi1,2m+1 ])=

i2m+1−1∑

`=0

[xi2m+1−`−1mxi1+i2 · · · xi2m−1+i2mx`],

where [m ⊗ xi1r ] denotes the class of m ⊗ xi1r in M ⊗ A
⊗r

⊗,
are chain morphisms which are inverse one of each other up to
homotopy.

(3) Let

β : M ⊗Ae A⊗ A
⊗r+1

⊗ A → M ⊗ A
⊗r+1

⊗
be the map defined by

βr+1(m⊗ x0 ⊗ · · · ⊗ xr+2) = [xr+2mx0 ⊗ x1 ⊗ · · · ⊗ xr+1].
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The composition ψ∗φ∗ is the identity map, and the family of
maps

ω∗+1 : M ⊗ A
⊗∗⊗ → M ⊗ A

⊗∗+1

⊗,

defined by

ωr+1([m⊗ x]) = β
(
m⊗Ae ω′r+1(1⊗ x⊗ 1)

)
,

is an homotopy from φ∗ψ∗ to the identity map.

Proof. For the first item, apply the functor M ⊗Ae − to the resolution
C ′

S(A), and use the identification

M ⊗Ae A2
αj

∼= // M
[M,K]

αj

m⊗ (a⊗ b) Â // [bma].

For instance

d2m([m]) =
n∑

i=1

i−1∑

`=0

[xi−`−1mλn−ix
`]

=
n∑

i=1

i−1∑

`=0

[xi−`−1mx`λn−i]

=
n∑

i=1

i−1∑

`=0

[λn−ix
i−`−1mx`].

Let ψ∗ and φ∗ be the morphisms induced by the comparison maps ψ′∗
and φ′∗. The second and third item follow easily from Theorem 1.2 and
Proposition 1.3 in a similar way. ¤

When M = A we will write CS(A) instead of CS(A,M). The fol-
lowing result will be used in the proof of Theorem 3.6.

Corollary 2.2. There is a special deformation retract

Tot BC(CS
∗ (A), d∗, 0))

Φ̃

// Tot BC(A⊗ A
⊗∗⊗, b, 0)

Ψ̃oo
, W̃ ,

where

Φ̃n([a]n, [an−2], . . . ) = (φn([a]n), φn−2([an−2]), . . . )

Ψ̃n(xn,xn−2, . . . ) = (ψn(xn), ψn−2(xn−2), . . . )
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and

W̃n+1(xn,xn−2, . . . ) = (ωn+1(xn), ωn−1(xn−2), . . . ).

Proof. It is immediate. ¤
2.1. Explicit computations. The aim of this subsection is to com-
pute the Hochschild homology of A relative to K, with coefficients in
A, under suitable hypothesis.

Theorem 2.3. Let CS
r (A) denote the r-th module of CS(A). If there

exists λ̆ ∈ Z(K) such that

• αn(λ̆) = λ̆,

• λ̆− αi(λ̆) is invertible in K for 1 ≤ i < n,

then λ1 = · · · = λn−1 = 0 and

CS
r (A) =

{
K

[K,K]αmn
if r = 2m,

K
[K,K]

α(m+1)n
xn−1 if r = 2m + 1.

Proof. Since λ̆λi = λiλ̆ = αi(λ̆)λi and λ̆ − αi(λ̆) is invertible in K
for 1 ≤ i < n, we have that λ1 = · · · = λn−1 = 0. By item (1) of
Theorem 2.1 we know that

CS
r (A) =

{
A

[A,K]αmn
if r = 2m,

A
[A,K]αmn+1

if r = 2m + 1.

Moreover

[a, λ]αr =
n−1∑
i=0

[λ′i, λ]αr+ixi

for each a =
∑n−1

i=0 λ′ix
i ∈ A and λ ∈ K. Hence, it will be sufficient to

check that if i is not congruent to 0 module n, then [K, K]αmn+i = K.
But this follows immediately from the facts that

[λ′, λ̆]αmn+i = λ′αmn+i(λ̆)− λ̆λ′ = λ′(αi(λ̆)− λ̆),

since λ̆ ∈ Z(K) and αn(λ̆) = λ̆, and αi(λ̆) − λ̆ is invertible if i is not
congruent to 0 module n. ¤
Theorem 2.4. Under the hypothesis of Theorem 2.3, the boundary
maps of CS(A) are given by

d2m+1([λ]xn−1) = [(α(λ)− λ)λn],

d2m+2([λ]) =

[
n−1∑

`=0

α`(λ)

]
xn−1,
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for all m ≥ 0. Consequently, if λn = 0, then the odd boundary maps
are zero.

Proof. By item (1) of Theorem 2.1,

d2m+1([λ]xn−1) = [λxn − xλxn−1] = [(λ− α(λ))xn] = [(α(λ)− λ)λn],

where the last equality follows from Theorem 2.3. Again by item (1)
of Theorem 2.1 and Theorem 2.3,

d2m+2([λ]) =
n−1∑

`=0

[xn−`−1λx`] =

[
n−1∑

`=0

αn−`−1(λ)

]
xn−1,

as we want. ¤
Theorem 2.4 implies that λλn − αn(λ)λn ∈ [K,K]αmn for all λ ∈ K

and m ≥ 0. Indeed, this can be proved directly from the hypothesis at
the beginning of this paper and then it is true with full generality. In
fact,

λλn − αn(λ)λn = λλn − λnλ = λαmn(λn)− λnλ.

Corollary 2.5. Under the hypothesis of Theorem 2.3,

HHK
0 (A) =

K

[K, K] + Im(α− id)λn

,

HHK
2m+1(A) =

{λ ∈ K : (α(λ)− λ)λn ∈ [K, K]αmn}
[K, K]α(m+1)n + Im

(∑n−1
`=0 α`

) xn−1,

HHK
2m+2(A) =

{
λ ∈ K :

∑n−1
`=0 α`(λ) ∈ [K, K]α(m+1)n

}

[K, K]α(m+1)n + Im(α− id)λn

.

Assume now that k is a field, the hypothesis of Theorem 2.3 are
fulfilled, K is finite dimensional over k and α is diagonalizable. Let
ω1 = 1, ω2, . . . , ωs be the eigenvalues of α and let Kωh be the eigenspace
of eigenvalue ωh. Write

[K,K]ωh
αr = Kωh ∩ [K, K]αr .

Note that 1, λn ∈ K1. We assert that there is a primitive n-th root of
1 in k (which implies that the characteristic of k does not divide n),
and that all the n-th roots of 1 in k are eigenvalues of α . In fact,
since α is diagonalizable, we can write λ̆ = x1 + · · · + xs, where xi is
an eigenvector of eigenvalue wi. Since

wi
1x1 + · · ·+ wi

sxs = αi(λ̆) 6= λ̆ for i < n

and

wn
1 x1 + · · ·+ wn

s xs = αn(λ̆) = λ̆,
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w1, . . . , ws are n-th roots of 1 and the least common multiple of their
orders is n. Hence, there exist i1, . . . , is ∈ N such that w := wi1

1 · · ·wis
s

is a primitive n-th root of 1, and so (xi1
1 · · · xis

s )i is an eigenvector of
eigenvalue wi of α, because α is an algebra morphism.

Theorem 2.6. The chain complex CS(A) decomposes as a direct sum
CS(A) =

⊕s
h=1 CS,ωh(A), where

CS,ωh
r (A) =





Kωh

[K,K]
ωh
αmn

if r = 2m,

Kωh

[K,K]
ωh

α(m+1)n

xn−1 if r = 2m + 1.

Moreover the boundary maps dωh∗ of CS,ωh
r (A) are given by:

dωh
2m([λ]) =

(
n−1∑

`=0

ω`
h

)
[λ]xn−1 and dωh

2m+1([λ]xn−1) = (ωh − 1)[λλn].

Proof. It follows easily from Theorem 2.3 and 2.4, since the fact that
λn ∈ K1 implies that if λ ∈ Kωh , then λλn ∈ Kωh (and so CS,ωh(A) is
a subcomplex of CS(A)). ¤
Corollary 2.7. Let HHK,ωh∗ (A) denote the homology of CS,ωh(A). By
Theorem 2.1 and 2.6 we know that HHK

∗ (A) =
⊕s

h=1 HHK,ωh∗ (A). More-
over,

HHK,ωh
0 (A) =





K1

[K,K]1
if h = 1,

Kωh

[K,K]ωh+Kωhλn
if h 6= 1,

HHK,ωh
2m+1(A) =




{λ∈Kωh :λλn∈[K,K]

ωh
αmn}

[K,K]
ωh

α(m+1)n

xn−1 if h 6= 1 and ωn
h = 1,

0 otherwise,

HHK,ωh
2m+2(A) =





Kωh

[K,K]
ωh

α(m+1)n
+Kωhλn

if h 6= 1 and ωn
h = 1,

0 otherwise,

Note that if αn has finite order v (that is αnv = id and αnj 6= id for
0 < j < v), then

HHK,ωh
2m+1(A) = HHK,ωh

2(m+v)+1(A) and HHK,ωh
2m+2(A) = HHK,ωh

2(m+v)+2(A)

for all m ≥ 0.

Example 2.8. Let k be a field, K = k[G] the group k-algebra of a finite
group G and χ : G → k× a character, where k× is the group of unities
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of k. Let α : K → K be the automorphism defined by α(g) = χ(g)g
and let f = xn + λn ∈ K[x] be a monic polynomial whose coefficients
satisfy the hypothesis required in the introduction. Assume that there
exists g1 ∈ Z(G) such that χ(g1) is a primitive n-th root of 1. Here
we apply the results obtained in Section 2 to compute the Hochschild
homology of A = K[x, α]/〈f〉 relative to K, with coefficients in A (if
the characteristic of k is relative prime to the order of G, then k[G] is a
separable k-algebra and so, by [G-S, Theorem 1.2], HHK

∗ (A) coincides
with the absolute Hochschild homology HH∗(A) of A). Note that the

hypothesis of Theorem 2.3 are fulfilled, taking λ̆ = g1. Since α is
diagonalizable Theorem 2.6 and Corollary 2.7 apply. In this case

{ω1, . . . , ωs} = χ(G),

Kωh =
⊕

{g∈G:χ(g)=ωh}
kg,

[K,K]ωh

αj =
∑

{g1,g2∈G:χ(g1g2)=ωh}
k(χj(g2)g1g2 − g2g1).

Next we consider another situation in which the cohomology of A
can be computed. The following results are very close to the ones valid
in the commutative setting.

Theorem 2.9. If α is the identity map, then

CS
r (A) =

K

[K, K]
⊕ K

[K,K]
x⊕ · · · ⊕ K

[K,K]
xn−1 =

A

[A,A]
.

Moreover, the odd boundary maps d2m+1 of CS(A) are zero, and the
even boundary maps d2m takes [a] to [f ′a].

Proof. This is an immediate consequence of Theorem 2.1. ¤

Corollary 2.10. If α is the identity map, then

HHK
0 (A) =

A

[A,A]
,

HHK
2m+1(A) =

A

[A,A] + f ′A
,

HHK
2m+2(A) =

([A,A] : f ′)
[A,A]

,

where ([A,A] : f ′) = {a ∈ A : f ′a ∈ [A,A]}.
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2.2. Hochschild homology of rank 1 Hopf algebras. Let k be a
characteristic zero field and let n ≥ 2 be a natural number. Recall
that k× denotes the group of unities of k. Let G be a finite group and
χ : G → k× a character. Assume that there exists g1 ∈ Z(G) such
that χ(g1) is a primitive n-th root of 1. In this section we compute the
Hochschild homology of the k-algebra A = k[G][x, α]/〈xn− ξ(gn

1 − 1)〉,
where ξ ∈ k and α ∈ Aut(k[G]) is defined by α(g) = χ(g)g. We divide
the problem in three cases. The first and second ones give Hochschild
homology of rank 1 Hopf algebras. For the sake of completeness we
recall from [K-R] that A is the underlying algebra of a rank 1 Hopf
algebra if ξ(gn

1 − 1) = 0 or χn = 1. In both cases the comultiplication
∆ is determined by

∆(x) = x⊗ g1 + 1⊗ x and ∆(g) = g ⊗ g for all g ∈ G,

the counit ε by ε(x) = 0 and ε(g) = 1, and antipode S by S(x) = −g−1
1 x

and S(g) = g−1, for all g ∈ G.

Let Cn ⊆ k be the set of all n-th roots of 1.

ξ = 0. In this case A = K[x, α]/〈xn〉, where K = k[G]. Since K is
separable over k, we know that HH∗(A) = HHK

∗ (A). So, by Corol-
lary 2.7,

HH0(A) =
K

[K, K]
,

HH2m+1(A) =
⊕

ω∈Cn\{1}

Kω

[K, K]ω
α(m+1)n

xn−1,

HH2m+2(A) =
⊕

ω∈Cn\{1}

Kω

[K, K]ω
α(m+1)n

.

ξ 6= 0 and χn = 1. In this case f = xn − ξ(gn
1 − 1) satisfies the

hypothesis required in the preliminaries. In fact

α(ξ(gn
1 − 1)) = ξ(gn

1 − 1)

since α(gn
1 ) = χ(gn

1 )gn
1 = χ(g1)

ngn
1 = gn

1 , and

ξ(gn
1 − 1)λ = αn(λ)ξ(gn

1 − 1) for all λ ∈ k[G],

since ξ(gn
1 − 1) ∈ Z(G) and αn(λ) = λ, because χn = 1. Note also

that Cn is the set of eigenvalues of α, since G is a multiplicative basis
of eigenvectors of α, the eigenvalue χ(g1) of g1 is a primitive n-th root
of 1 and the eigenvalue χ(g) of every g ∈ G is a n-th root of 1 (again
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because χn = 1). Moreover, the algebra K = k[G] is separable over k
and so, HH∗(A) = HHK

∗ (A). Again by Corollary 2.7,

HH0(A) =
K1

[K, K]1
⊕

⊕

ω∈Cn\{1}

Kω

[K, K]ω + Kω(gn
1 − 1)

,

HH2m+1(A) =
⊕

ω∈Cn\{1}

{λ ∈ Kω : λ(gn
1 − 1) ∈ [K, K]ω}

[K,K]ω
xn−1,

HH2m+2(A) =
⊕

ω∈Cn\{1}

Kω

[K,K]ω + Kω(gn
1 − 1)

.

ξ 6= 0 and χn 6= 1. Let g ∈ G such that χn(g) 6= 1. Since

g−1(xn − ξ(gn
1 − 1))g = χn(g)xn − ξ(gn

1 − 1),

we conclude that the ideal 〈xn − ξ(gn
1 − 1)〉 coincides with the ideal

〈xn, gn
1 − 1〉. So, A = k[G/〈gn

1 〉][x, α̃]/〈xn〉, where α̃ is the automor-
phism induced by α. We consider now K = k[G/〈gn

1 〉] and f = xn.

These data satisfy the hypothesis of Theorem 2.6 with λ̆ the class of
g1 in G/〈gn

1 〉. Moreover the algebra K = k[G/〈gn
1 〉] is separable over k

and so, HH∗(A) = HHK
∗ (A). Thus, by Corollary 2.7,

HH0(A) =
K

[K, K]
,

HH2m+1(A) =
⊕

ω∈Cn\{1}

Kω

[K, K]ω
α̃(m+1)n

xn−1,

HH2m+2(A) =
⊕

ω∈Cn\{1}

Kω

[K, K]ω
α̃(m+1)n

.

3. Cyclic homology of A

Let k, K, α, f = Xn+λ1X
n−1+· · ·+λn and A be as in Subsection 1.1.

In this section we get a mixed complex, simpler than the canonical of
Tsygan, computing the cyclic homology of A relative to K.

A simple tensor a0 ⊗ · · · ⊗ ar ∈ A ⊗ A
⊗r

will be called monomial if
there exist λ ∈ K \ {0}, 0 ≤ i0 < n and 1 ≤ i1, . . . , ir < n such that
a0 = λxi0 and aj = xij for j > 0. We define the degree of a monomial
tensor

λxi0 ⊗ · · · ⊗ xir ∈ A⊗ A
⊗r

,

as deg(λxi0 ⊗ · · · ⊗ xir) = i0 + · · · + ir. Since 1, x, . . . , xn−1 is a basis

of A as a left K-module, each element a ∈ A ⊗ A
⊗r

can be written
in a unique way as a sum of monomial tensors. The degree deg(a),
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of a, is the maximum of the degrees of its monomial tensors. Since

[A ⊗ A
⊗r

, K] is an homogeneous k-submodule of A ⊗ A
⊗r

we have a

well defined concept of degree on A⊗A
⊗r

⊗. Similarly it can be defined

the degree deg(a) of an element a ∈ A⊗ A
⊗r

⊗ A.

Proposition 3.1. Let ωr+1 as in item (3) of Theorem 2.1. It is true
that deg(ωr+1(a)) ≤ deg(a).

Proof. Let x1 = 1⊗xi1⊗· · ·⊗xir ⊗1 ∈ A⊗A
⊗r

⊗A. By the definition
of ωr+1 it suffices to show that ω′r+1(x1) is a sum of tensors of the form

λ′xj0 ⊗ xj1 ⊗ · · · ⊗ xjr+2 ,

with j0 + · · · + jr+2 ≤ i1 + · · · + ir. Using the formulas for φ′r and ψ′r
establish in Theorem 1.2 it is easy to see that

deg(φ′rψ
′
r(x1)) ≤ deg(x1).

The fact that w′
r+1(x1) can be expressed as a sum of simple tensors

satisfying the mentioned above property follows now by induction on
r, since

ω′r+1(x1) = (−1)r+1φ′rψ
′
r(x1)⊗ 1 + ω′r(x2)x

ir ⊗ 1,

where x2 = 1⊗ xi1 ⊗ · · · ⊗ xir−1 ⊗ 1. ¤

Let Dr : CS
r (A) → CS

r+1(A) be the composition Dr = ψr+1Brφr.

Theorem 3.2. (CS
∗ (A), d∗, D∗) is a mixed complex, giving the Hochs-

child, cyclic, negative and periodic homology of A relative to K.

Proof. By Theorem 2.1 we already know that the Hochschild homology
of (CS

∗ (A), d∗, D∗) is the Hochschild homology of A relative to K. Let

X = (CS
∗ (A), d∗, D∗) and X ′ = BC(A⊗ A

⊗∗⊗, b∗, B∗).

By the perturbation lema, in order to prove the assertion for the cyclic
homology it suffices to check that there is a special deformation retract

(3) Tot BC(X )
Φ

// Tot BC(X ′)
Ψoo

, W.

Finally, in order to prove the assertion for the periodic and negative
homology it suffices to show that the maps Φ, Ψ and W commute with
the canonical surjections

Tot BC(X ) → Tot BC(X )[2] and Tot BC(X ′) → Tot BC(X ′)[2].

In fact, from this, the fact that

Tot BP(X ) = lim
p

Tot BC(X )[2p], Tot BP(X ′) = lim
p

Tot BC(X ′)[2p]
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and (3), it follows that there is a special deformation retract

Tot BP(X )
Φ̂

// Tot BP(X ′)
Ψ̂oo

, Ŵ ,

which immediately implies the assertion for the periodic homology, and
also for the negative homology, because of the existence of a commu-
tative diagram with exact rows

0 // Tot BN(X ) // Tot BP(X ) //

Φ̂
²²

Tot BC(X )[2]

Φ
²²

// 0

0 // Tot BN(X ′) // Tot BP(X ′) // Tot BC(X ′)[2] // 0

with Φ and Φ̂ quasi-isomorphisms, it follows that there is a quasi-
isomorphism Tot BN(X ) → Tot BN(X ′) making the diagram commu-
tative.

Next we prove there is a special deformation retract (3) satisfying
the above required conditions. Let

Tot BC(CS
∗ (A), d∗, 0))

Φ̃

// Tot BC(A⊗ A
⊗∗⊗, b, 0)

Ψ̃oo
, W̃ ,

be the special deformation retract obtained in Corollary 2.2. Consider
the perturbation induced by B. Applying the perturbation lemma we
obtain a special deformation retract

(ĈS
∗ (A), d̂∗)

Φ
// Tot BC(A⊗ A

⊗∗⊗, b, B)
Ψoo

, W,

where
ĈS

n (A) = CS
n (A)⊕ CS

n−2(A)⊕ · · ·
and d̂n =

∑
j≥0 ψn−2l+2j+1(Bω)jBφn−2l on CS

n−2l(A). In order to finish

the proof it suffices to show that ψr+2j+1(Bω)jBφr = 0 for all j > 0.
Assume first that r = 2m. By the definition of φ2m and Proposition 3.1,

deg((Bω)jBφ2m([λ′xj]) < mn + n

On the other hand ψ2m+2j+1 vanishes on elements of degree less than
(m + j)n. The fact that ψr+2j+1(Bω)jBφr = 0 for all j > 0 follows by
combining theses facts. The case r = 2m + 1 is similar. ¤

Recall from Subsection 1.1, that given P ∈ E, there exist unique P
and

...

P in E such that

P = Pf+
...

P and
...

P= 0 or deg
...

P< n.
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Theorem 3.3. The Connes operator D∗ is given by

D2m([λxj]) =

[
j−1∑

h=0

αmn+h(λ)xj−1

]

+

[
n∑

i=1

(
m−1∑
u=0

i−1∑

`=0

αnu+`(λ)

)
λn−ixi−1+j

]
,

D2m+1([λxj]) =

{
0 if j < n− 1,

[(id− α)(
∑m

u=0 αnu(λ))] if j = n− 1.

Proof. Besides the notations introduced in Theorem 1.2 we use the
following ones.

• x̆`u,1 = x`u ⊗ x⊗ · · · ⊗ x`1 ⊗ x,

• x̃`m,u+1 = x⊗ x`m ⊗ · · · ⊗ x⊗ x`u+1 ,

• |`u,1| = `1 + · · ·+ `u + u.

We shall first compute D2m+1. By definition

Bφ2m+1([λxj]) =
m∑

u=0

∑

i∈Im

∑

`∈Ji
∆`

i,u −
m∑

u=0

∑

i∈Im

∑

`∈Ji
Γ`

i ,

where

∆`
i,u = [λn−iα

|`u,1|(λ)⊗ x̆`u,1 ⊗ xjx|i−`|−m ⊗ x̃`m,u+1 ⊗ x]

and

Γ`
i,u = [λn−iα

|`u,1|+1(λ)⊗ x̃`u,1 ⊗ x⊗ xjx|i−`|−m ⊗ x̃`m,u+1 ].

If ψ2m+2(∆
`
i,u) 6= 0, then `1 = · · · = `m = n− 1. So i1 = · · · = im = n.

Thus,

∑

i∈Im

∑

`∈Ji
ψ2m+2(∆

`
i,u) = [αnu(λ)xj+1] =

{
0 if j < n− 1,

[αnu(λ)] if j = n− 1.

Similarly, ψ2m+2(Γ
`
i,u) 6= 0 implies that `1 = · · · = `m = n − 1. Hence

i1 = · · · = im = n and

∑

i∈Im

∑

`∈Ji
ψ2m+2(Γ

`
i,u) = [αnu+1(λ)xj+1] =

{
0 if j < n− 1,

[αnu+1(λ)] if j = n− 1.
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The formula for D2m+1 follows immediately from these facts. We now
compute D2m. By definition

Bφ2m([λxj]) =
m−1∑
u=0

∑

i∈Im

∑

`∈Ji
(Γ`

i,u + ∆`
i,u) +

∑

i∈Im

∑

`∈Ji
Υ`

i ,

where

Γ`
i,u = [λn−iα

|`u,1|(λ)⊗ x̃`u,1 ⊗ xjx|i−`|−m ⊗ x̃`m,u+1 ],

∆`
i,u = [λn−iα

|`u+1,1|−1(λ)⊗ x`u+1 ⊗ x̃`u,1 ⊗ xjx|i−`|−m ⊗ x̃`m,u+2 ⊗ x],

Υ`
i = [λn−iα

|`m,1|(λ)⊗ x̃`m,1 ⊗ xjx|i−`|−m].

If ψ2m+1(Γ
`
i,u) 6= 0, then `1 = · · · = ̂̀

u+1 = · · · = `m = n − 1. In this

case i1 = · · · = îu+1 = · · · = im = n and

ψ2m+1(Γ
`
i,u) =

`−1∑

h=0

[
x`−h−1λn−iα

nu(λ)
.....................

xj+i−`−1 xxh

]

=
`−1∑

h=0

[
λn−iα

nu+`−h−1(λ)x`−h−1
.....................

xj+i−`−1 xxh

]

=
`−1∑

h=0

[
λn−iα

nu+`−h−1(λ)x`−1
.....................

xj+i−`−1 x

]

=
`−1∑

h=0

[
λn−iα

nu+`−h−1(λ)x`−1
(
xj+i−` − xj+i−`−1x

)]
.

In the third equality we have used that
.....................

xj+i−`−1 xxh = xh
.....................

xj+i−`−1 x,

which is valid since
.....................

xj+i−`−1 x ∈ Z[λ1, . . . , λn−1].

So,

∑

i∈Im

∑

`∈Ji
ψ2m+1(Γ

`
i,u) =

n∑
i=1

i−1∑

`=1

`−1∑

h=0

[
λn−iα

nu+`−h−1(λ)x`−1xj+i−`
]

−
n∑

i=1

i∑

`=2

`−1∑

h=1

[
λn−iα

nu+`−h−1(λ)x`−1xj+i−`
]

=
n∑

i=1

i−1∑

`=1

[
λn−iα

nu+`−1(λ)x`−1xj+i−`
]
.
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Similarly, ψ2m+1(∆
`
i,u) 6= 0 implies `2 = · · · = `m = n− 1. In this case

i2 = · · · = im = n and

ψ2m+1(∆
`
i,u) =

[
λn−i1α

nu+`1(λ)x`1
.....................

xj+i1−`1−1

]

=
[
λn−i1α

nu+`1(λ)
(
xj+i1−1 − x`1xj+i1−`1−1

)]
.

Hence,

∑

i∈Im

∑

`∈Ji
ψ2m+1(∆

`
i,u) =

n∑
i=1

[
λn−i

(
i−1∑

`=1

αnu+`(λ)

)
xj+i−1

]

−
n∑

i=1

i−1∑

`=1

[
λn−iα

nu+`(λ)x`xj+i−`−1
]
.

Consequently,

∑

i∈Im

∑

`∈Ji
ψ2m+1(Γ

`
i,u + ∆`

i,u) =
n∑

i=1

i−1∑

`=1

[
λn−iα

nu+`−1(λ)x`−1xj+i−`
]

−
n∑

i=1

i∑

`=2

[
λn−iα

nu+`−1(λ)x`−1xj+i−`
]

+
n∑

i=1

[
λn−i

(
i−1∑

`=1

αnu+`(λ)

)
xj+i−1

]

=
n∑

i=1

[
λn−iα

nu(λ)xj+i−1
]

+

[
n∑

i=1

λn−i

(
i−1∑

`=1

αnu+`(λ)

)
xj+i−1

]

=

[
n∑

i=1

λn−i

(
i−1∑

`=0

αnu+`(λ)

)
xj+i−1

]

=

[
n∑

i=1

(
i−1∑

`=0

αnu+`(λ)

)
xj+i−1λn−i

]

=

[
n∑

i=1

(
i−1∑

`=0

αnu+`(λ)

)
λn−ixj+i−1

]
.
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Lastly, ψ2m+1(Υ
`
i ) = 0 except if `1 = · · · = `m = n−1. In this last case

i1 = · · · = im = n. So

∑

i∈Im

∑

`∈Ji
ψ2m+1(Υ

`
i ) =

j−1∑

h=0

[
xj−h−1αmn(λ)xh

]

=

[
j−1∑

h=0

αmn+h(λ)xj−1

]
.

The expression for D2m follows immediately from all these facts. ¤

Remark 3.4. Another formula for D2m useful for some computations
is the following

D2m([λxj]) =

[
mn+j−1∑

h=0

αh(λ)xj−1

]

−



n−1∑

`=0

(
m−1∑
u=0

αnu+`(λ)

) ∑̀
i=0

λn−ixi−1+j


 .

This follows from Theorem 3.3 and the fact that

n∑
i=1

i−1∑

`=0

αnu+`(λ)λn−ixi−1+j =
n−1∑

`=0

αnu+`(λ)
n∑

i=`+1

λn−ixi−1+j

=
n−1∑

`=0

αnu+`(λ)


xj−1 −

∑̀
i=0

λn−ixi−1+j


 .

3.1. Explicit computations. Let k, K, α, f = Xn+λ1X
n−1+· · ·+λn

and A be as above. In this subsection we compute the cyclic homology
of A relative to K, under suitable hypothesis. We will freely use the
notations introduced at the beginning of Section 2 and below Corol-
lary 2.5. Recall that by Theorem 2.3, if there exists λ̆ ∈ Z(K) such
that

• αn(λ̆) = λ̆,

• λ̆− αi(λ̆) is invertible in K for 1 ≤ i < n,

then λ1 = · · · = λn−1 = 0 and

CS
r (A) =





K
[K,K]αmn

if r = 2m,

K
[K,K]

α(m+1)n
xn−1 if r = 2m + 1.
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Moreover, by Theorem 2.4, the Hochschild boundary maps of the mixed
complex (CS

∗ (A), d∗, D∗) are given by

d2m+1([λ]xn−1) = [(α(λ)− λ)λn],

d2m+2([λ]) =

[
n−1∑

`=0

α`(λ)

]
xn−1.

We now compute the Connes operator D∗.

Theorem 3.5. Under the hypothesis of Theorem 2.3, we have:

D2m([λ]) = 0,

D2m+1([λ]xn−1) =

[
(id− α)

(
m∑

u=0

αnu(λ)

)]
.

Proof. If follows immediately from Theorem 3.3. ¤

Theorem 3.6. Assume the hypothesis of Theorem 2.6 are fulfilled.
Then the mixed complex (CS

∗ (A), d∗, D∗) decomposes as a direct sum

(CS
∗ (A), d∗, D∗) =

s⊕

h=1

(CS,ωh∗ (A), dωh∗ , Dωh∗ ),

where the Hochschild complexes (CS,ωh∗ (A), dωh∗ ) are as in Theorem 2.6.
Moreover the Connes operators Dωh∗ satisfy Dωh

2m = 0 and

Dωh
2m+1([λ]xn−1) = (1− ωh)

(
m∑

u=0

ωnu
h

)
[λ].

Proof. If follows immediately from Theorem 3.5. ¤

In the rest of this section we assume that k is a characteristic zero
field and that hypothesis of Theorem 2.6 are fulfilled. We let HCK,ωh∗ (A),
HNK,ωh∗ (A) and HPK,ωh∗ (A) denote the cyclic, negative and periodic ho-
mology of (CS,ωh∗ (A), dωh∗ , Dωh∗ ), respectively.

Theorem 3.7. The cyclic, negative and periodic homology of A relative
to K decompose as

HCK
∗ (A) =

s⊕

h=1

HCK,ωh∗ (A),

HNK
∗ (A) =

s⊕

h=1

HNK,ωh∗ (A)
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and

HPK
∗ (A) =

s⊕

h=1

HPK,ωh∗ (A).

Moreover, we have:

HCK,ωh
2m (A) =





K1

[K,K]1
if h = 1,

Kωh

[K,K]ωh+Kωhλn
if ωn

h 6= 1,

Kωh

[K,K]ωh+Kωhλm+1
n

otherwise,

and

HCK,ωh
2m+1(A) =





0 if h = 1 or ωn
h 6= 1,

{λ∈Kωh :λλm+1
n ∈[K,K]ωh}

[K,K]
ωh

α(m+1)n

xn−1 otherwise,

Proof. The first assertion is an immediate consequence of Theorems 3.2
and 3.6, and the computation of HCK,ωh∗ for h = 1 and for ωn

h 6= 1
follows from Corollary 2.7, using the spectral sequence associate with
the filtration by columns of BC(CS,ωh∗ (A), dωh∗ , Dωh∗ ), which collapse in
the first step since the homology of (CS,ωh∗ (A), dωh∗ ) is concentrate in
zero degree (it is also possible to give a direct argument that avoids
any reference to spectral sequences). So, in order to finish the proof
it remains to consider the case h > 1 and ωn

h = 1. By Theorems 2.6
and 3.6, the cyclic homology of the mixed complex (CS,ωh∗ (A), dωh∗ , Dωh∗ ),
is the homology of

...

dωh

²²

...

0
²²

...

dωh

²²

...

0
²²

...

dωh

²²
X4

0
²²

X3
Dωhoo

dωh

²²

X2

0
²²

0oo X1

dωh

²²

Dωhoo X0
0oo

X3

dωh

²²

X2
0oo

0
²²

X1

dωh

²²

Dωhoo X0
0oo

X2

0
²²

X1
Dωhoo

dωh

²²

X0
0oo

X1

dωh

²²

X0
0oo

X0,
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where

• X2m = Kωh

[K,K]
ωh
αmn

and X2m+1 = Kωh

[K,K]
ωh

α(m+1)n

xn−1,

• Dωh
2m+1([λ]xn−1) = (m + 1)(1− ωh)[λ],

• dωh
2m+1([λ]xn−1) = (ωh − 1)[λλn].

We first compute the homology in degree 2m. Let

ι : X0 → X2m ⊕X2m−2 ⊕ · · · ⊕X0

be the canonical inclusion. By using that each Dωh
2i+1 map is an isomor-

phism it is easy to see that ι induces an epimorphism

ι : X0 → HCK,ωh
2m (A).

A direct computation shows now that the boundary of

([ζ2m+1]x
n−1, . . . , [ζ1]x

n−1) ∈ X2m+1 ⊕ · · · ⊕X1

equals ι([λ]) if and only if

(4) [ζ2i+1] =
i!

m!
[ζ2m+1λ

m−i
n ] for 0 ≤ i ≤ m

and ωh−1
m!

[ζ2m+1λ
m+1
n ] = [λ]. The assertion about HCK,ωh

2m (A) follows
easily from these facts. We now are going to compute the homology in
degree 2m + 1. It is immediate that

([ζ2m+1]x
n−1, . . . , [ζ1]x

n−1) ∈ X2m+1 ⊕ · · · ⊕X1

is a cycle of degree 2m + 1 if and only if it satisfies (4) and

ζ2m+1λ
m+1
n ∈ [K, K]ωh .

So the map

ι : X2m+1 → X2m+1 ⊕ · · · ⊕X1,

given by

ι([λ]) =

(
[λ]xn−1,

1

m
[λλn]xn−1, . . . ,

1

m!
[λλn

m]xn−1

)
,

induce a quasi-isomorphism

ι :
{λ ∈ Kωh : λλm+1

n ∈ [K, K]ωh}
[K, K]ωh

α(m+1)n

xn−1 → HCK,ωh
2m+1(A),

as desired. ¤
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3.2. Cyclic homology of rank 1 Hopf algebras. Let k, G, χ, g1, α
and A be as in Subsection 2.2. Here we compute the cyclic homology
of A. Let Cn ⊆ k be the set of all n-th roots of 1. As in the above
mentioned subsection we consider three cases.

ξ = 0. That is A = K[x, α]/〈xn〉, where K = k[G]. Since K is
separable over k, from Theorem 3.7 it follows that

HC2m(A) =
K

[K, K]
,

HC2m+1(A) =
⊕

ω∈Cn\{1}

Kω

[K, K]ω
α(m+1)n

xn−1.

ξ 6= 0 and χn = 1. In this case A = K[x, α]/〈xn − ξ(gn
1 − 1)〉, where

K = k[G]. Arguing as in Subsection 2.2, but using Theorem 3.7 instead
of Corollary 2.7, we obtain

HC2m(A) =
K1

[K,K]1
⊕

⊕

ω∈Cn\{1}

Kω

[K, K]ω + Kω(gn
1 − 1)m+1

,

HC2m+1(A) =
⊕

ω∈Cn\{1}

{λ ∈ Kω : λ(gn
1 − 1)m+1 ∈ [K, K]ω}
[K,K]ω

xn−1.

ξ 6= 0 and χn 6= 1. In this case A = K[x, α̃]/〈xn〉, where the algebra
K = k[G/〈gn

1 〉] and α̃ is the automorphism induced by α. Since K is
separable over k, from Theorem 3.7 it follows that

HC2m(A) =
K

[K, K]
,

HC2m+1(A) =
⊕

ω∈Cn\{1}

Kω

[K, K]ω
α̃(m+1)n

xn−1.

4. The periodic and cyclic homology

Assume that k is a characteristic zero field and that the hypothesis
of Theorem 2.6 are satisfied. The aim of this Section is to compute the
periodic and negative homology of A when α has finite order

In the following remark we compute the maps of the SBI exact se-
quence of the mixed complex (CS,ωh∗ (A), dωh∗ , Dωh∗ ) of Theorem 3.6. We
will use the notations introduced above Theorem 3.7.

Remark 4.1. From the computations of Theorem 3.7 it follows that:
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(1) If h = 1 or ωn
h 6= 1, then the map

S : HCK,ωh
2m+2(A) → HCK,ωh

2m (A)

is the identity map.

(2) If h > 1 and ωn
h = 1, then we have:

a. The map S : HCK,ωh
2m+2(A) → HCK,ωh

2m (A) is the canonical sur-
jection.

b. The map i : HHK,ωh
2m (A) → HCK,ωh

2m (A) is given by

i([λ]) =
1

m!
[λλm

n ].

c. The map B : HCK,ωh
2m (A) → HHK,ωh

2m+1(A) is zero.

d. The map S : HCK,ωh
2m+3(A) → HCK,ωh

2m+1(A) is given by

S([λ]xn−1) =
1

m + 1
[λλn]xn−1.

e. The map i : HHK,ωh
2m+1(A) → HCK,ωh

2m+1(A) is the canonical in-
clusion.

f. The map B : HCK,ωh
2m+1(A) → HHK,ωh

2m+2(A) is given by

B([λ]xn−1) = (m + 1)(1− ωh))[λ].

Remark 4.2. Theorem 3.7 applies in particular to the monogenic ex-
tensions of finite group algebras K = k[G] considered in Example 2.8.
Note that since K is a separable k-algebra, this computes the absolute
cyclic homology, as follows easily from [G-S, Theorem 1.2] using the
SBI-sequence.

Theorem 4.3. Assume the hypothesis of Theorem 2.6 are fulfilled and
that there exists m0 ∈ N such that αm0 = id. Then,

HPK,ωh
0 (A) =





K1

[K,K]1
if h = 1,

Kωh

[K,K]ωh+Kωhλn
if ωn

h 6= 1,

Kωh

⋂
m≥0

(
[K, K]ωh + Kωhλm+1

n

) otherwise,

HPK
1 (A) = 0.

Moreover there exists a non-negative integer m1 such that⋂
m≥0

(
[K,K]ωh + Kωhλm+1

n

)
= [K, K]ωh + Kωhλm1+j+1

n ,

for all j ≥ 0.
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Proof. We first compute HPK,ωh
0 (A). By items (1) and (2a) of Re-

mark 4.1, the sequence

· · · S // HCK,ωh
4 (A)

S // HCK,ωh
2 (A)

S // HCK,ωh
0 (A)

satisfies the Mittag-Leffler condition. So,

HPK,ωh
0 (A) = lim←−

S

HCK,ωh
2m (A).

If h = 1 or ωn
h 6= 1, then by item (1) of Remark 4.1,

HPK,ωh
0 (A) = HCK,ωh

0 (A) =
Kωh

[K, K]ωh + Kωhλn

.

If h 6= 1 and ωn
h = 1, then by item (2a) of Remark 4.1,

HPK,ωh
0 (A) =

Kωh

⋂
m≥0

(
[K, K]ωh + Kωhλm+1

n

) .

Moreover, since Kωh is a finite dimensional k-vector space, there exists
a non-negative integer m1 such that

⋂
m≥0

(
[K,K]ωh + Kωhλm+1

n

)
= [K, K]ωh + Kωhλm1+j+1

n ,

for all j ≥ 0. We now compute HPK,ωh
1 (A). Since HCK,ωh

2n+1(A) is a finite
dimensional k-vector space, the sequence

· · · S // HCK,ωh
5 (A)

S // HCK,ωh
3 (A)

S // HCK,ωh
1 (A)

satisfies the Mittag-Leffler condition. Thus,

HPK,ωh
1 (A) = lim←−

S

HCK,ωh
2m+1(A).

If h = 1 or ωn
h 6= 1, then by Theorem 3.7, we have HPK,ωh

1 (A) = 0.
Assume now that h 6= 1 and ωn

h = 1. By Theorem 3.7,

(5) HCK,ωh
2m0m−1(A) =

{λ ∈ Kωh : λλm0m
n ∈ [K,K]ωh}

[K,K]ωh
xn−1.

Again since Kωh is a finite dimensional k-vector space, there exists m2

such that

(6) HCK,ωh

2m0(m2+j)−1(A) = HCK,ωh
2m0m2−1(A) for all j ≥ 0.

Let m ≥ m2 arbitrary. By item (2d) of Remark 4.1, the map

Sm0m2 : HCK,ωh

2m0(m2+m)−1(A) → HCK,ωh
2m0m−1(A),
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is given by

(7) Sm0m2([λ]xn−1) =
1

m(m + 1) · · · (m + m2 − 1)
[λλm0m2

n ]xn−1.

Since, by (5) and (6) with j = m−m2,

HCK,ωh
2m0m−1(A) =

{λ ∈ Kωh : λλm0m2
n ∈ [K, K]ωh}

[K,K]ωh
xn−1,

using (7) we obtain that Sm0m2([λ]xn−1) = 0, and so

HPK,ωh
1 (A) = lim←−

S

HCK,ωh
2m0m−1(A) = 0,

as desired. ¤

Theorem 4.4. Assume the hypothesis of Theorem 4.3 are fulfilled.
Then,

HNK,ωh
2m (A) =

{
HCK,ωh

2m−1(A) if h = 1 or ωn
h 6= 1,

HCK,ωh
2m−1(A)⊕ Lm otherwise,

HNK
2m+1(A) = 0,

where

Lm =
[K,K]ωh + Kωhλm

n⋂
l≥0

(
[K, K]ωh + Kωhλl+1

n

) .

Proof. Consider the canonical exact sequence

HPK
0 (A)

S // HCK
2m(A)

B // HNK
2m+1(A)

i // HPK
1 (A) .

Since HPK
1 (A) = 0 and S is an epimorphism, HNK

2m+1(A) = 0. Now,
for each ωh consider the exact sequence

HPK,ωh
1 (A)

S // HCK,ωh
2m−1(A)

B // HNK,ωh
2m (A)

i // HPK,ωh
0 (A)

S // HCK,ωh
2m−2(A) .

Since HPK,ωh
1 (A) = 0, we have

HNK,ωh
2m (A) ' HCK,ωh

2m−1(A)⊕Ker(S : HPK,ωh
0 (A) → HCK,ωh

2m−2(A)).

The theorem follows now from Theorems 3.7 and 4.3. ¤
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