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Inequalities related to Bourin and Heinz means with a

complex parameter∗

T. Bottazzi, R. Elencwajg, G. Larotonda and A. Varela †

Abstract

A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A,B
positive matrices, 0 ≤ t ≤ 1, and any unitarily invariant norm it holds

|||AtB1−t +BtA1−t||| ≤ |||AtB1−t +A1−tBt|||.

Recently, R. Bhatia proved the inequality for the case of the Frobenius norm and for
t ∈ [14 ;

3
4 ]. In this paper, using complex methods we extend this result to complex

values of the parameter t = z in the strip {z ∈ C : Re(z) ∈ [14 ;
3
4 ]}. We give an

elementary proof of the fact that equality holds for some z in the strip if and only
if A and B commute. We also show a counterexample to the general conjecture
by exhibiting a pair of positive matrices such that the claim does not hold for
the uniform norm. Finally, we give a counterexample for a related singular value
inequality given by sj(A

tB1−t +BtA1−t) ≤ sj(A+B), answering in the negative a
question made by K. Audenaert and F. Kittaneh.1

1 Introduction

We begin this paper with some notations and definitions. The context here is the algebra
of n×n complex entries matrices, but the proofs adapt well to other (infinite dimensional)
settings in operator theory, so let us assume that A stands for an operator algebra with
trace, for instance A = Mn(C) with its usual trace, or A = B2(H), the Hilbert-Schmidt
operators acting on a separable complex Hilbert space with the infinite trace, or A =
(A, T r) a C∗-algebra with a finite faithful trace.
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†All authors supported by Instituto Argentino de Matemática, CONICET and Universidad Nacional

de General Sarmiento.
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Definitions 1.1. Let ||| · ||| denote an unitarily invariant norm on A, which we assume
is equivalent to a symmetric norm, that is

|||XY Z|||| ≤ ‖X‖∞|||Y |||‖Z‖∞

whenever Y ∈ A (from now on ‖ · ‖∞ will denote the norm of the operator algebra).

For convenience we will use the notation τ(X) = Re Tr(X). Let |X| =
√
X∗X stand

for the modulus of the matrix or operator X, then the (right) polar decomposition of X is
given by X = U |X| where U is a unitary such that U maps Ran|X| into Ran(X) and is
the identity on Ran|X|⊥ = Ker(X). Note that ‖X‖22 = Tr(X∗X) = Tr[|X|2].

Consider the inequality
τ(AzBzA1−zB1−z) ≤ τ(AB), (1)

for positive invertible operators A,B > 0 in A, and z ∈ C. We introduce some notation
regarding vertical strips in the complex plane: let

S0 = {z ∈ C : 0 ≤ Re(z) ≤ 1}, S1/4 = {z ∈ C : 1/4 ≤ Re(z) ≤ 3/4};

we will study the validity of (1) in both S0 and S1/4.

Intimately related to the expression above are the inequalities

|||bt(A,B)|||| ≤ |||ht(A,B)||| (2)

and

|||bt(A,B)||| ≤ |||A+B|||, (3)

for positive matrices A,B ≥ 0 in A, where

bt(A,B) = AtB1−t +BtA1−t t ∈ [0, 1];

the name bt is due to Bourin, who conjectured inequality (3) for n×n matrices in [5], and

ht(A,B) = AtB1−t + A1−tBt t ∈ [0, 1]

is named after Heinz, and the well-known [7] inequality

|||ht(A,B)||| ≤ |||A+B|||

carrying his name.

Recently, S. Hayajneh and F. Kittanneh proposed in [6] that the stronger (2) should also
be valid in Mn(C); however, numerical computations (see Section 3) show that, at least
for the uniform norm, this is false.
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If we focus on the case |||X||| = ‖X‖2 = Tr(X∗X)1/2 (the Frobenius norm in the case of
n× n matrices) and we write ht = ht(A,B), bt = bt(A,B), then

Tr|bt|2 = τ(b∗t bt) = τ(B1−tAt + A1−tBt)(AtB1−t +BtA1−t)

= τ(B2(1−t)A2t) + τ(A2(1−t)B2t) + 2τ(AtBtA1−tB1−t)

where we have repeatedly used the ciclicity of τ (i.e. τ(XY ) = τ(Y X)) and the fact that
τ(Z∗) = τ(Z). Likewise

Tr|ht|2 = τ(B2(1−t)A2t) + τ(A2(1−t)B2t) + 2τ(AB).

Thus, proving that ‖bt‖2 ≤ ‖ht‖2 amounts to prove that

τ(AtBtA1−tB1−t) ≤ τ(AB), (4)

and in fact, it is clear that both inequalities are equivalent -as remarked in [6]-.

2 Main results

We will divide the problem in regions of the plane (or the line), and then we will also
consider the possiblity of attaining the equality; we will see that this is only possible in
the trivial case, i.e. when A,B commute. We recall the generalized Hölder inequality,
that we will use frequently: let 1

p
+ 1

q
+ 1

r
= 1 for p, q, r ≥ 1 and X, Y, Z in A, then

τ(XY Z) ≤ ‖XY Z‖1 ≤ ‖X‖p‖Y ‖q‖Z‖r.
This is just a combination of the usual Hölder inequality together with

‖XY ‖s ≤ ‖X‖p‖Y ‖q
provided s ≥ 1 and 1

p
+ 1

q
= 1

s
(see [8], Theorem 2.8, for more details).

2.1 The inequality in the strip S1/4

We begin with an easy consequence of an inequality due to Araki-Lieb and Thirring.

Lemma 2.1. If A,B ≥ 0 and r ≥ 2, then

‖A1/rB1/r‖r ≤ τ(AB)1/r.

Proof. Note that

‖A1/rB1/r‖rr = τ([A1/rB1/rB1/rA1/r]r/2) = τ([A1/rB2/rA1/r]r/2)

which, by the inequality of Araki-Lieb and Thierring (see [2], and note that r/2 ≥ 1) is
less or equal than

τ(Ar/2rBr2/2rAr/2r) = τ(A1/2BA1/2),

which in turn equals τ(AB).
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Note that if we exchange the variables z 7→ 1− z and exchange the role of A,B, it suffices
to consider half-strips or half-intervals around Re(z) = 1/2.

Proposition 2.2. If 0 < A,B and z ∈ S1/4, then

τ(AzBzA1−zB1−z) ≤ τ(AB).

Proof. Let z = 1/2 + iy, y ∈ R denote any point in vertical line of the complex plane
passing through x = 1/2. Then

τ(AzBzA1−zB1−z) = τ(AiyA1/2B1/2BiyA−iyA1/2B1/2B−iy)

≤ τ |AiyA1/2B1/2BiyA−iyA1/2B1/2B−iy|
≤ ‖AiyA1/2B1/2BiyA−iy‖2‖A1/2B1/2B−iy‖2 = ‖A1/2B1/2‖22

by the Cauchy-Schwarz inequality and the fact that Aiy, Biy are unitary operators. Then
by the previous lemma,

τ(AzBzA1−zB1−z) ≤ τ(AB)2/2 = τ(AB).

Now consider z = 1/4 + iy, y ∈ R, a generic point in the vertical line over x = 1/4, then
noting that 1

4
+ 1

4
+ 1

2
= 1,

τ(AzBzA1−zB1−z) = τ(B1/4A1/4AiyBiyB1/4A1/4A−iyA1/2B1/2B−iy)

≤ ‖B1/4A1/4‖24‖B1/2A1/2‖2 ≤ τ(AB)2/4+1/2 = τ(AB),

where we used again the previous Lemma and the generalized Hölder’s inequality,

τ(XY Z) ≤ ‖X‖p‖Y ‖q‖Z‖r

whenever p, q, r ≥ 1 and 1
p
+ 1

q
+ 1

r
= 1.

By Hadamard’s three-lines theorem, the bound τ(AB) is valid in the vertical strip 1/4 ≤
Re(z) ≤ 1/2, since it holds in the frontier of the strip. Invoking the symmetry z 7→ 1− z
and exchanging the roles of A,B gives the desired bound on the full strip S1/4 = {1/4 ≤
Re(z) ≤ 3/4}.

Regarding the inequalities conjectured by Bourin et al., note that we can assume A,B > 0:
replacing A with Aε = A+ ε (and likewise with B), if the inequality (1) is valid for Aε, Bε

then making ε → 0+ gives the general result: the following result that we state as corollary
was recently obtained by R. Bhatia in [4] and we should also point the reader to the paper
by T. Ando, F. Hiai, K. Okubo [1].

Corollary 2.3. For any A,B ≥ 0 and any t ∈ [1/4, 3/4],

‖AtB1−t +BtA1−t‖2 ≤ ‖AtB1−t + A1−tBt‖2 ≤ ‖A+B‖2.
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2.2 Inequality becomes equality

Let us consider the special case when the inequality above becomes an equality. We begin
with a lemma that we will use in several ocasions, and will be useful when we drop the
assumption on nonsingularity of A,B.

Lemma 2.4. Let A,B ≥ 0, and assume

τ(A1/2B1/2A1/2B1/2) = τ(AB),

or
‖A1/4B1/4‖4 = τ(AB)1/4.

In either case, A commutes with B.

Proof. Name X = A1/2B1/2, and considering the inner product induced by τ , 〈X, Y 〉 =
τ(XY ∗),

〈X,X∗〉 = τ(X2) = τ(A1/2B1/2A1/2B1/2) = τ(AB) = τ(X∗X) = ‖X‖22 = ‖X‖2‖X∗‖2.

But Cauchy-Schwarz inequality becomes an equality if and only if X = λX∗ for some
λ > 0, and since both operators have equal norm (= ‖A1/2B1/2‖2), then X = X∗. This
means

A1/2B1/2 = B1/2A1/2,

and this implies that A commutes with B. On the other hand,

‖A1/4B1/4‖44 = τ((B1/4A1/2B1/4)2) = τ(A1/2B1/2A1/2B1/2),

so what we have is just another way of writing the first equality condition.

Proposition 2.5. Let A,B > 0 and assume that there is z0 ∈ S1/4 such that

τ(Az0Bz0A1−z0B1−z0) = τ(AB).

Then A commutes with B and τ(AzBzA1−zB1−z) = τ(AB) for any z ∈ C.

Proof. First consider the case when equality is reached in an interior point of the strip
S1/4. Note that by the maximum modulus principle, this would mean that the function

f(z) = τ(AzBzA1−zB1−z)

is constant in the strip S1/4, in particular equality holds at z0 = 1/2, and by the previous
Lemma, A commutes with B.
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Now suppose equality is attained in the frontier, for instance at z0 = 1/4 + iy for some
y ∈ R. Let X = B1/4A1/4AiyBiyB1/4A1/4, Y = B1/2BiyAiyA1/2. Then, if we go through
the proof of Proposition 2.2 again, assuming equality

τ(AB) = τ(XY ∗) = 〈X, Y 〉 ≤ ‖X‖2‖Y ‖2
≤ ‖B1/4A1/4‖24‖A1/2B1/2‖2 ≤ τ(AB). (5)

Arguing as in the previous Lemma, there exists λ > 0 such that X = λY ,

B1/4A1/4AiyBiyB1/4A1/4 = λB1/2BiyAiyA1/2.

Cancelling B1/4 on the left and A1/4 on the right we obtain

A1/4AiyBiyB1/4 = λB1/4BiyAiyA1/4,

but now both elements have the same norm and this shows that λ = 1; then

A1/4+iyB1/4+iy = B1/4+iyA1/4+iy,

and since A,B > 0, the existence of analytic logarithms shows that again A commutes
with B. By symmetry, the same argument applies for any z0 = 3/4 + iy in the other
border of the strip.

Corollary 2.6. If A does not commute with B, the inequality is strict:

τ(AzBtA1−zB1−z) < τ(AB),

in some open set Ω ⊂ C containing the closed strip S1/4.

If we allow A,B to be non invertible, holomorphy is lost, but nevertheless in the same
spirit we have the following result.

Proposition 2.7. For given A,B ≥ 0, there exists δ = δ(A,B) > 0 such that

τ(AtBtA1−tB1−t) ≤ τ(AB)

holds in the interval [1/4 − δ, 3/4 + δ]. If A does not commute with B, the inequality is
strict in the whole (1/4− δ, 3/4 + δ).

Proof. If A commutes with B, then the assertion is trivial. If not, arguing as in the last
part of the proof of the previous proposition, we must have strict inequality

τ(AtBtA1−tB1−t) < τ(AB)

for t = 1/4, t = 3/4, and then by continuity the inequality extends a bit out of the closed
interval [1/4, 3/4].
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Consider t ∈ (1/4, 1/2) and put X = B1/4A1/4At−1/4Bt−1/4, Y = B1/4A1/4A3/4−tB3/4−t.
Note that 1

t
, 1
1−t

≥ 1 and define 1/p = t − 1/4 ∈ (0, 1/4), 1/q = 3/4 − t ∈ (1/4, 1/2),
note also that 1/p+ 1/4 = t, 1/q + 1/4 = 1− t. By reiterated use of Hölder’s inequality
compute

τ(AtBtA1−tB1−t) ≤ ‖XY ‖1 ≤ ‖X‖t−1‖Y ‖(1−t)−1

≤ ‖B1/4A1/4‖4‖A1/pB1/p‖p‖B1/qA1/q‖q‖A1/4B1/4‖4.

Now apply Lemma 2.1 to each of the four terms (note that p > 4 and q > 2), and we
have2

τ(AtBtA1−tB1−t) ≤ ‖B1/4A1/4‖4‖A1/pB1/p‖p‖B1/qA1/q‖q‖A1/4B1/4‖4 ≤ τ(AB).

If we assume equality of the traces, then

τ(AB) = ‖B1/4A1/4‖4‖A1/pB1/p‖p‖B1/qA1/q‖q‖A1/4B1/4‖4

and in particular, it must be that ‖A1/4B1/4‖4 = τ(AB)1/4, and from Lemma 2.4 we can
deduce that A commutes with B. By the symmetry (t 7→ 1− t) the argument extends to
(1/2, 3/4), and again by Lemma 2.4 we already know that A commutes with B if equality
is attained at t = 1/2. This finishes the proof of the assertion that the inequality is strict
in [1/4, 3/4] unless A commutes with B.

Remark 2.8. The inequalities in the previous proof give in fact

τ(|B 1

4AtBtA1−tB
3

4
−t|) ≤ Tr(AB)

for any t ∈ [1
4
, 3
4
]; this is a particular instance of [1, Theorem 2.10].

3 Counterexamples

In this section we exhibit specific cases of different kind. In Example 3.1 we choose A,B

such that ‖bt(A,B)‖∞ > ‖ht(A,B)‖∞, while in Example 3.2, it is shown that the jth

singular value of A+B is not always greater than the jth singular value of bt(A,B). This
provides negative answers to [6, Conjecture 1.2] and [3, Problem 4] respectively.

Example 3.1. Consider the following positive definite matrices

A =





1141 0 0
0 204 0
0 0 1/8



 and B =





39 90 43
90 418 370
43 370 426



 .

2Note that this is another proof of the inequality for real t ∈ [ 1
4
, 3

4
].
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The following is the graph of f(t) = −‖bt(A,B)‖∞ + ‖ht(A,B)‖∞ for t ∈ [0, 1
2
]:

0.1 0.2 0.3 0.4 0.5

5

10

15

20

25

For these matrices −‖bt(A,B)‖∞ + ‖ht(A,B)‖∞ ≃ −2.3 at t = .15.

In [3, Problem 4] K. Audenaert and F. Kittaneh asked if sj(bt(A,B)) ≤ sj(A + B) for
every j and 0 < t < 1 (where sj(M), j = 1 . . . n denote the singular values of the matrix
M arranged in non-increasing order).

Example 3.2. Consider the following positive definite matrices

A =





6317 0 0
0 474 0
0 0 6



 and B =





2078 2362 2199
2362 3267 2585
2199 2585 2492



 .

Then, for t = 1
2
we have

s(b 1

2

(A,B)) = (6826.57, 878.499, 591.716)

and
s(A +B) = (10561.4, 3629.62, 443.017).

In particular, s3(b 1

2

(A,B)) > s3(A+B).
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