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Abstract In this paper, we analyze the semi-linear fractional Laplace equation

(−�)su = f (u) in R
N+ , u = 0 in R

N\RN+ ,

where RN+ = {x = (x ′, xN ) ∈ R
N : xN > 0} stands for the half-space and f is a locally

Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of
this problem, and we prove among other things that if u is a bounded solution with ρ :=
supRN u verifying f (ρ) = 0, then u is necessarily one dimensional.
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1 Introduction

In this paper, we study existence and qualitative properties of positive bounded solution of
the semi-linear nonlocal equation:{

(−�)su = f (u) in R
N+ ,

u = 0 in R
N\RN+ ,

(PN )

where RN+ = {x = (x ′, xN ) ∈ R
N : xN > 0} is the half-space and f is a locally Lipschitz

function. Here (−�)s denotes the fractional laplacian, which is defined on smooth functions
as

(−�)su(x) = c(N , s)
∫
RN

u(x) − u(y)

|x − y|N+2s dy, (1.1)

where c(N , s) is a normalization constant given by

c(N , s) = 4ss(1 − s)π− N
2

�
(
s + N

2

)
�(2 − s)

(1.2)

(cf. Lemma 5.1 in [37]). The integral in (1.1) has to be understood in the principal value
sense.

Before stating our results, let us briefly discuss the known achievements for the local
case s = 1, which motivates our study. The more relevant references in the subject are a
series of papers by Berestycki, Caffarelli and Nirenberg, [4–7], where qualitative properties
of solutions of {−�u = f (u) in R

N+ ,

u = 0 on ∂RN+ ,
(1.3)

were obtained. The two main properties analyzed there are the monotonicity of solutions
of (1.3) and their one-dimensional symmetry (sometimes called rigidity). In some of these
papers, some more general unbounded domains were also considered.

With regard to monotonicity properties in the case s = 1, the first known result in the half-
space seems to be due to Dancer in [18], although monotonicity in some coercive epigraphs
was shown before in [19]. The more general case where f is a Lipschitz function and
f (0) ≥ 0 is solved in [5,6]. It is shown there that all positive solutions u of (1.3), not
necessarily bounded, are monotone in the xN direction. The case f (0) < 0 is more delicate,
and nowadays still not completely solved. See [21] for several achievements in N = 2, and
[17] for some partial results in higher dimensions. The main reason is the existence of a
one-dimensional, periodic solution of (1.3) which is not strictly positive.

As for the symmetry of solutions of (1.3), it is only conjectured that all bounded solutions
are necessarily one dimensional, see [6]. This conjecture was shown to be true when N = 2
or when N = 3 and f (0) ≥ 0 in [6]. In higher dimensions, the only general result in this
direction at the best of our knowledge is the one in [4], where it is proved that if ρ := sup u
verifies f (ρ) ≤ 0, then u is symmetric and one additionally has f (ρ) = 0. A slightly more
restrictive version of this result had been previously proved by Angenent in [2] and Clément
and Sweers in [15].
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Back to our nonlocal problem (PN ), the question of monotonicity for positive bounded
solution has been addressed before in some works. We mention preliminary results obtained
in [20,27] for special nonlinearities, and a fairly general recent result by the authors in
[3], where it is shown that nonnegative bounded solutions of (PN ) are increasing in the xN
direction even in the more delicate case f (0) < 0. The only additional requirement is that f
needs to be C1. Let us also mention the paper [36], where some monotonicity properties are
obtained for some more general unbounded domains and some special nonlinearities.

Nevertheless, the question of symmetry for positive bounded solution of (PN ) is far from
being completely analyzed. We are only aware of Corollary 1.2 in [36], where some special
nonlinearities are dealt with.

Next we describe our main results. First, let us comment that with the exception of Sect. 2,
wewill bemainly dealingwith classical solutions of (PN ).However, it can be seenwith the use
of the regularity theory developed in [13,14,35] and bootstrapping arguments that bounded,
viscosity solutions of (1.1) in the sense introduced in [13] are automatically classical. See
“Appendix” for a definition of viscosity solution.

We begin by considering the one-dimensional version of problem (PN ), that is{
(−�)su = f (u) in R+,

u = 0 in R\R+.
(P1)

At the best of our knowledge, this problem is not very well understood at present. The fact
that N = 1 does not substantially simplify the expression of the operator (−�)s seems to be
responsible for this lack of knowledge. In spite of this, when the problem is posed in R and
special solutions are taken into account, there has been some progress in [9,10].

When s = 1, however, the corresponding problem{
−u′′ = f (u) in R+,

u(0) = 0
(1.4)

has been extensively studied, and it is easy to see that there exists a positive bounded solution
of (1.4) if and only if ρ = ‖u‖L∞(R+) verifies f (ρ) = 0 and

F(t) < F(ρ) for all t ∈ [0, ρ), (F)

where F is the primitive of f vanishing at zero, F(t) = ∫ t
0 f (τ )dτ . Moreover, the solutions

are increasing in x , and there exists a unique solution with a prescribed value of ρ. Thus
problem (1.4) admits as many solutions as zeros of f verifying condition (F). This is an
immediate consequence of the existence of an energy for solutions of (1.4). As can be directly
checked, if u is a solution of −u′′ = f (u) in (0,+∞), the function

E(x) := u′(x)2

2
+ F(u(x)), x > 0,

is constant. It is also important to remark that the uniqueness of solutions for initial value
problems associated to the equation plays also an important role in this characterization.

On the contrary, for the nonlocal problem (P1), no energy is known to exist for themoment
despiste the Hamiltonian identity obtained in [9,11] for layer solutions using the extension
tool [12], and of course initial value problems have no sense in its context. Thus existence
and uniqueness of solutions and their monotonicity have to be shown in an alternative way.

Indeed, we will prove that problem (P1) possesses the same features as the local version,
by constructing solutions in a different way. In addition, we will also obtain a nonlocal
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energy which can be used to show the uniqueness of solutions with a prescribed maximum.
We strongly believe that this energy could be useful in other one-dimensional problems.

Before stating our main result, we remark that solutions of (P1) are expected to have a
singular derivative at x = 0, and we need to consider the ‘fractional derivative’

�0 := lim
x→0+

u(x)

xs
. (1.5)

The existence of this limit for solutions of (P1) is consequence of the regularity results in
[29].

We will establish now the main results of the work:

Theorem 1.1 Assume f is locally Lipschitz and ρ > 0 is such that f (ρ) = 0 and condition
(F) is verified. Then there exists a unique positive solution u of (P1) with the property

‖u‖L∞(R) = ρ.

Moreover, u is strictly increasing and �0 in (1.5) is given by

�0 = (2F(ρ))
1
2

�(1 + s)
. (1.6)

Finally, all positive bounded solutions of (P1) are of the above form.

For every positiveρ verifying (F),wedenote the unique positive solution givenbyTheorem
1.1 by uρ .

Once solutions of the one-dimensional problem are completely understood, we expect
them to give rise to special solutions of (PN ). While in the local case s = 1 this is immediate,
it is not completely straightforward when s ∈ (0, 1), due to the presence of a constant in
the definition of (−�)s which depends on the dimension N . We are unaware if this fact is
already present somewhere in the literature, but we include a proof for completeness. That
is, we have the following.

Proposition 1.1 Under the conditions of Theorem 1.1, let uρ be the positive bounded solution
of the one-dimensional problem (P1). Then the function

u(x) = uρ(xN ), x ∈ R
N (1.7)

is a positive bounded solution of (PN ). Conversely, if u is a bounded solution of (PN ) which
depends only on xN , then (1.7) holds for some ρ > 0 such that f (ρ) = 0 and (F) is verified.

In the light of Proposition 1.1, it is natural to ask as in the local case whether all positive
bounded solution of (PN ) come from solutions of (P1). Thus we pose the following.

Conjecture: assume f is locally Lipschitz and let u be a positive bounded solution of
(PN ). Then u is one dimensional.

We are unable to prove this conjecture in its full generality, but we will address some
particular instances which are generalizations of some known facts in the local case. We
begin by considering the case where the maximum of u is a zero of f , as in [4]. To be more
precise, it was assumed there that f (‖u‖L∞(RN )) ≤ 0, but it is easily seen that this condition
is equivalent to f (‖u‖L∞(RN )) = 0. Then we have the next.
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Theorem 1.2 Assume f is locally Lipschitz and let u be a positive bounded solution of (PN ).
Suppose in addition that ρ = ‖u‖L∞(RN ) verifies f (ρ) = 0. Then f verifies (F) and u is one
dimensional. More precisely,

u(x) = uρ(xN ), x ∈ R
N .

Theproof ofTheorem1.2 ultimately relies in obtaininggood lower bounds for the solutions
u which allow us to construct a one-dimensional solution below it. It is precisely in this step
when the condition f (ρ) = 0 is important. When this condition is not assumed, we can still
say something by placing some restriction on the behavior of f at zero. The usual condition

lim inf
t→0+

f (t)

t
> 0 (1.8)

has been considered at several places in the literature of local problemswith the sameobjective
(cf. for instance [7]).

A generalization of the results in [7] has been recently obtained in [36]. When it comes
to the half-space, it was shown there that if f is a function that has a unique positive zero
ρ, that initially it does not have to be the supremum of the solution, that verifies (1.8) and
is negative for values larger than ρ and nonincreasing near ρ, then every positive bounded
solution of (PN ) is one dimensional. We improve Corollary 1.2 there, in the sense that we
do not require the monotonicity condition on f and we show moreover that the solution is
unique.

Theorem 1.3 Assume f is locally Lipschitz and verifies f > 0 in (0, ρ), f < 0 in (ρ,+∞)

and (1.8). Then the unique positive bounded solution of (PN ) is

u(x) = uρ(xN ), x ∈ R
N ,

where uρ is the unique solution of (P1) with ‖u‖L∞(RN ) = ρ given by Theorem 1.1.

As a corollary of Theorem 1.3, we obtain a Liouville theorem for a particular class of
nonlinearities.

Corollary 1 Assume f is locally Lipschitz and verifies f > 0 in (0,+∞) and (1.8). Then
problem (PN ) does not admit any positive bounded solution.

To conclude the introduction, we will briefly comment on our methods of proof. With
regard to the one-dimensional problem (P1), the existence of solutions follows by means
of sub- and supersolutions. It is worthy of mention that precise subsolutions have to be
constructed in order to ensure that the solutions so obtained have the desired L∞ norm. These
subsolutions are shown to exist with an adaptation of the results in [15]. As for uniqueness,
it is obtained thanks to Hopf’s Lemma and the characterization (1.6). This characterization
follows because of our nonlocal energy, furnished by Theorem 3.1 below. The energy is
obtained by direct integration of the expression u′(x)(−�)su(x), with a careful analysis of
all the appearing terms. It is to be noted that the same expression can be obtained with the
results in [30], which however need the restriction f (u) ∈ L1. This could not hold in general.

As for the rest of our theorems, most of them follow with the use of the well-known
sliding method, see [8]. However, some additional care is needed because the subsolutions
we slide do not have a compact support, which is the usual situation. The method of sub- and
supersolutions, providing with a maximal solution in each case is the other essential tool in
our approach.
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The rest of the paper is organized as follows: Sect. 2 is dedicated to the existence of
solutions for problems (PN ) and (P1). In Sect. 3, we obtain our nonlocal energy and use it
to prove the uniqueness of solutions of (P1). Section 4 is devoted to the proof of our main
results, and an “Appendix” is included dealing with the method of sub- and supersolutions.

2 Existence of solutions

In this section, we are concerned with the existence of positive solutions of the problem{
(−�)su = f (u) in R+,

u = 0 in R\R+.
(P1)

More precisely, if the function f is locally Lipschitz and ρ > 0 is such that f (ρ) = 0 and
(F) is satisfied, then we will show that there exists a positive, viscosity solution of (P1) which
is increasing in x and verifies in addition limx→+∞ u(x) = ρ. Recall that viscosity solutions
are automatically classical.

To simplify the notation, throughout this section we will omit the normalization constant
c(N , s) in the definition of the fractional laplacian.

2.1 Existence of solutions in a ball

Although we will primarily deal with the one-dimensional problem (P1), in the procedure,
we need to consider several related problems which are posed in finite domains. For its use
in Sect. 4, we will analyze the N -dimensional problem{

(−�)su = f (u) in BR,

u = 0 in Bc
R = R

N\BR,
(2.1)

where BR ⊂ R
N , N ≥ 1, stands for the ball of radius R centered at the origin. However, all

the results in this section are directly generalized to problems where the underlying domain
is a dilation of a fixed one.

In general, there is no hope that problem (2.1) admits nonnegative solutions. This is the
reason why we are imposed in a first stage the additional assumption f (0) ≥ 0.

Lemma 2.1 Assume f is locally Lipschitz in R and ρ > 0 is such that f (ρ) = 0 and (F)
is satisfied, together with f (0) ≥ 0. Then for every ε > 0 there exists a positive number
R0 = R0(ε) such that for R ≥ R0, problem (2.1) admits a positive viscosity solution
uR ∈ Cs(RN ), verifying in addition

ρ − ε ≤ ‖uR‖L∞(BR) < ρ. (2.2)

Proof The proof is an adaptation of that of Lemma 2.1 in [15], where the local case s = 1
was analyzed. We split it in two steps.
Step 1. First we show that for every R > 0 there exists a viscosity solution uR ∈ Cs(RN ) of
(2.1) such that 0 ≤ uR ≤ ρ in BR . For this aim, we define an auxiliary function f̃ by setting
f̃ (t) = f (t) in [0, ρ],

f̃ (t) = 0 for t > ρ

and extend it to negative values by means of

f̃ (t) = 2 f (0) − f̃ (−t) if t < 0.
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Observe that the function f̃ is bounded in R, and f̃ (t) − f (0) is odd by its very definition.
Denote

F̃(t) :=
∫ t

0
f̃ (s)ds. (2.3)

Next, in the Hilbert space

H̃(BR) := {u ∈ Hs(RN ) : u = 0 a.e. in Bc
R}

we define the following functional:

J (v) := 1

2

∫∫
R2N

|v(x) − v(y)|2
|x − y|N+2s dxdy −

∫
BR

F̃(v)dx,

(we refer the reader to [32] or [33] for a definition of Hs(RN ) and the use of variational
methods for boundary value problems involving the fractional laplacian).

Observe that J is sequentially weakly lower semicontinuous and the boundedness of f̃
implies that it is also coercive in H̃ s(BR). Thus it possesses a globalminimizer uR ∈ H̃ s(BR).
We claim that indeed uR can be chosen to verify

0 ≤ uR ≤ ρ. (2.4)

To prove the first inequality in (2.4), we will show that for every v ∈ H̃ s(BR) we have

J (|v|) ≤ J (v) (2.5)

which clearly implies that uR can be taken to be nonnegative. To show (2.5) it is enough to
notice that, since f̃ (t) − f (0) is an odd function, then its primitive F̃(t) − f (0)t is even, so
that for t > 0:

F̃(−t) = F̃(t) − 2 f (0)t ≤ F̃(t),

owing to our extra condition f (0) ≥ 0. This immediately yields F̃(t) ≤ F̃(|t |) for t ∈ R.
Since it is also well known that

||v(x)| − |v(y)|| ≤ |v(x) − v(y)| for every x, y ∈ R
N ,

then (2.5) follows.
To show the second inequality in (2.4), we define w(x) = min{uR(x), ρ}. Observing that

F(t) = F(ρ) whenever t > ρ and that

|w(x) − w(y)| ≤ |uR(x) − uR(y)| for every x, y ∈ R
N ,

it directly follows that J (w) ≤ J (uR). Thus replacing uR by w, we may always assume that
the second inequality in (2.4) holds.

By a standard argument, a minimizer of J in H̃ s(BR) is a weak solution of (2.1). In
addition, since f (uR) ∈ L∞(BR), we deduce using Proposition 1.1 in [29] that uR ∈
Cs(RN ). Moreover, since then the right-hand side of (2.1) is a continuous function, then uR

is a viscosity solution of (2.1) (cf. Remark 2.11 in [29] or Remark 6 in [34]).
Step 2. We prove that for any ε > 0 there is a positive number R0 = R0(ε) such that uR is
positive in BR and (2.2) holds if R > R0.

We begin by observing that the scaled function wR(x) = uR(Rx) is a minimizer of

JR(v) := 1

2

∫∫
R2N

|v(x) − v(y)|2
|x − y|N+2s dxdy − R2s

∫
B1

F̃(v)dx
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in H̃ s(B1). As a first step in proving (2.2), we will show that given ε > 0 there is a positive
number R0 such that

ρ − ε ≤ ‖wR‖L∞(B1) ≤ ρ for every R > R0. (2.6)

Suppose that (2.6) does not hold. Then there exist ε > 0 and a sequence Rn → +∞ such
that ‖wn‖L∞(B1) < ρ − ε, where wn = wRn . Define

α = min {F(ρ) − F(r) : 0 ≤ r ≤ ρ − ε} ,

β = max {F(ρ) − F(r) : 0 ≤ r ≤ ρ} .

Since, by (F), α > 0, we can choose δ > 0 small enough to have

|Bδ
1 |β < |B1|α, (2.7)

where Bδ
1 = {x ∈ B1 : dist(x, ∂B1) < δ} and | · | stands for the Lebesgue measure.

We next choose a function w ∈ C∞
0 (B1) satisfying 0 ≤ w(x) ≤ ρ in Bδ

1 and w ≡ ρ in
B1\Bδ

1 . Then for a positive constant C :

JRn (w) − JRn (wn) ≤ 1

2

∫∫
R2N

|w(x) − w(y)|2
|x − y|N+2s dxdy − R2s

n

∫
B1

(F(w) − F(wn))

= C − R2s
n

(∫
B1

(F(ρ) − F(wn)) −
∫
Bδ
1

(F(ρ) − F(w))

)

≤ C − R2s
n (α|B1| − β|Bδ

1 |) < 0

for large n, thanks to (2.7). This is a contradiction with the fact that wn is a minimizer of
JRn , which shows that (2.6) must be true.

Coming back to the functions uR , we see that (2.2) holds except for the strict inequality.
However, since uR is a viscosity solution of (2.1), f is locally Lipschitz and f (ρ) = 0, it
is standard by the strong maximum principle that uR < ρ in BR . Observe that the strong
maximum principle also implies that uR > 0 in BR , concluding the proof of the lemma. ��

It is now the turn to remove the extra assumption f (0) ≥ 0. As observed before, without
this hypothesis we can not guarantee the existence of a positive solution. However, it will be
enough for our purposes in the near future to obtain slightly negative solutions. To this aim,
we will redefine the function f for negative values when f (0) < 0. Observe that for small
enough positive δ we have

f (0)

2
δ + F(ρ) > 0. (2.8)

We define the function fδ in [−δ, ρ] by setting

fδ(t) :=
⎧⎨
⎩

f (0)

δ
(t + δ) if t ∈ [−δ, 0),

f (t) if t ∈ [0, ρ].
(2.9)

In the case f (0) ≥ 0, we simply take δ = 0 and f0 = f. We now consider a slight variant
of problem (2.1) with f replaced by fδ and a negative datum outside BR , namely:{

(−�)su = fδ(u) in BR,

u = −δ in R
N\BR .

(2.10)

Note that the function gδ(t) = fδ(t − δ) is locally Lipschitz and satisfies (F) with ρ replaced
by ρ + δ. Hence we can apply Lemma 2.1 to obtain that, for every ε > 0, there exists R0 > 0
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such that for R ≥ R0, problem (2.1) with f replaced by gδ admits a positive viscosity solution
wδ,R ∈ Cs(RN ) verifying

ρ + δ − ε ≤ ‖wδ,R‖L∞(BR) < ρ + δ.

Setting uδ,R = wδ,R − δ, we get the following result:

Lemma 2.2 Assume f is locally Lipschitz in R and ρ > 0 is such that (F) is verified. If
δ > 0 is small enough so that (2.8) holds, then for every ε > 0 there exists a positive number
R0 = R0(ε) such that for R ≥ R0, problem (2.10) admits a viscosity solution uδ,R ∈ Cs(RN ),
verifying uδ,R > −δ in BR and

ρ − ε ≤ ‖uδ,R‖L∞(BR) < ρ.

Wenext observe that, thanks to TheoremA.1 in “Appendix”, whenever a viscosity solution
u of (2.10) exists with the property u ≤ ρ in R

N , then a maximal viscosity solution ũ of
the same problem and with the same property also exists. Here and in what follows, by
‘maximal’ we mean maximal with respect to the supersolution ū = ρ, that is, if v is any
viscosity solution of (2.10) with v ≤ ρ in R

N then we have v ≤ ũ in R
N .

On the other hand, by Theorem 1.1 in [22], every positive solution of (2.1) with f replaced
by gδ is radially symmetric and radially decreasing. Thus we immediately have:

Lemma 2.3 Under the same assumptions as in Lemma 2.2, for every ε > 0 there exists
a positive number R0 = R0(ε) such that for R ≥ R0, problem (2.10) admits a maximal
viscosity solution ũδ,R ∈ Cs(RN ), verifying ũδ,R > −δ in BR and

ρ − ε ≤ ‖ũδ,R‖L∞(BR) < ρ.

Moreover, ũδ,R is radially symmetric and radially decreasing.

Remark 2.1 Let R1 < R2 and denote by ũδ,1, ũδ,2 the maximal viscosity solutions of (2.10)
with R = R1 and R = R2,, respectively. Then w(x) = max{̃uδ,1(x), ũδ,2(x)} is a viscosity
subsolution of (2.10) with R = R2. By Theorem A.1 in the Appendix, there exists a solution
in the ordered interval [w, ρ], and therefore the maximal solution lies in that interval, that is
w ≤ ũδ,2 in BR2 , in fact in R

N . Hence

ũδ,1 ≤ ũδ,2 in R
N .

With a similar argument, and taking into account that fδ is decreasing with respect to δ we
can deduce that, if δ1 < δ2 then

ũ1,R ≥ ũ2,R in R
N

where now ũ1,R and ũ2,R are the maximal viscosity solutions of (2.10) with δ = δ1 and
δ = δ2, respectively.

2.2 Existence of solutions in R+

Next we consider again the one-dimensional problem (P1). The purpose of this subsection
is to obtain the following existence result:

Theorem 2.1 Assume f is locally Lipschitz in R and ρ > 0 is such that f (ρ) = 0 and
(F) is verified. Then problem (P1) admits a maximal viscosity solution u ∈ Cs(R), which is
positive and verifies

‖u‖L∞(R) = ρ.
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In addition, u is strictly increasing for x > 0 and

lim
x→+∞ u(x) = ρ.

The way to achieve existence of solutions of (P1) is to establish it first for a δ−variation
of this problem, that is, {

(−�)su = fδ(u) in R+,

u = 0 in R\R+,
(2.11)

where fδ is given by (2.8), and then pass to the limit as δ → 0+. Let us recall that we take
δ = 0 and fδ = f when f (0) ≥ 0.

Lemma 2.4 With the same assumptions as in Theorem 2.1, there exists a viscosity solution
uδ of (2.11) such that −δ < uδ < ρ in R+ and ‖uδ‖L∞(R) = ρ.

Proof Fix ε > 0. ByLemma 2.3, there exists R > 0 such that problem (2.10)with N = 1 and
BR = (0, 2R) admits a maximal viscosity solution uR which verifies ρ − ε ≤ ‖uR‖L∞(R) <

ρ.
However, it is easily seen that the function uR is a subsolution of problem (2.11). Thus

by Theorem A.2 in “Appendix” (see also Remark A.1), there exists a maximal solution uδ

of (2.11) relative to ρ, which verifies ρ − ε ≤ ‖uδ‖L∞(R) < ρ. Since uδ does not depend on
ε, it immediately follows that

‖uδ‖L∞(R) = ρ.

Finally, since fδ(−δ) = fδ(ρ) = 0 and f is locally Lipschitz, we deduce from the strong
maximum principle that −δ < uδ(x) < ρ in R+. ��
Proof of Theorem 2.1 Remember that, when f (0) ≥ 0 we are simply choosing δ = 0, so
that there exists a solution of (P1) by Lemma 2.4. Therefore, regarding existence, only the
case f (0) < 0 needs to be dealt with.

By the second part of Remark 2.1, we have that if δ1 < δ2 then uδ1 ≥ uδ2 inR. Therefore

v(x) := lim
δ→0+ uδ(x) = sup {uδ(x) : δ > 0} .

Observe that 0 ≤ v ≤ ρ in BR and ‖v‖L∞(R) = ρ. We next prove that v is a solution of (P1).
Choose δn → 0+ and let un = uδn . First, observe that for any n ∈ N

‖un‖L∞(R) ≤ ρ and ‖ fδ(un)‖L∞(R+) ≤ ‖ f ‖L∞(0,ρ).

With the use of standard interior regularity (see for instance Theorem 12.1 in [13]) we can
obtain appropriate interior bounds for the Hölder norms of the solutions. More precisely, for
every b > a > 0 we have

‖un‖Cs [a,b] ≤ C
(‖ fδ(un)‖L∞(R+) + ‖un‖L∞(R)

) ≤ C
(‖ f ‖L∞(0,ρ) + ρ

)
for some positive constantC = C(a, b). Hence, we can conclude that {un}n∈N is an equicon-
tinuous and uniformly bounded sequence. It follows that un → v locally uniformly in R+,
so that v ∈ C(R\{0}) and v = 0 in (−∞, 0). Observe that with this procedure it is not
immediate that v(0) = 0 and v is continuous at zero. However, we can argue as in Theorem
A.2 in the Appendix to obtain that actually v ∈ C(R) and v(0) = 0.
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We can now use Lemma 4.7 in [13], which shows that v is indeed a viscosity solution of
(P1) with 0 ≤ v < ρ. By Theorem A.2 in the Appendix, there exists a maximal viscosity
solution u ∈ C(R) of (P1), which of course verifies 0 ≤ u < ρ and ‖u‖L∞(R) = ρ.

Thus to conclude the proof, only the strict monotonicity of u in R+ remains to be shown,
since it will imply u > 0 in (0,+∞). We mention in passing that the monotonicity of u is a
consequence of Lemma 3.1 below, but we are providing an independent proof of this fact.

Choose λ > 0 and consider the function vδ(x) = uδ(x − λ). It is easily seen that vδ is a
subsolution of (2.11). By Theorem A.2 in the Appendix, there exists a solution wδ of (2.11)
verifying vδ ≤ wδ in R. Arguing exactly as in the first part of the proof, we can show that
wδ → w locally uniformly in (0,+∞), where w ∈ C(R) is a positive viscosity solution of
(P1). It follows that

u(x − λ) ≤ w(x) ≤ u(x) in R,

since u is the maximal solution. This shows that u is monotone. Moreover, arguing as in Step
3 in the proof of Theorem 1 in [3], we can show that u′ > 0 in (0,+∞), so that u is strictly
monotone. The proof is concluded. ��

3 Uniqueness

Our main objective in this section is the uniqueness of positive solutions of the one-
dimensional problem {

(−�)su = f (u) in R+,

u = 0 in R\R+.
(P1)

In the procedure of proving this uniqueness, wewill obtain a nonlocal energy for the problem
which we believe is interesting in its own right, and could be further exploited to analyze
other related one-dimensional problems.

3.1 A nonlocal energy for one-dimensional solutions

The following is the main result of this subsection:

Theorem 3.1 Assume f is locally Lipschitz and let u be a positive bounded solution of (P1).
Then u is strictly monotone in (0,+∞). Moreover, for every a > 0 we have

F(u(a)) −c(1, s)

2

(∫ +∞

−∞
(u(a) − u(y))2

|a − y|1+2s dy − (1 + 2s)
∫ +∞

a

∫ a

−∞
(u(x) − u(y))2

|x − y|2+2s dydx

)
= F(ρ),

where ρ = limx→+∞ u(x). In addition, if �0 is given in (1.5), then

�0 = (2F(ρ))
1
2

�(1 + s)
.

Remark 3.1 It can be seen with a little effort that the energy given by Theorem 3.1 converges,
as s → 1−, to the usual one for the local problem E(x) := u′(x)2/2 + F(u(x)).

The proof of Theorem 3.1 will be split in several lemmas for convenience. We begin
by showing the monotonicity of solutions of (P1). We remark that the main result in [3]
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could be easily modified to include the case N = 1. If we adapted the proof presented
in this work, we notice that the additional hypothesis f ∈ C1, required there to obtain
the monotonicity property of the solutions, will be not needed in the simpler situation of
dimension one. However, we give here an alternative proof that avoids the introduction of
the notation established in [3] regarding Green’s function in half-spaces.

Lemma 3.1 Assume f is locally Lipschitz and let u be a positive bounded solution of (P1).
Then u′ > 0 in (0,+∞).

Sketch of proof The proof follows with the use of the moving planes method. We borrow the
notation from [3], which is for the most part standard. For λ > 0, let

�λ := (0, λ)

xλ := 2λ − x (the reflection of x with respect to the point λ)

wλ(x) = u(xλ) − u(x), x ∈ R

Dλ = {x ∈ �λ : wλ(x) < 0}
vλ = wλχDλ .

Observe that by Lemma 5 in [3] we obtain (−�)svλ ≥ Lvλ in the viscosity sense in Dλ,
while vλ = 0 outside Dλ. Here L stands for the Lipschitz constant of f in the interval
[0, ‖u‖L∞(R)].

As a consequenceof themaximumprinciple in narrowdomains (which follows for instance
from Theorem 2.4 in [27]) we deduce that Dλ = ∅ if λ is small enough. Thus wλ ≥ 0 in �λ

if λ is small. Define

λ∗ = sup{λ > 0 : wλ ≥ 0 in �λ}.
If we assume that λ∗ < +∞, then there exist sequences λn ↓ λ∗ and xn ∈ [0, λn] such that
wλn (xn) < 0. The maximum principle in narrow domains also implies that the points xn can
be chosen indeed in some interval [δ, λ∗ − δ]. Thus we may assume xn → x0 ∈ [δ, λ∗ − δ].

Passing to the limit we see that wλ∗ ≥ 0 in [0, λ∗], with wλ∗(x0) = 0. The strong
maximum principle then gives wλ∗ ≡ 0 in [0, λ∗], that is, u is symmetric with respect to the
point x = λ∗. However, this contradicts Theorem 8 in [3], whose proof can be seen to be
valid when N = 1 as well.

The contradiction shows that λ∗ = +∞, that is, wλ ≥ 0 in [0, λ] for every λ > 0. Thus u
is nondecreasing. Finally, arguing as in Step 3 in the proof of Theorem 1 in [3], we see that
u′ > 0 in (0,+∞), as wanted. ��

Next, we will give the first step in obtaining our energy. The following result is somehow
related to the ones obtained in [30] regarding Pohozaev’s identity for the fractional laplacian.

Lemma 3.2 Let u ∈ C(R) ∩ L∞(R) ∩C1(0,+∞) be such that u′ ∈ L1(b0,+∞) for some
b0 > 0 and ‖u‖C2s+β [b,+∞) is finite for every b > 0 and some β ∈ (0, 1). Then

∫ +∞

a
u′(x)(−�)su(x)dx = − c(1, s)

2

(∫ +∞

−∞
(u(a) − u(y))2

|a − y|1+2s dy

− (1 + 2s)
∫ +∞

a

∫ a

−∞
(u(x) − u(y))2

|x − y|2+2s dydx

) (3.1)

for every a > 0. The first integral above is absolutely convergent. In particular, if u is a
positive bounded solution of (P1) with a locally Lipschitz f then
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F(u(a)) − c(1, s)

2

(∫ +∞

−∞
(u(a) − u(y))2

|a − y|1+2s dy − (1 + 2s)
∫ +∞

a

∫ a

−∞
(u(x) − u(y))2

|x − y|2+2s dydx

)
= F(ρ), (3.2)

for every a > 0, where ρ = limx→+∞ u(x) and F is a primitive of f .

Proof Fix a > 0 and choose δ and M with the restrictions 0 < δ < a and M > a + δ. We
first consider the integral

Iδ,M =
∫ M

a
u′(x)

M∫
−M|y−x |≥δ

u(x) − u(y)

|x − y|1+2s dydx =
∫∫

Aδ,M

u′(x)u(x) − u(y)

|x − y|1+2s dydx, (3.3)

where Aδ,M = ([a, M] × [−M, M]) ∩ {(x, y) ∈ R
2 : |y − x | ≥ δ} (see Fig. 1). It is not

hard to see that

Iδ,M = 1

2

∫∫
Aδ,M

(
(u(x) − u(y))2

)
x

|x − y|1+2s dydx

= 1

2

∫∫
Aδ,M

(
(u(x) − u(y))2

|x − y|1+2s

)
x
dydx+ 1 + 2s

2

∫∫
Aδ,M

(x − y)(u(x) − u(y))2

|x − y|3+2s dydx .

We now split Aδ,M = A1
δ,M ∪ A2

δ,M ∪ A3
δ,M , where

A1
δ,M = {(x, y) ∈ Aδ,M : y ≥ x + δ}

A2
δ,M = {(x, y) ∈ Aδ,M : a ≤ y ≤ x − δ}

A3
δ,M = {(x, y) ∈ Aδ,M : y ≤ a}.

Since the region A1
δ,M is the reflection of A2

δ,M with respect to the line y = x and the integrand
in the last integral above is antisymmetric, we immediately deduce that

Iδ,M = 1

2

∫∫
Aδ,M

(
(u(x) − u(y))2

|x − y|1+2s

)
x
dydx + 1 + 2s

2

∫∫
A3

δ,M

(u(x) − u(y))2

(x − y)2+2s dydx

= 1

2

∮
∂Aδ,M

(u(x) − u(y))2

|x − y|1+2s dy + 1 + 2s

2

∫∫
A3

δ,M

(u(x) − u(y))2

(x − y)2+2s dydx .

Fig. 1 The region Aδ,M and its
subregions
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We have made use of Green’s formula, hence the line integral is to be taken in the positive
sense. Parameterizing the line integral we deduce

Iδ,M = −1

2

M∫
−M|y−a|≥δ

(u(a) − u(y))2

|a − y|1+2s dy + 1

2

∫ M−δ

−M

(u(M) − u(y))2

|M − y|1+2s dy

+ 1

2

∫ M−δ

a

(u(x) − u(x + δ))2

δ1+2s dx − 1

2

∫ M

a

(u(x) − u(x − δ))2

δ1+2s dx

+ 1 + 2s

2

∫∫
A3

δ,M

(u(x) − u(y))2

(x − y)2+2s dydx

= −1

2

M∫
−M|y−a|≥δ

(u(a) − u(y))2

|a − y|1+2s dy + 1

2

∫ M−δ

−M

(u(M) − u(y))2

|M − y|1+2s dy

− 1

2

∫ a

a−δ

(u(x + δ) − u(x))2

δ1+2s dx + 1 + 2s

2

∫∫
A3

δ,M

(u(x) − u(y))2

(x − y)2+2s dydx .

=: I1 + I2 + I3 + I4. (3.4)

The next step is to let M → +∞ in (3.4). Since u is bounded we may easily pass to the
limit in Iδ,M , given in (3.3), I1 and I4 by simply using dominated convergence. As for I2, we
claim that it goes to zero as M → +∞.

To prove this claim, choose M0 > a and let M > M0 + δ. Then we can write, with the
use of the fundamental theorem of calculus and Fubini’s theorem:∫ M−δ

M0

(u(M) − u(y))2

(M − y)1+2s dy ≤ 2‖u‖L∞(R+)

∫ M−δ

M0

|u(M) − u(y)|
(M − y)1+2s dy

≤ 2‖u‖L∞(R+)

∫ M−δ

M0

∫ M

y

|u′(ξ)|
(M − y)1+2s dξdy

≤ 2‖u‖L∞(R+)

∫ M−δ

M0

∫ M

M0

|u′(ξ)|
(M − y)1+2s dξdy

= 2‖u‖L∞(R+)

∫ M

M0

∫ M−δ

M0

|u′(ξ)|
(M − y)1+2s dydξ

≤ ‖u‖L∞(R+)

sδ2s

∫ +∞

M0

|u′(ξ)|dξ.

On the other hand,∫ M0

−M

(u(M) − u(y))2

(M − y)1+2s dy ≤ 4‖u‖2L∞(R+)

∫ M0

−M

dy

(M − y)1+2s dy

= 2

s
‖u‖2L∞(R+)(M − M0)

−2s .

Hence

I2 ≤ ‖u‖L∞(R+)

sδ2s

∫ +∞

M0

|u′(ξ)|dξ + 2

s
‖u‖2L∞(R+)(M − M0)

−2s .
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Letting M → +∞ and then M0 → +∞, we see that the integral goes to zero, as required.
Passing to the limit in (3.4) and using dominated convergence we see that∫ +∞

a
u′(x)

∫
|y−x |≥δ

u(x) − u(y)

|x − y|1+2s dydx = −1

2

∫
|y−a|≥δ

(u(a) − u(y))2

|a − y|1+2s dy

− 1

2

∫ a

a−δ

(u(x + δ) − u(x))2

δ1+2s dx

+ 1 + 2s

2

∫∫
Aδ

(u(x) − u(y))2

(x − y)2+2s dydx, (3.5)

where Aδ = ([a,+∞) × (−∞, a]) ∩ {(x, y) ∈ R
2 : y ≤ x − δ}.

The final step will be to pass to the limit as δ → 0 in (3.5). Observe that, since u ∈
C1(0,+∞), we have for y close to a

(u(a) − u(y))2

|a − y|1+2s ≤ C |a − y|1−2s ∈ L1
loc(R),

so the passing to the limit is justified in the first integral in the right-hand side of (3.5) by
dominated convergence. As for the second integral, we see that, also because of the regularity
of u: ∫ a

a−δ

(u(x + δ) − u(x))2

δ1+2s dx ≤ Cδ2−2s → 0

as δ → 0+. As for the double integral, it also follows that

(u(x) − u(y))2

|x − y|2+2s ≤ C |x − y|−2s ∈ L1
loc(R

2),

for x and y close to a. Therefore, we are allowed to pass to the limit in the right-hand side of
(3.5).

However, the left-hand side of (3.5) has to be treated with a little more care, although in
a standard way. By dominated convergence, it suffices to show that∣∣∣∣

∫
|y−x |≥δ

u(x) − u(y)

|x − y|1+2s dy

∣∣∣∣ ≤ C (3.6)

for some positive constant C and every x > a. First, notice that for δ < a
2 :∫

|y−x |≥δ

u(x) − u(y)

|x − y|1+2s dy = 1

2

∫
|z|≥δ

2u(x) − u(x + z) − u(x − z)

|z|1+2s dz

= 1

2

(∫
δ≤|z|≤ a

2

+
∫

|z|> a
2

)
2u(x) − u(x + z) − u(x − z)

|z|1+2s dz.

The absolute value of the second of these integrals can be estimated by

2‖u‖L∞(R+)

∫
|z|> a

2

dz

|z|1+2s .

To estimate the first integral, we recall our hypothesis that ‖u‖C2s+β [b,+∞) is finite for some
β ∈ (0, 1) and every b > 0. Since x > a, it follows that∫

δ≤|z|≤ a
2

∣∣∣∣2u(x) − u(x + z) − u(x − z)

|z|1+2s

∣∣∣∣ dz ≤ C‖u‖C2s+β [ a2 ,+∞)

∫
|z|≤ a

2

|z|β−1dz,

123



1400 B. Barrios et al.

for some (explicit) C > 0. Thus (3.6) follows.
To summarize, we may pass to the limit as δ → 0+ in (3.5), and (3.1) follows just

multiplying by c(1, s).
To conclude the proof of the lemma, let u be a positive bounded solution of (P1). By

Lemma 3.1, u′ > 0 so that u′ ∈ L1(1,+∞), say. On the other hand, by standard regularity
we obtain that u ∈ C1(0,+∞) and that the C2s+β norm of u in any interval of the form
[b,+∞) is bounded for every β ∈ (0, 1). Thus the first part of the proof applies and we
obtain (3.2) by just noticing that∫ +∞

a
u′(x)(−�)su(x)dx = F(ρ) − F(u(a)),

where ρ = limx→+∞ u(x). ��
Our next result is obtained by letting a → 0+ in (3.2). We use ideas in Theorem 7.5 of

[25].

Lemma 3.3 Let u be a positive bounded solution of (P1). Then

F(ρ) = K(s)�20, (3.7)

where ρ = limx→+∞ u(x), �0 is given in (1.5) and

K(s) = c(1, s)

2

(
− 1

2s
−

∫ 1

−1

((t + 1)s − 1)2

|t |1+2s dt +
∫ +∞

1

t2s − ((t + 1)s − 1)2

t1+2s dt

+(1 + 2s)
∫ +∞

1

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt

)
.

(3.8)

Proof All the integrals in (3.8) can be seen to be convergent (but see the proof of Lemma
3.4 below).

We first remark that, by boundary regularity, the function u(x)
xs is in C1[0,+∞) (cf. The-

orem 7.4, part (iii) in [28]). Thus in particular, the value �0 given in (1.5) is well defined.
Let a > 0. Since u = 0 in (−∞, 0), we can write∫ +∞

−∞
(u(a) − u(y))2

|a − y|1+2s dy =
∫ 0

−∞
u(a)2

|a − y|1+2s dy +
∫ +∞

0

(u(a) − u(y))2

|a − y|1+2s dy

= 1

2s

u(a)2

a2s
+

∫ +∞

−a

(u(a) − u(z + a))2

|z|1+2s dz.

Similarly ∫ +∞

a

∫ a

−∞
(u(x) − u(y))2

|x − y|2+2s dydx = 1

1 + 2s

∫ +∞

a

u(x)2

x1+2s dx

+
∫ +∞

a

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx .

Thus by (3.2) we see that

F(ρ) = F(u(a)) − c(1, s)

4s

u(a)2

a2s
− c(1, s)

2

∫ +∞

−a

(u(a) − u(z + a))2

|z|1+2s dz

+c(1, s)

2

∫ +∞

a

u(x)2

x1+2s dx + c(1, s)(1 + 2s)

2

∫ +∞

a

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx .
(3.9)
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Our intention is to pass to the limit in this equality as a → 0+. For this sake, it is clear that
only the integrals need to be taken into account.

We first claim that

lim
a→0

∫ +∞

a

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx = �20

∫ +∞

1

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt. (3.10)

To prove (3.10), fix η > 0 and take a <
η
2 . Then for x > η and 0 < y < a we have

x − y ≥ x
2 . Therefore∫ +∞

η

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx ≤ 4‖u‖2L∞(R)

∫ +∞

η

∫ a

0

dy

|x − y|2+2s dx

≤ 24+2s‖u‖2L∞(R)a
∫ +∞

η

x−2−2sdx

= 24+2s‖u‖2L∞(R)

1 + 2s
η−1−2sa. (3.11)

To analyze the same integral when x varies in the interval [a, η], observe that the regularity
of u(x)/xs implies

lim
x→0

u′(x)
xs−1 = s�0.

Therefore, if we fix ε > 0, for small enough η we can guarantee that u′(x) ≤ s(�0 + ε)xs−1

if x < η. Hence for y < a < x < η we have

0 < u(x) − u(y) =
∫ x

y
u′(ξ)dξ ≤ (�0 + ε)(xs − ys),

so that ∫ η

a

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx ≤ (�0 + ε)2
∫ η

a

∫ a

0

(xs − ys)2

|x − y|2+2s dydx .

In the last integral, we change variables by x = at , y = aτ and recall (3.11) to obtain, for
some C > 0,∫ +∞

a

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx ≤ Cη−1−2sa + (�0 + ε)2
∫ η

a

1

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt.

Letting a → 0+ and then ε → 0+ we have

lim sup
a→0

∫ +∞

a

∫ a

0

(u(x) − u(y))2

|x − y|2+2s dydx ≤ �20

∫ +∞

1

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt.

The opposite inequality for the inferior limit is shown similarly, and this establishes (3.10).
We finally deal with the remaining two integrals in (3.9). We write

−
∫ +∞

−a

(u(z + a) − u(a))2

|z|1+2s dz+
∫ +∞

a

u(z)2

z1+2s dz = −
∫ a

−a

(u(z + a) − u(a))2

|z|1+2s dz

+
∫ +∞

a

u(z)2 − (u(z + a) − u(a))2

|z|1+2s dz.
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Reasoning exactly as with (3.10) it can be shown that

lim
a→0

∫ a

−a

(u(z + a) − u(a))2

|z|1+2s dz = �20

∫ 1

−1

((t + 1)s − 1)2

|t |1+2s dt.

On the other hand, using the C1 regularity of u(x)/xs up to x = 0 we can ensure that

u(x) = �0x
s + O(xs+1), as x → 0, (3.12)

where O(x) is as usual a function which verifies |O(x)| ≤ Cx for small x and some C > 0.
It follows from (3.12) that for small η > 0, if a < z < η,

(u(z + a) − u(a))2 = �20((z + a)s − as)2 + O(zs+1).

Thus if η > 0 is small enough and a < η:∫ η

a

u(z)2 − (u(z + a) − u(a))2

z1+2s dz = �20

∫ η

a

z2s − ((z + a)s − as)2 + O(zs+1)

z1+2s dz

= �20

∫ η

a

z2s − ((z + a)s − as)2

z1+2s dz +
∫ η

a
O(z−s)dz

= �20

∫ η
a

1

t2s − ((t + 1)s − 1)2

t1+2s dt + O(η1−s).

Moreover, by dominated convergence:

lim
a→0+

∫ +∞

η

u(z)2 − (u(z + a) − u(a))2

z1+2s dz = 0.

Hence we deduce

lim
a→0+

∫ +∞

a

u(z)2 − (u(z + a) − u(a))2

z1+2s dz = �20

∫ +∞

1

t2s − ((t + 1)s − 1)2

t1+2s dt.

Finally, we can pass to the limit in (3.9) to conclude the proof of the lemma. ��
Our last step is to obtain an alternative expression for the constant in (3.7). To do it, we

take advantage of some of the results in [30], complemented with an additional analysis of
the properties of K(s).

Lemma 3.4 For s ∈ (0, 1), we have

K(s) = �(1 + s)2

2
, (3.13)

where K(s) is given in (3.8).

Proof Let us begin by proving (3.13) for s > 1
2 . This will follow by establishing (3.7) for a

particular problem in two different ways. For λ > 0 to be chosen later, consider the problem{
(−�)su = λ(1 − u) in R+,

u = 0 in R\R+.
(3.14)

By Theorem 2.1, problem (3.14) admits a maximal solution relative to u = 1, which will be
denoted by u. The function u is strictly increasing and verifies limx→+∞ u(x) = 1.
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We claim that f (u) := λ(1− u) ∈ L1(0,+∞). To prove this we will construct a suitable
subsolution of (3.14). Choose a nondecreasing function v ∈ C∞(R) verifying

v(x) =
{
0 in (−∞, 0],
1 − x−2s if x ≥ 2.

Then, for x ≥ 4:

(−�)sv(x) = c(1, s)

(∫ 0

−∞
1 − x−2s

|x − y|1+2s dy +
∫ 2

0

(1 − x−2s) − v(y)

|x − y|1+2s dy

−
∫ +∞

2

x−2s − y−2s

|x − y|1+2s dy

)

= c(1, s)x−2s
(

(1 − x−2s)

∫ 0

−∞
dτ

|1 − τ |1+2s +
∫ 2/x

0

(1 − x−2s) − v(τ x)

|1 − τ |1+2s dτ

− x−2s
∫ +∞

2/x

τ−2s − 1

|1 − τ |1+2s dτ

)

≤ c(1, s)x−2s
(∫ 1/2

−∞
dτ

|1 − τ |1+2s − x−2s
∫ +∞

1/2

τ−2s − 1

|1 − τ |1+2s dτ

)
, (3.15)

where we have made the change of variables τ = y/x in the first three integrals above.
Observe that the last integral converges, since it is to be understood in the principal value
sense, as always. It follows from (3.15) that for some C > 0

(−�)sv(x) ≤ Cx−2s, for x ≥ 4.

Since v is a smooth function, the same inequality holds for x ≥ 2, by enlarging the constant
if necessary. Therefore, if λ is large enough, we see that

(−�)sv(x) ≤ λ(1 − v(x)), for x ≥ 2.

On the other hand, the monotonicity of v implies that v is bounded away from 1 in the interval
[0, 2], hence the same inequality can be achieved there by taking a larger value of λ.

Thus we have shown that v is a subsolution of (3.14) if λ is large enough. It follows by
the maximality of u that v ≤ u in R, therefore, if x ≥ 2:

1 − u(x) ≤ 1 − v(x) = x−2s ∈ L1(2,+∞),

since s > 1
2 , which completes the proof of the claim.

We now apply Lemma 3.3 to problem (3.14) to obtain

F(1) = λ

2
= K(s)�20, (3.16)

where �0 = limx→0 u(x)/xs .
On the other hand, we now make the crucial observation that some of the results in

[30] can be applied to solutions u of problems posed in unbounded domains � as long as
f (u) ∈ L1(�), which is precisely the situation in (3.14). More precisely, see the proof of
Proposition 1.6 and (2.7) there. In particular by Theorem 1.9 in [30], we see that

λ

2
= �(1 + s)2

2
�20. (3.17)

Combining (3.16) and (3.17), we see that (3.13) holds for s > 1
2 .
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Unfortunately, this procedure does not seem to be generalized to cover the whole range
s ∈ (0, 1). Indeed, we expect the maximal solution u of (3.14) to behave exactly like 1−x−2s

as x → +∞, so that f (u) /∈ L1(0,+∞) if s ≤ 1
2 .

Therefore we will prove (3.13) by showing that K(s) can be seen as an analytic function
of the complex variable s in the strip 0 < Re(s) < 1. Since it coincides with �(s + 1)2/2
in the real segment ( 12 , 1), the well-known identity principle will imply that both functions
coincide throughout the strip, therefore in the segment (0, 1).

First of all, we write the function K(s) as follows

K(s) = c(1, s)

2

(
− 1

2s
− F1(s) + F2(s) + (1 + 2s)F3(s)

)
, (3.18)

where

F1(s) :=
∫ 1

−1

((t + 1)s − 1)2

|t |1+2s dt

F2(s) :=
∫ +∞

1

t2s − ((t + 1)s − 1)2

t1+2s dt

F3(s) :=
∫ +∞

1

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt.

(3.19)

Therefore, it suffices to verify that F1, F2 and F3 are analytic in the strip 0 < Re(s) < 1.
We will achieve this by showing that each of the integrals in (3.19) converges absolutely and
uniformly in rectangles of the formUσ1,σ2,K = {s ∈ C : σ1 ≤ Re(s) ≤ σ2, −K ≤ Im(s) ≤
K }, where 0 < σ1 < σ2 < 1 and K > 0.

We use the notation s = σ + iω, where σ1 ≤ σ ≤ σ2 and |ω| ≤ K . It is important to stress
that the complex power functions appearing in (3.19) have to be understood in the sense

xs = xσ eiω log x , x ∈ R+.

Thus in particular |xs | = xσ for every x > 0.
We begin with the integral defining F1. It is enough to prove the uniform convergence of

the integral in [− 1
2 , 1]. Observe that, for s ∈ Uσ1,σ2,K , t ∈ [− 1

2 , 1]:
|(t + 1)s − 1|2 = ((t + 1)σ − cos(ω log(t + 1)))2 + sin2(ω log(t + 1))

≤ ((21−σ2σ2 + 2K )2 + K 2)t2 = Ct2.
(3.20)

Therefore∫ 1

− 1
2

∣∣∣∣ ((t + 1)s − 1)2

|t |1+2s

∣∣∣∣ dt =
∫ 1

− 1
2

|(t + 1)s − 1|2
|t |1+2σ dt ≤ C

∫ 1

− 1
2

|t |1−2σ2dt,

which shows the absolute and uniform convergence of the integral, therefore the analyticity
of F1. As for F2, we have

|t2s − ((t + 1)s − 1)2| ≤ |t s − (t + 1)s + 1||t s + (t + 1)s − 1| ≤ |sts−1 − 1|tσ ≤ Ctσ ,

thus ∫ +∞

1

∣∣∣∣ t2s − ((t + 1)s − 1)2

t1+2s

∣∣∣∣ dt ≤ C
∫ +∞

1

dt

t1+σ1
,

which shows that F2 is analytic as well.
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Finally, we consider the integral defining F3. We split it as follows:

∫ +∞

1

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt =
∫ 2

1

∫ 1
2

0

(t s − τ s)2

(t − τ)2+2s dτdt +
∫ 2

1

∫ 1

1
2

(t s − τ s)2

(t − τ)2+2s dτdt

+
∫ +∞

2

∫ 1

0

(t s − τ s)2

(t − τ)2+2s dτdt =: I1(s) + I2(s) + I3(s).

Notice that I1 defines an analytic function since it is a proper integral. Thus we only have
to show the uniform convergence of I2 and I3. Regarding I2, observe that for s ∈ Uσ1,σ2,K ,
t ∈ [1, 2] and τ ∈ [ 12 , 1], we have, reasoning as in (3.20):

|t s − τ s |2 = (tσ − τσ cos(ω(log t − log τ)))2 + sin2(ω(log t − log τ))

≤ C(t − τ)2τσ−2 ≤ C(t − τ)2,

for some C > 0. Therefore:∫ 2

1

∫ 1

1
2

∣∣∣∣ (t s − τ s)2

(t − τ)2+2s

∣∣∣∣ dτdt ≤ C
∫ 2

1

∫ 1

1
2

dτ

(t − τ)2σ
dt ≤ C

∫ 2

1

∫ 1

1
2

dτ

(t − τ)2σ1
dt.

Finally, for the remaining integral I3 we have∫ +∞

2

∫ 1

0

∣∣∣∣ (t s − τ s)2

(t − τ)2+2s

∣∣∣∣ dτdt ≤
∫ +∞

2

∫ 1

0

(tσ + τσ )2

(t − τ)2+2σ dτdt

≤
∫ +∞

2

(tσ + 1)2

(t − 1)2+2σ dt ≤ 36
∫ +∞

2

dt

t2
,

thereby showing the analyticity of F3. To summarize, we have shown that F1, F2 and F3
define analytic functions in the strip 0 < Re(s) < 1. As we have already remarked, this
concludes the proof of (3.13). ��
Proof of Theorem 3.1 It is immediate taking into account Lemmas 3.1, 3.2, 3.3 and 3.4. ��
3.2 Uniqueness of one-dimensional solutions

We finally come to the principal result of this section which is the uniqueness of positive
solutions of (P1).

Theorem 3.2 Assume f is locally Lipschitz and ρ > 0 is such that f (ρ) = 0 and (F) holds.
Then the problem {

(−�)su = f (u) in R+,

u = 0 in R\R+,
(P1)

admits at most a positive solution u verifying

‖u‖L∞(R) = ρ, (3.21)

that we will denote by uρ .

Proof Let u be a positive solution of (P1) verifying (3.21) and denote by ũ the maximal
solution relative to ρ given by Theorem 2.1. Then u ≤ ũ in R. Since (−�)s (̃u − u) ≥
−L (̃u − u) in (0,+∞), where L is the Lipschitz constant of f , we deduce by the strong
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maximum principle that either u ≡ ũ in R or u < ũ in (0,+∞). Let us rule out the second
possibility.

Indeed, assume u < ũ in (0,+∞). By Hopf’s lemma (see Lemma 1.2 in [24]) we have

lim
x→0+

ũ(x) − u(x)

xs
> 0. (3.22)

On the other hand, we may apply Theorem 3.1 to have

lim
x→0+

u(x)

xs
= (2F(ρ))

1
2

�(1 + s)
, (3.23)

and the same equality holds for ũ. Hence we deduce

lim
x→0+

ũ(x) − u(x)

xs
= 0,

which is a contradiction with (3.22).
Thus we necessarily have u ≡ ũ in R, thereby showing that the maximal solution is the

only one verifying (3.21). The proof is concluded. ��

4 Proof of the main results

This section is dedicated to prove the main results in the paper. We begin with the proof of
the features of problem (P1).

Proof of Theorem 1.1 Let ρ > 0 such that f (ρ) = 0 and (F) is satisfied. By Theorem 2.1,
there exists a positive solution uρ of (P1) verifying ‖uρ‖L∞(R) = ρ. Moreover, by Theorem
3.2, this is the only solution with this property, and uρ is strictly increasing and verifies (1.6).

Thus to conclude the proof, we need to show that, given any bounded, positive solution u
of (P1) and setting ρ = ‖u‖L∞(R) we necessarily have f (ρ) = 0 and f verifies (F).

To show the first assertion, consider the functions

un(x) = u(x + n), x ∈ R.

It is clear that un is a solution of (P1) but posed in the interval (−n,+∞). Since the sequence
{un} is uniformly bounded, we can use interior regularity as in the proof of Theorem 2.1 to
obtain local Cα bounds, which permit to conclude that, passing to a subsequence, un → v

locally uniformly, where v is a viscosity solution of

(−�)sv = f (v) in R.

On the other hand, by Lemma 3.1, the function u is monotone. It follows that v ≡ ρ in R,
and therefore f (ρ) = 0.

Finally, let us show that F(s) < F(ρ) for s ∈ [0, ρ), and the proof of the theorem will be
concluded. Suppose this is not true. Then there exists a first point ρ0 ∈ (0, ρ) such that

F(ρ0) = max
t∈[0,ρ] F(t).

Thus, in particular, f (ρ0) = 0 and (F) holds with ρ0 in place of ρ. By Theorem 2.1, we get
a positive solution v of (P1) which is increasing and verifies ‖v‖L∞(R) = ρ0.

Now we use Theorem A.2 and Remark A.1 in the Appendix with v as a subsolution and
ρ as a supersolution and obtain a positive solution w verifying v ≤ w ≤ ρ in R, which is
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maximal relative to ρ, and verifies in particular limx→+∞ w(x) = ρ. Using the Lipschitz
condition on f we have

(−�)s(w − v) ≥ −L(w − v) in R+,

for some L > 0. By Hopf’s Lemma:

lim
x→0+

w(x) − v(x)

xs
> 0.

But, on the other hand, by Theorem 3.1

lim
x→0+

w(x) − v(x)

xs
=

√
2

�(1 + s)

(
F(ρ)

1
2 − F(ρ0)

1
2

)
≤ 0,

which is a contradiction. The claim follows. ��
Proof of Proposition 1.1 The proof of this result is a consequence of a more general fact: if
v is a function defined in R and vanishing in R\R+ and we set u(x) = v(xN ) for x ∈ R

N ,
then

(−�)su(x) = (−�)sv(xN ) in R
N , (4.1)

where the first s−laplacian is meant to be in R
N and the second one in R. A similar result

for fully nonlinear integro-differential operators can be found in Lemma 2.1 of [31].
To prove (4.1), we observe that by its very definition and Fubini’s theorem, we have for

x ∈ R
N :

(−�)su(x) = c(N , s)
∫
RN

v(xN ) − v(yN )

|x − y|N+2s dy

= c(N , s)
∫ +∞

−∞
(v(xN ) − v(yN ))

∫
RN−1

dy′

(|x ′ − y′|2 + (xN − yN )2)
N+2s
2

dyN

= c(N , s)
∫
RN−1

dz′

(|z′|2 + 1)
N+2s
2

∫ +∞

−∞
v(xN ) − v(yN )

|xN − yN |1+2s dyN ,

where we have performed the change of variables y′ = x ′ + |xN − yN |z′ in the integral taken
in R

N−1 in the second line above. Thus the proof of the theorem reduces to show that

c(N , s)
∫
RN−1

dz′

(|z′|2 + 1)
N+2s
2

= c(1, s). (4.2)

With regard to the integral in (4.2), we have∫
RN−1

dz′

(|z′|2 + 1)
N+2s
2

= (N − 1)ωN−1

∫ +∞

0

r N−2

(r2 + 1)
N+2s
2

dr,

where we denote as usual by ωN−1 the measure of the unit ball in RN−1. In the last integral
obtained, we perform the change of variables r = tan t to obtain∫

RN−1

dz′

(|z′|2 + 1)
N+2s
2

= (N − 1)ωN−1

∫ π
2

0
(sin t)N−2(cos t)2sdt

= (N − 1)ωN−1

2
B

(
N − 1

2
, s + 1

2

)

= (N − 1)ωN−1

2

�
( N−1

2

)
�

(
s + 1

2

)
�

(
s + N

2

) ,
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where B(x, y) is the Beta function. Next, we use a well-known expression for ωN−1 (cf. for
instance page 9 in [23]) to obtain that

∫
RN−1

dz′

(|z′|2 + 1)
N+2s
2

= π
N−1
2 �

(
s + 1

2

)
�

(
s + N

2

) . (4.3)

Finally, with the use of (1.2) and (4.3) we see that

c(N , s)
∫
RN−1

dz′

(|z′|2 + 1)
N+2s
2

= 4ss(1 − s)
π− 1

2 �
(
s + 1

2

)
�(2 − s)

= c(1, s),

as was to be shown. This concludes the proof of the theorem. ��
Proof of Theorem 1.2 Since we have proved the uniqueness of solutions of (P1) with the
same supremum ρ (see Theorem 1.1) the proof of Theorem 1.2 will follow by showing the
existence of two one-dimensional solutions u, u of (PN ) verifying u ≤ u ≤ u in R

N and

lim
xN→+∞ u(x) = lim

xN→+∞ u(x) = ρ.

Step 1. There exists a one-dimensional solution u of (PN ) with u ≤ u ≤ ρ.
Indeed, let u be the maximal solution of (PN ) relative to ρ given by Theorem A.2 in the

Appendix. Then by maximality it is clear that u is one dimensional and u ≤ u ≤ ρ.
Observe that this implies that f verifies (F) by Theorem 1.1.

Step 2. For every R > 0 and every ε > 0 small enough, there exists x0 ∈ R
N+ such that

BR(x0) ⊂⊂ R
N+ and u ≥ ρ − ε in BR(x0).

To prove this assertion take {xn}n∈N ⊂ R
N+ such that u(xn) → ρ as n → +∞. We

claim that xn,N → +∞ (observe that if f ∈ C1(R), this would follow at once from the
monotonicity of u in the xN direction given by Theorem 1 in [3]).

Arguing as in the proof of Theorem A.2 in the Appendix, we obtain that

u(x) ≤ Aϕ(x) in {x ∈ R
N+ : 0 < xN < 1}, (4.4)

where A > 0 and ϕ is given by (A.3). Since ϕ = 0 on ∂RN+ , this actually shows that xn,N is
bounded away from zero, so extracting a subsequence we may assume that either xn,N → μ

for some μ > 0 or xn,N → +∞. Define

un(x) = u(x + xn) x ∈ R
N .

Proceeding as in previous situations, we obtain that, passing to a subsequence un → v locally
uniformly in R

N , where v is a solution of

(−�)sv = f (v) in D.

Here D = {x ∈ R
N : xn,N > −μ} in case xn,N → μ or D = R

N when xn,N → +∞. In
either case, and using that f (ρ) = 0 and the Lipschitz condition on f , the strong maximum
principle implies v ≡ ρ. However, from (4.4) we have in the former case

v(x) ≤ Aϕ(x + μeN ) in {x ∈ R
N+ : −μ < xN < 0}

which would yield that v vanishes on ∂D, impossible. Hence the latter possibility holds and
this shows xn,N → +∞ and u(x + xn) → ρ locally uniformly in R

N .
Finally, let ε > 0 and R > 0 be arbitrary. We have u(x + xn) ≥ ρ − ε in BR if n is larger

than some n0 = n0(ε, R). Then u(x) ≥ ρ − ε in BR(xn) for those values of n, as was to be
shown.
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Step 3. For every η > 0, there exists c(η) > 0 such that

u(x) ≥ c(η) when xN ≥ η. (4.5)

Indeed, let ε > 0. When f (0) < 0, choose a small positive δ such that (2.9) is verified,
otherwise set δ = 0. Recall that by Step 1 f verifies (F). Thus we may apply Lemma 2.3:
there exists R0 = R0(ε, δ) such that the maximal solution uR0,δ of (2.10) verifies

‖uR0,δ‖L∞(BR0 ) = ρ − ε. (4.6)

Let x0 ∈ R
N+ be given in Step 2 above, for these particular values of ε and R0. Then by (4.6)

uR0,δ(z − x0) ≤ u(z), z ∈ BR0(x0).

Since u ≥ 0 in R
N and uR0,δ(· − x0) = −δ ≤ 0 outside BR0(x0), we also have

uR0,δ(z − x0) ≤ u(z), z ∈ R
N . (4.7)

On the other hand, recall that by Lemma 2.3, uR0,δ is radially symmetric and radially decreas-
ing. Hence there exists R1 ∈ (0, R0] such that the set of points where uR0,δ > 0 is precisely
BR1 . Denote �R1 := {x ∈ R

N : xN > R1}, and consider the set
�R1 :=

{
x ∈ �R1 : uR0,δ(z − x) < u(z), z ∈ R

N+
}

.

It follows by (4.7) and the strong maximum principle that x0 ∈ �R1 , hence this set is
nonempty. We now claim that �R1 is both open and closed relative to �R1 , therefore

�R1 = �R1 . (4.8)

Indeed it is clear from the continuity of all functions involved that �R1 is open. As for the
closedness, if {ξn} ⊂ �R1 verifies ξn → ξ ∈ �R1 , then uR0,δ(z − ξn) ≤ u(z) in RN , and by
the strong maximum principle and the positivity of u, this inequality is strict in R

N+ , hence
ξ ∈ �R1 . We deduce that (4.7) holds for every x with xN ≥ R1.

Finally, let η > 0 and take 0 < ε < min{η, R1} fixed but arbitrary. If z ∈ R
N+ is such

that zN ≥ η, it easily follows that z ∈ BR1−ε(xz), where xz := (z′, R1 + zN − ε) ∈ �R1 .
Therefore, by (4.7), we see that

u(z) ≥ c(η) := inf
{
uR0,δ(x) : x ∈ BR1−ε

}
> 0,

which concludes the proof of Step 3.
Step 4. For every M > 2R0 and ν < M − 2R0, there exists a maximal solution uν,M of the
problem {

(−�)su = f (u) in �ν,M := {x ∈ R
N : ν < xN < M},

u = 0 in R
N\�ν,M ,

(4.9)

relative to u, which only depends on xN and verifies ‖uν,M‖L∞(RN ) ≥ ρ − ε.

Consider the maximal solution ũ R0,δ of problem (2.10). If we choose, say, x0 = (0, M
2 ),

then the function ũ R0,δ(x − x0) is a subsolution of{
(−�)su = fδ(u) in �ν,M := {x ∈ R

N : ν < xN < M},
u = 0 in R

N\�ν,M ,
(4.10)

while u is a supersolution, and they are ordered because of Step 3. The existence of amaximal
solution uν,M,δ of (4.10) relative to u then follows directly by Theorem A.2 in the Appendix
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(cf. also Remark A.1). It is clear that ‖uν,M,δ‖L∞(RN ) ≥ ρ − ε. Proceeding as in the proof of
Theorem 2.1, passing to the limit when δ → 0+, we get the existence of a maximal solution
uν,M of (4.9).

Thus only the one-dimensional symmetry of uν,M remains to be shown. For this aim we
will first show that for every unitary vector θ ∈ R

N−1 and λ > 0

uν,M (x ′ + λθ, xN ) ≤ u(x) x ∈ R
N . (4.11)

The proof of this statement is a consequence again of the slidingmethod. However, we should
warn that it is not completely standard since now we are sliding with solutions which do not
have a compact support as in most previous situations (see for instance [8]).

Fix a unitary vector θ ∈ R
N−1. We will see that (4.11) holds for small λ. If it were not

true, then there would exist sequences λn → 0+ and {xn}n∈N ⊆ �ν,M such that

uν,M (x ′
n + λnθ, xn,N ) ≥ u(xn) n ∈ N. (4.12)

We may assume with no loss of generality that x0,N → x0 ∈ [ν, M]. If we now define the
translated functions

uν,M,n(x) := uν,M (x ′ + x ′
n, xN ), un(x) := u(x ′ + x ′

n, xN ), x ∈ R
N ,

we can proceed similarly as in previous situations to obtain that, up to extraction of a sub-
sequence, uν,M,n → Uν,M and un → U uniformly on compact sets of RN as n → +∞
whereUν,M andU are solutions of (4.9) and (PN ), respectively. On the other hand since, by
construction, uν,M (x) ≤ u(x), for any x ∈ R

N , we have

Uν,M (x) ≤ U (x) x ∈ R
N .

Then, by (4.12) we deduce

Uν,M (0, x0) = U (0, x0). (4.13)

Observe that, by (4.5), we have

U ≥ c(ν) > 0 on ∂�ν,M while Uν,M = 0 there. (4.14)

Therefore (0, x0) ∈ �ν,M and by (4.13) and the strong maximum principle, we can conclude
that Uν,M = U in R

N . However, this is impossible by (4.14). Therefore (4.11) is true for
small enough λ > 0.

Next, define

λ∗ := sup{μ > 0 : (4.11) holds for every λ ∈ (0, μ)},
and assume λ∗ < +∞. By continuity we have uν,M (x ′ + λ∗θ, xN ) ≤ u(x) for any x ∈ R

N ,
and we reach a contradiction arguing exactly as before. The contradiction shows that λ∗ =
+∞, that is, (4.11) holds for every λ > 0 and every unitary θ ∈ R

N−1.
Finally, since uν,M (x ′ + λ∗θ, xN ) is a solution of problem (4.9) which lies below u, we

see by maximality that

uν,M (x ′ + λ∗θ, xN ) ≤ uν,M (x) x ∈ R
N .

Since λ > 0 and θ ∈ R
N−1 are arbitrary, this shows that uν,M depends only on xN .

Step 5. There exists a one-dimensional solution u of (PN ) verifying ‖u‖L∞(RN ) = ρ and
u ≤ u in R

N .
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By a similar argument as in Remark 2.1, we see that uν,M is decreasing in ν and increasing
in M . Proceeding as in the proof of Theorem 2.1, we see that

uε(x) := lim
ν→0

lim
M→+∞ uν,M (xN ), x ∈ R

N

is a nonnegative one-dimensional solution of (PN ), which verifies uε ≤ u in R
N and

‖uε‖L∞(RN ) ≥ ρ − ε. Moreover, it can be checked that uε is increasing in ε as ε → 0+.
Therefore

u := lim
ε→0+ uε(x), x ∈ R

N

is a nonnegative one-dimensional solution of (PN ), which verifies u ≤ u in R
N and

‖u‖L∞(RN ) = ρ.
Completion of the proof. By Theorem 1.1, we have that u = u = uρ . Then by Theorem 1.1
and Proposition 1.1 u coincides with uρ . ��
Proof of Theorem 1.3 The first step is to show that ‖u‖L∞(RN ) ≤ ρ. Assume on the contrary
that the set D := {x ∈ R

N+ : u(x) > ρ} is nonempty. Then the function v = ρ − u verifies{
(−�)sv = − f (u) ≥ 0 in D,

v ≥ 0 in R
N\D.

We can use Lemma 4 in [3] to deduce that v ≥ 0 in D, that is u ≤ ρ in D, which is
a contradiction (notice that the requirement in [3] that D is connected, which we can not
ensure in our situation, is not really necessary). The contradiction shows that u ≤ ρ.

The rest of the proof is entirely similar to that of Theorem 1.2. Indeed, the existence of a
one-dimensional solution u of (PN ) verifying u ≤ u in R

N follows exactly the same way.
As for the existence of a one-dimensional solution u of (PN ) verifying u ≤ u in R

N , we
notice that Step 2 is no longer needed and Step 3 can be directly proved with the use of the
sliding method, as in [7,36]. Indeed we claim that for every η > 0 there exists c(η) > 0 such
that

u(x) ≥ c(η) if xN ≥ η. (4.15)

To see this, we use hypothesis (1.8): there exist c, ν > 0 such that f (t) ≥ ct if t ∈ [0, ν].
Choose R > 0 so that the first eigenvalue of (−�)s in BR verifies λ1(BR) ≤ c, and let φ be
an associated positive eigenfunction normalized by ‖φ‖L∞(BR) = 1. Then it is clear that for
every x0 such that x0,N > R the function

u(x) = δφ(x − x0), x ∈ R
N ,

is a subsolution of (PN ) when 0 < δ ≤ ν. Moreover, if we fix such an x0 it is possible to
choose a small enough δ to have in addition u ≤ u in RN . Indeed, this inequality is trivially
satisfied outside BR(x0), while in BR(x0) the inequality is also true for small δ because u is
bounded away from zero there.

We can now ‘slide’ the ball around R
N+ just like in Step 3 in the proof of Theorem 1.2 to

obtain (4.15). Arguing as in Step 4 there, we can now construct a one-dimensional solution
u of (PN ) verifying u ≤ u in R

N . Finally, observe that by Theorem 1.1, problem (PN )
admits a unique one-dimensional solution given by uρ . Therefore, u = uρ , as we wanted
to show. ��

The proof of our last result is just a direct consequence of Theorem 1.3.
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Proof of Corollary 1 Assume there exists a positive bounded solution of (PN ) and let ρ0 :=
‖u‖L∞(RN ). We choose ρ > ρ0 and modify f in the interval (ρ0, ρ) in such a way that f
remains positive in (0, ρ) and f (ρ) = 0. It is clear that (F) is verified for the value of ρ

so chosen. Hence, by Theorem 1.3, problem (PN ) admits a unique solution v which is one
dimensional and verifies

lim
x→+∞ v(x) = ρ.

By uniqueness, we should have u ≡ v inRN , but this is impossible as ‖u‖L∞(RN ) = ρ0 < ρ.
This contradiction shows that problem (PN ) does not admit any positive bounded solution,
as we wanted to show. ��
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5 Appendix A. A solution between a sub- and a supersolution

In this Appendix, we collect a couple of results which deal with the existence of maximal
solutions for some problems related to the ones considered in the paper. To begin with, let �
be a bounded domain and f : � × R → R be a continuous function. We consider{

(−�)su = f (x, u) in �,

u = g in R
N\�,

(A.1)

where g ∈ C(RN ).
For convenience, we only deal in this Appendix with subsolutions, supersolutions and

solutions in the viscosity sense. In some cases, however, it is known that with some require-
ments on f and g the concepts of viscosity and classical solutions of (A.1) coincide (see
[13,14,35]).

We say that a function u ∈ C(RN ) is a viscosity subsolution of (A.1) if u ≤ g in R
N\�

and verifies the following: for any x0 ∈ � and any function φ which is C2 in a neighborhood
U of x0 and such that u(x0) = φ(x0) and u ≤ φ in U we have (−�)sv(x0) ≤ f (x0, v(x0)),
where

v(x) :=
{

φ(x) if x ∈ U,

u(x) if x ∈ R
N\U.

Supersolutions are defined by reversing the above inequalities. A function u is a viscosity
solution of (A.1) it is both a viscosity sub- and supersolution of (A.1).We remark that the con-
tinuity assumption on both the sub and supersolution can be relaxed to an appropriate lower
semicontinuity, but we are only interested in this work in continuous sub- and supersolutions.

The existence of a solution between a sub- and a supersolution is well known in several
instances, mainly when an iteration procedure is available. However, that a maximal solution
can be obtained in general is perhaps less known, so we will include a sketch of the main
proofs. Given a viscosity supersolution u we say that u is the maximal solution relative to u
if for every other viscosity solution v of (A.1) verifying v ≤ u in RN we have v ≤ u in RN .

Then we have:
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Theorem A.1 Let� be a bounded Lipschitz domain satisfying the exterior sphere condition.
Assume f : �×R → R is continuous and that g ∈ C(RN )∩L∞(RN ). If there exist viscosity
sub- and supersolution u, u ∈ C(RN ) ∩ L∞(RN ) of (A.1) with u ≤ u in R

N , then there
exists a maximal viscosity solution ũ of (A.1) relative to u.

Sketch of proof Let us begin by observing that the problem can be reduced to g = 0: if
w is the unique s−harmonic function in � which coincides with g outside � and we let
v = u − w, then v is a solution of (A.1) with right-hand side h(x, v) = f (x, v + w(x)) and
vanishing outside �. Thus, we may assume in what follows that g = 0.

The existence of a solution in the interval [u, u] follows exactly as in Theorem1 in [16] (we
notice that only regularity theory and the maximum principle are needed; see also [1]). Thus
we only show the existence of a maximal solution in this interval. We define the nonempty
set

F :=
{
u ∈ C(RN ) : u is a viscosity solution of (A.1) such that u ≤ u ≤ u in R

N
}

and

ũ(x) := sup{u(x) : u ∈ F}.
We observe that for every u ∈ F we have ‖u‖L∞(RN ) ≤ C , ‖ f (·, u)‖L∞(�) ≤ C , for some
positive constant C which does not depend on u. Thus by regularity theory (cf. for instance
Proposition 1.1 in [29]), we obtain

‖u‖Cs (�) ≤ C.

This means that the setF is equicontinuous, thus ũ is continuous inRN and vanishes outside
�. Moreover, it is well known that ũ is a subsolution of (A.1) in the viscosity sense.

Thus there exists a solution of (A.1) in the interval [̃u, u]. By its very definition it follows
that this solution is indeed ũ, which is clearly the maximal solution in the interval [u, u].
Let us mention in passing that the existence of the maximal solution could also be shown by
following the approach in [26].

We finally show that the maximal solution ũ just obtained does not depend on u. Indeed,
assume u1 and u2 are subsolutions of (A.1) which lie below the supersolution u in R

N . Let
ũi be the maximal solution in the interval [ui , u], i = 1, 2 and set u+ = max{̃u1, ũ2}. Then
u+ is a subsolution of (A.1) below u. Thus there exists a solution w verifying u+ ≤ w ≤ u
in R

N . In particular ui ≤ ũi ≤ w ≤ u in R
N , i = 1, 2 and by maximality of ũi we deduce

ũ1 = ũ2 = w in R
N . ��

Theorem A.1 can be generalized to deal with unbounded domains �. Only some minor
points in the proof above need to be especially treated. For simplicity, we will restrict our
attention next to the case � = R

N+ and f not depending on x , which is the main concern in
this paper: {

(−�)su = f (u) in R
N+ ,

u = 0 in R
N\RN+ .

(A.2)

We have also set g = 0. In this context, we have a result which is completely analogue to
Theorem A.1.

Theorem A.2 Assume f : R → R is continuous and there exist viscosity sub- and super-
solution u, u ∈ C(RN ) ∩ L∞(RN ) of (A.2) with u ≤ u in R

N . Then there exists a maximal
viscosity solution of (A.2) relative to u.
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Sketch of proof First of all we truncate f outside [inf u, sup u] to make it bounded. Let ϕ be
the solution of the one-dimensional problem⎧⎪⎨

⎪⎩
(−�)sϕ = 1 in (0, 1),

ϕ = 0 in (−∞, 0),

ϕ = 1 in (1,+∞).

(A.3)

Then ϕ solves the same problem in �1 = {x ∈ R
N+ : 0 < xN < 1} (cf. the proof

of Proposition 1.1 in Sect. 4). We notice that for large enough c > 0 the function −cϕ
(resp. cϕ) is a subsolution (resp. supersolution) of (A.2). Therefore v := max {u,−cϕ} and
v := min {u, cϕ} are well ordered sub- and supersolution of A.2 satisfying v = v = 0 in
R

N\RN+ .
We choose now any smooth function w defined in R

N and verifying w = 0 in R
N\RN+ ,

v ≤ w ≤ v in R
N . For R > 0, let B+

R = {x ∈ R
N+ : |x | < R} and consider the problem{

(−�)su = f (x, u) in B+
R ,

u = w in R
N\B+

R .
(A.4)

By Theorem A.1, there exists a solution uR of (A.4) verifying v ≤ uR ≤ v inRN . Moreover,
the family {uR}R>0 is uniformly bounded and by standard interior regularity we also have

‖uR‖Cs (K ) ≤ C,

for every compact set K ⊂ R
N+ . Thus {uR}R>0 is also equicontinuous and we can select

a sequence Rn → +∞ such that uRn → v locally uniformly in R
N+ for some function

v ∈ C(RN ) which verifies v ≤ v ≤ v in R
N , therefore vanishes in RN\RN+ .

Passing to the limit in (A.4),we obtain that v is a solution of (A.2)which verifies u ≤ v ≤ u
in R

N . The existence of a maximal solution relative to u is shown exactly as in the proof of
Theorem A.1, with the only prevention that the barrier ϕ constructed above has to be used
instead of the boundary regularity for bounded domains. ��
Remark A.1 (a) Of course the same result is true when N = 1, in particular for problem

(P1).
(b) With aminor variation in the proof of TheoremA.2 it can be seen that the same statements

hold when problem (A.2) is posed in a strip �ν,M := {x ∈ R
N : ν < xN < M}, where

M > ν > 0.
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