
Editorial

Celebrating the ecosystem’s
three-quarter century:
Introduction to a Virtual
Special Issue on Sir Arthur
Tansley’s ecosystem concept

Ecosystem ecology has played a central role in our under-
standing of the natural world, and the importance of plants
as the organisms that define the amount and flow of energy
entering the ecosystem demonstrates the essential role of
plant science in our understanding of how ecosystems func-
tion. New Phytologist has a tradition of publishing original
research papers and reviews focused on the interface
between plant and ecosystem science. But there is an
additional reason for the collection in this Virtual Special
Issue (www.newphytologist.com/virtualissues), which is the
commemoration of the publication of a seminal paper by
Sir Arthur Tansley (1935) (the founding Editor of New
Phytologist and after whom the Tansley Reviews are named),
which was fundamental in establishing the ecosystem
concept in biological studies. And so, three quarters of a
century on we celebrate the ecosystem concept, with a series
of New Phytologist publications that span the range from the
gene to the globe, from the tropics to the tundra, with an
eye on the visionary influence of Sir Arthur Tansley on
modern ecosystem science.

Kicking off the Virtual Special Issue is a recently pub-
lished Tansley Review by William Currie of the University
of Michigan, which sheds light on the history and current
use of the ecosystem concept, tracing the origin in Sir
Arthur Tansley’s paper (1935) to the present, with a special
emphasis on how the ecosystem has served as a central orga-
nizational concept for ecology and plant science in the last
75 yr (Currie, 2011). In addition, we have collected a
number of examples of the ecosystem concept at work,
demonstrating the explosion of research that has not only
become relevant for large-scale ecological studies, but in a
realm of other disciplines, including genetics, plant–
organism interactions, and evolutionary biology. It is clear

that the usefulness of the ecosystem concept continues,
becoming even more relevant as we try to understand
human impact in the twenty-first century.

Global change and ecosystem ecology

It is possible that Sir Arthur Tansley might not have imag-
ined the importance of ecosystem science for the important
challenge facing humankind – the impact of human activities
on the biosphere. Global climate change is now an accepted
phenomenon by the vast majority of the scientific commu-
nity (IPCC 2007), and the wide-ranging consequences of
climate and land-use change are being documented in bio-
mes around the world using the tools of ecosystem ecology.
As Currie (2011) correctly highlights, ‘Ecosystem science
has become an important applied science for studying global
change and human environmental impacts’. Studies with
small-scale manipulations of multiple global change factors
have been especially relevant for identifying interactions
among global change factors. The effects of elevated CO2 are
important in determining the strength of biotic interactions
for a plant–endophyte symbiosis in a temperate grassland
ecosystem (Brosi et al., 2011), whereas counteractive effects
of elevated CO2 decreasing nitrogen (N) availability with
warming increasing N turnover (Dijkstra et al., 2010)
highlights the complexities of multiple global change inter-
actions. Observational studies in areas where climate change
has already been observed are providing important insights
into the importance of extreme climatic events such as heat
waves, which overwhelm the effects of nutrient addition
(Gerdol et al., 2008), and shrub expansion in the Arctic due
to changes in snow cover (Hallinger et al., 2011). The latter
study sparked a productive debate on the interpretation of
trends observed in an already changing planet (Büntgen &
Schweingruber, 2010; Hallinger & Wilmking, 2011), and
underscores the need for more research to try and identify the
relative importance of multiple simultaneous global changes.
An innovative study by Högberg et al. (2011) examined
what happens to heavily impacted forest ecosystems after the
cessation of N deposition. They demonstrated that while this
ecosystem appears to be very sensitive to changes in N avail-
ability due to human impact, it also shows high potential
resilience, mediated through the recovery of the functioning
of the ectomycorrhizas. Finally, plant invasions of nonnative
species have demonstrated multiple effects on community
composition, but a recent meta-analysis has demonstrated
that ecosystem-scale alterations in carbon (C) and N cycling
can also occur (Liao et al., 2008). These invasive plant
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species often come with their symbionts in tow, an aspect of
invasion ecology whose impacts are not well understood, but
appear to be wide-ranging for ectomycorrhizal introductions
(Vellinga et al., 2009).

Plants and biogeochemistry

The connection between plant traits and ecosystem pro-
cesses, particularly biogeochemical cycles, has been a
particular focus of recent research in ecosystem ecology.
Reflecting on the fundamental importance of the evolution
of lignin biosynthesis in terrestrial plants (Weng &
Chapple, 2010), it seems clear that the diversity of plant
traits in terrestrial ecosystems, and their interaction with
environmental controls can have important impacts on C
and nutrient cycling. For example, it has been shown that
leaf surfaces emit methane in living plants due to the absorp-
tion of ultraviolet radiation by plant pectins (Keppler et al.,
2006; McLeod et al., 2008), although it was recently deter-
mined that these emissions, while locally important, may
not be significant at the global scale (Bloom et al., 2010).
The effects of plant traits on biogeochemical cycles go far
beyond the living plant, however, with consequences for lit-
ter decomposition and C turnover after plant senescence.
Inhibitory effects of plant litter can have repercussions on C
turnover as Bonanomi et al. (2011) demonstrated with an
elegant experiment in which phytotoxicity, rather than
microbial immobilization of nutrients, explains reductions
in plant litter turnover. In tropical ecosystems, these rela-
tionships are particularly significant, as the importance of
plant assemblies and their chemical characteristics are
notoriously diverse. Asner & Martin (2011), using sophis-
ticated remote sensing techniques, demonstrated a wide
range of variation in chemical and spectral assemblies in
tropical forests, and the importance of soil fertility in deter-
mining these plant responses. In addition, a recent review by
Hättenschwiler et al. (2011) reminds us that the impact of
plant species on litter decomposition in tropical ecosystems
due to variation in lignin and other C components is a criti-
cal determinant for C turnover, but not a simple legacy of
living plant traits. These connections between plant traits
and C cycling extends to even larger scales, as plant diversity
itself, rather than the individual traits of plant species, dem-
onstrated in a study where diverse plant communities, but
not single-species plantations could be used as a predictor of
C stocks in tropical forest ecosystems (Ruiz-Jaen & Potvin,
2011).

Genetic convergence: new tools for
understanding ecosystems processes

The connection between the smallest biological unit, the
gene, and the ecosystem, has not always been clear since the
ecosystem concept was first established, but modern eco-

system science has incorporated new thinking in the value
of linking scales and a recent review highlights the utility of
incorporating population community genetics for address-
ing effects of climate change and invasive species (Wymore
et al., 2011). The emergence of new tools, and particularly
large-scale Sanger sequencing and high-throughput pyrose-
quencing has been an ecological quantum leap forward for
the possibility of classification of those organisms that evade
taxonomic identification but are critical to our understand-
ing of ecosystem functioning – the microbes. Several papers
have begun to elucidate the identity and host specificity of
ecto- and arbuscular mycorrhizal fungi (Öpik et al., 2009;
Tedersoo et al., 2010), and additionally how seasonal
trends in the mycorrhizal communities may be related
to fluctuations in C supply (Dumbrell et al., 2011).
Surprisingly, these tools have served to identify hyperdiverse
fungal communities in the phyllosphere (Jumpponen &
Jones, 2009) and in forest soils (Buée et al., 2009).
Clearly, the next step is to link this enormous amount of
genetic information with specific ecosystem function in
order to provide mechanistic connections between micro-
bial genetic diversity and ecosystem processes.

In 1935, it may have been difficult to imagine the lasting
and profound impacts that the term ecosystem would have
as an organizational concept for plant science. Nevertheless,
it is a testimony to the strength of the ideas that started with
Sir Arthur Tansley and that are collected here in this Virtual
Special Issue that this conceptual framework will certainly
continue to be highly relevant as we open new frontiers for
research in ecosystem science.

Amy Austin

Editor, New Phytologist
austin@ifeva.edu.ar
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Commentary

Conserved chromatin
structural proteins – a source
of variation enabling plant-
specific adaptations?

In his 2002 paper ‘Plants compared to animals: the broadest
comparative study of development’ (Meyerowitz, 2002;
pp. 1482–1485), Elliot Meyerowitz concluded that as
regards the molecular basis of pattern formation and cell–
cell signaling, the two fundamental systems underlying

development, there is little homology between plants and
animals. Similar processes in the two lineages are usually
controlled by nonhomologous genes. For example, the mas-
ter regulatory genes responsible for establishing segmental
identity during embryonic development of animals, the
Hox homeobox genes, have no evolutionary relationship to
master regulators acting in plant development ⁄ patterning,
the MADS box genes. Similarly, the receptor tyrosine kin-
ases, like Sevenless or Gurken, or the Ras proteins, that are
critical components of cell signaling in animals, have no
homologous counterparts in plant signaling pathways. This
strongly suggests independent evolution of the molecular
systems responsible for the assembly of phenotypic forms in
plants and animals. However, it appears that beneath this
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