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A B S T R A C T

The present work deals with a theoretical research on the emission and radiation properties of a
dipole emitter source close to a dimer graphene plasmonic antenna. Modification of the radiation
and the quantum efficiencies resulting from varying the position of the emitter and the or-
ientation of its dipole moment are calculated by using a rigorous electromagnetic method based
on Green's second identity. Large enhancements in the emission and the radiation of the emitter
occur due to the coupling with the antenna surface plasmons in the spectral region from ≈ 4 THz
to ≈ 15 THz. Our results show that the radiation efficiency can be enhanced by four orders of
magnitude and that the quantum efficiency reaches values close to 0.8 when the emission fre-
quency coincides with one of the resonant dipolar frequencies. On the other hand, these quan-
tities can be reduced in a great measure at a specific frequency for a given emitter location. We
present calculations of the near–field distribution and the far field intensity which reveal the role
of the plasmonic antenna resonance in the emitter enhanced radiation. We show that the spectral
region where the radiation is enhanced can be chosen over a wide range by varying the chemical
potential of graphene from 0.2eV to 1eV.

1. Introduction

The coherent interplay between an individual optical emitter and the electromagnetic fields scattered back to the emitter's site by
the environment boundaries acts to drive the emitter and as a consequence the light emission can be largely altered. For instance,
coupling the optical emitter to confined electromagnetic modes, such as guided modes or surface plasmons (SPs), is possible to
enhance the spontaneous emission rate several orders of magnitude relative to the case in which the same emitter is localized in an
unbounded medium. This property, known as Purcell effect [1,2], has been used to improve the efficiency of single photon sources
[3] as well as to reduce the lasing threshold in plasmonic lasers [4,5].

Based on the same physical effect, plasmonic antennas are subwavelength architectures capable to confine the electromagnetic
field in a reduced region of the space by localized surface plasmons (LSPs) excitation, leading to an enhancement in the radiative and
non radiative emission of an emitter placed in that region [6–11]. One of the major challenges for most of applications, such as
fluorescence or surface enhanced Raman spectroscopy (SERS) platforms [12–14], is to reach an efficient radiative outcoupling of LSPs
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into photons, which allows an increase of the radiative emission rate relative to the nonradiative emission rate. This property has
been obtained for some geometries, such as dipole or bowtie antennas [15–17], stand out for creating a high density of radiative
states on their gap region. More recently, its has been demonstrated that a high radiation efficiency together with a directionality
improvement take place on metallic nanopatch antenna platforms [18,19].

Apart from noble metals, the plasmonic materials most frequently used for plasmonic antenna applications, recent advances have
created other plasmonic materials with lower losses and greater confinement of the electromagnetic field, such as metal–alloys,
heavily doped wide–band semiconductors, and graphene [20]. The electronic linear band structure of graphene makes a plasmon
mass depending on the Fermi–level position and consequently electrically (or magnetically) tunable SPs are supported by graphene
from microwaves to the mid–infrared regimes [21,22]. Several alternative structures for confining of the incident beam in the realm
of graphene plasmonic have been studied in THz regime [23–30]. In particular, the high SP confinement on a graphene monolayer
leads to two main properties: a small SP wavelength and an improvement in the electromagnetic energy density. The former deals
with the possibility to build more smaller plasmonic constituent elements and the second is related with the large enhancement of the
decay rate of an emitter via the Purcell effect [31–33]. These features positioned the graphene as a promising platform to the
development of controllable plasmon devices [34–36], in particular of a new generation of antennas from microwaves to the
mid–infrared regimes [37] which comprises a crossover between electronic and optics. In this way, graphene antennas have found
applications as sensors, i.e., to capture an impinging wave in order to feed oscillating dipoles [38], or as emitters, where the enhanced
density of radiating states enables an excitation of oscillating dipoles [39]. In fact, graphene antennas have been proposed as re-
configurable transceivers in the THz domain [40].

This paper deals with the study about the control of the radiative emission of a single emitter placed in the environment of a
graphene plasmonic antenna. We focus on the dipole geometry in which the antenna consists of two identical elements facing each
other (nearly in contact). We consider each of these constituent elements consisting of a wire cylinder (arbitrary section) wrapped
with a graphene sheet. The calculation of relevant magnitudes is carried out by using the Green function surface integral method
(GSIM) [41–43] which enables to solve the scattering problem for structures with a complex shape. The GSIM has been used by us to
deal with the electromagnetic scattering of an optical emitter inside a graphene coated wire of arbitrary section [44].

We have considered the graphene as an infinitesimally thin, two–sided layer with a frequency–dependent surface conductivity
given by the Kubo formula [46]. This approach is particularly appropriate and, as it has been shown in Ref. [48], it matches the
results in remarkable optical experiments.

This paper is organized as follows. First, in Section 2 we develop the GSIM formalism providing expressions for the electro-
magnetic field scattered by a line dipole source placed, with an arbitrary orientation, near a graphene plasmonic antenna. This field is
expressed in terms of two unknown source functions evaluated on the graphene layer, one related to the field exterior to the antenna
and the other related to its normal derivative. By using GSIM, in Section 3 we calculate the radiative and the quantum efficiencies for
a graphene dimer antenna. Even though the above formalism has been developed considering two scatter elements (the two graphene
wire composing the antenna), for a better understanding, in a first step we deal with the single graphene wire problem. We then
include a second graphene wire and investigate the performance of the dimer antenna formed. Finally, concluding remarks are
provided in Section 4. The Gaussian system of units is used and an −i ω texp( ) time–dependence is implicit throughout the paper,
with ω as the angular frequency, t as the time, and = −i 1 . The symbols Re and Im are respectively used for denoting the real and
imaginary parts of a complex quantity.

2. Theory

2.1. Surface integral equations of the electromagnetic field scattered by a dipole emitter

We consider the scattering problem of a line dipole source in the proximity of two graphene coated wire cylinders (Fig. 1). We
assume that the cylinders and the dipole line axis lie along the ẑ axis. The current density of the electric dipole is

→ → = − → → − →j r iωp δ r r( ) ( ).s s (1)

The cross section of the wires are defined by planar curves described by vector valued functions = +t x t x y t yΓ ( ) ( ) ˆ ( ) ˆ2 2 2 and
= +t x t x y t yΓ ( ) ( ) ˆ ( ) ˆ3 3 3 and the wire substrates are characterized by constitutive parameters ε μ,2 2 and ε μ,3 3. The wires are embedded

in a transparent medium with constitutive parameters ε μ,1 1. When the line source with a dipole moment→ = +p p α x α y[cos ˆ sin ˆ] is
placed in medium 1 (α is the angle between the dipole moment and the x̂ axis), the magnetic field is along the ẑ axis
(
⎯→⎯ → = →H r φ r z( ) ( ) ˆ). The wave equation for the magnetic field has the form

∇ → + → = → →φ r k φ r g r r( ) ( ) ( , ),j j j j s
2 2

(2)

where subscripts =j 1, 2, 3 is used to denote the wire substrates (medium 2 and medium 3) and the exterior region (medium 1) to
boundary wires, respectively, =k k ε μj j j0 , =k ω c/0 is the modulus of the photon wave vector in vacuum, ω is the angular frequency,

c is the vacuum speed of light, → → = − → × ∇ → − →g r r π ik p δ r r( , ) 4 ( )s s1 0 , → → = → → =g r r g r r( , ) ( , ) 0s s2 3 and →rs denotes the position of the
line source. To solve Eq. (2), we transform it into a boundary integral equation using the GSIM as explained in Ref. [44]. Using Eq. (2)
in the exterior region, the magnetic field →φ r( ) can be written as
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where dsj is the arc element of Γj ( =j 2, 3), the derivative ∂
∂nj

along the normal to the interface at →rj is directed from the medium j

( =j 2, 3) to the medium 1, and → →G r r( , )j1 is the Green function of Eq. (2) in the exterior region (medium 1)

→ → = → − →G r r iπH r r( , ) ( ),j j1 0
(1) (4)

where H0
(1) is the 0th Hankel functions of the first kind, and

→ = → × ∇ → →φ r ik z p G r r( ) ˆ ( ) ( , ).inc s0 1 (5)

Similarly, inside the wires (regions 2 and 3) the field take the form
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(6)

where → →G r r( , )j j is the Green function in the interior region =j 2, 3 to the wires. From Eqs. (3) and (6), the total field in regions 1, 2
and 3 are completely determined by the boundary values of the field and its normal derivative. By allowing the point of observation
→r to approach the surface in Eqs. (3) and (6), we obtain a system of coupled integral equations with unknown functions and normal
derivatives at the Γj ( =j 2, 3) boundaries. The electromagnetic boundary conditions at Γj ( =j 2, 3),

∂
∂

=
∂
∂ε

φ
n ε

φ
n

1 1 ,
j

j

j j1

1

(7)

and

− =
∂
∂

φ φ πσ
ck ε

i
φ
n

4 ,j
j

1
0 1 1 (8)

provide two additional relationships between the fields and their normal derivatives at the boundary of the wires, allowing us to
express φj, ∂ ∂φ n/j j ( =j 2, 3) in terms of φ1 and ∂ ∂φ n/ j1 . By evaluating the first of Eq. (3) and the second of Eq. (6) at the boundaries Γj
and using the continuity conditions across them, we obtain a set of coupled integral equations:
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(9)

Fig. 1. Schematic illustration of the dimer micro antenna. The inset shows a contact rod embedded inside the graphene coated dielectric cylinder
needed to control the chemical potential with a voltage V application.
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where =l 2, 3 indicates the region in which the vector →r is taken, and
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where =l j, 2, 3.
It is worth noting that the four Eqs. (9) and (10) are reduced to the set of two equations obtained in Ref. [44] for the single wire

case, i.e., when the system is composed of only one graphene wire element whose cross section is defined by a vector valued function
Γ2, by fixing = =j l 2,
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The coupled integral equations (9)–(10), or Eq. (11) in case of the single wire system, are converted into matrix equations which

are solved numerically (see Ref. [44] and references therein). Once the functions →φ r( )j1 and ∂ ⎯→⎯

∂
φ r

n
( )j

j
1 are determined, the scattered

field, given by the first of Eqs. (3) and (6) can be calculated at every point in the exterior and interior regions.

2.2. Emitted and radiated powers

The time–averaged power P emitted by the dipolar line source can be calculated from the integral of the normal component of the
complex Poynting vector flux through an imaginary cylinder of length L and surface As that encloses the dipole (see Fig. 1)

∫= − ⎧
⎨⎩

→
⋅
⎯→⎯ ⎫

⎬⎭
P L j E da1

2
Re ,

A s

*

s (12)

where As encloses the source, =da ρ dϕ dρs s s and
→
js represents the source density current. Introducing the value of the current in Eq.

(1), we obtain

= → ⋅
⎯→⎯ →P ωL p E r

2
Im{ ( )}s

*

(13)

where the field
⎯→⎯
E is evaluated at the dipole position →rs . For an electric dipole we have

⎯→⎯ → =
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⎯→⎯ →E r E r E r( ) ( ) ( )inc s (14)
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Es are the primary dipole field and the scattered field, respectively. Inserting Eq. (14) into Eq. (13), we obtain the

emitted power normalized with respect to the rate in absence of the graphene wire
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is the total power radiated by an electric dipole in the unbounded medium 1 [44,45]. By using the Amper-
e–Maxwell equation the relation between the components of the electric field and the z–component of the magnetic field is derived,
⎯→⎯

= − ∇ ×E zφˆj ik ε j
1

j0
( =j 1, 2, 3), and the components of the electric field scattered back at the dipole position →rs are calculated as
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Similarly, the time–averaged radiative power can be evaluated by calculating the complex Poynting vector flux through an
imaginary cylinder of length L and radius ρ0 that encloses the system (see Fig. 1)
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In the far–field region the calculation of the scattered fields given by the first of Eq. (3) can be greatly simplified using the
asymptotic expansion of the Hankel function for large argument [49]. After some algebraic manipulation, we obtain
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When Eqs. (18) and (19) are substituted into Eq. (17), the normalized radiative decay rate is written as
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It worth noting that by taking =F 0ang
(3) in Eq. (21) we obtain the power radiated by a system conformed by only one graphene wire

close to a dipole emitter (single wire system).

3. Results

In this section we apply the formalism sketched in previous sections to calculate the normalized radiative =γ P P/s s inc decay rate
and the radiative quantum efficiency =η γ γ/s that specify the fraction of energy emitted as radiation. We assume that the curvature
radius of the wires is sufficiently large as to describe their optical properties as those of a wire characterized by the same surface
conductivity as planar graphene.

Taking into account the description of experimental results by the zero–thickness interface model [48], we consider the graphene
layer as an infinitesimally thin, local and isotropic two–sided layer with frequency–dependent surface conductivity σ ω( ) given by the
Kubo formula [46,47], which can be read as = +σ σ σintra inter , with the intraband and interband contributions being

=
+
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where μc is the chemical potential (controlled with the help of a gate voltage), γc the carriers scattering rate, e the electron charge, kB

the Boltzmann constant and ℏ the reduced Planck constant.
In all the examples the dielectric elliptical wires are non magnetic ( = =μ μ 12 3 ) and = =ε ε 3.92 3 . The graphene parameters are

=T K300 and =γ 0.1c meV.

3.1. Single wire system: radiation properties of one emitter coupled to an elliptical graphene wire

Firstly, we use GSIM given by Eq. (11) to examine the elementary system of an emitter coupled to a graphene wire of elliptical
cross section. In Fig. 2 we plot the radiative decay rate γs and the quantum efficiency η for an emitter located on the x̂ axis at =d μ0.1
m from the corner of an elongated graphene wire whose length perimeter is equal to μm3.14 and with a major (along x̂ axis) to minor
(along ŷ axis) semi–axes ratio =a b/ 2. To illustrate the effects of varying the α orientation angle, in Fig. 2a and b we have plotted
these curves for =α 0 (horizontal polarization) and for = ∘α 90 (vertical polarization), respectively. The curves corresponding to the
circular wire =a b of the same perimeter is given as a reference. We observe that, similar to the case of quasi–rectangular graphene
wires [44], the break of the ∘90 rotational symmetry introduce an anisotropy in the optical behavior. This anisotropy is evident for the
dipolar plasmonic resonance which for the case of circular cross section occur near −μm0.17 1 and that is split into two peaks, one of
them near −μm0.14 1 and the other near −μm0.205 1. The first peak corresponds to = ∘α 90 while the second peak corresponds to =α 0,
as clearly indicated in Fig. 2 by the fact that both resonances are decoupled for dipole moment orientations parallel to either of the

M. Cuevas Superlattices and Microstructures 122 (2018) 216–227

220



ellipse's axes and that the first (respectively second) peak is absent when the dipole moment direction is parallel to (respectively
along) the major axis.

Another quantity strongly depending on the dipole moment orientation is the quantum efficiency η. Fig. 2a shows that η takes a
value near 0.7 at the high plasmonic resonance frequency ( ≈ −ω c μm/ 0.205 1), a value considerably greater than that corresponding to
the circular case for which ≈η 0.4. On the contrary, Fig. 2b shows an insignificant value, near 0.14, at the low plasmonic resonance
frequency.

On the other hand, we observe a pronounced dip in the radiation efficiency curves above the resonance frequency for horizontal
polarization (Fig. 2a) and bellow the resonance frequency for vertical polarization (Fig. 2b). As pointed out in Ref. [50], these dips
result from the destructive interference between the source dipole and that induced in the graphene wire. The minimum value
reached at dip positions are more or less pronounced depending on whether =α 0 or = ∘α 90 , as clearly indicated in Fig. 2 by the fact
that the minimum, which in the case of =a b and for horizontal polarization occur at −μm0.19 1, is blue shifted to −μm0.231 1 in the
case of =a b2 whereas Fig. 2b shows that the spectral position of the minimum for vertical polarization reaches a value of ap-
proximately −μm0.124 1 regardless whether =a b or =a b2 .

3.2. Dimer micro–antenna: radiation properties of a system composed by two graphene coated elliptical wires

Having studied the radiation properties of a single elliptical wire, we next explore the effects that the incorporation of another
wire, to form a dimmer antenna consisting of two identical elements, has on the emission and the radiation spectrum of a dipole
emitter in the proximity of the antenna. In particular, we consider the emitter located at the gap center of the dimer micro–antenna
(see Fig. 1).

Fig. 2. Radiative decay rate and quantum efficiency, both as a function of frequency, of a graphene coated elliptical wire with a major to minor
semi–axes ratio =a b/ 2 ( ≈ ≈a b0.65, 0.325). Constitutive parameters =ε 3.92 , =μ 12 and = =ε μ 11 1 . The graphene parameters are =μ 0.5c eV,
=T 300 K and =γ 0.1c meV. The emitter is localized on the x̂ axis (major ellipse semi–axis) at a distance =d μm0.1 from the left corner of the ellipse.

(a) Horizontally orientation, (b) vertically orientation. The light cyan curve corresponds to a graphenecoated circular wire ( = =a b μm0.5 ). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 3 shows the normalized radiative decay rate γs for an emitter horizontally oriented, i.e. the dipole moment of the source is
oriented along the line connecting both elements, for gap sizes (the gap between the two wire elements) =d μm2 0.4 , μm0.2 and

μm0.1 . On comparing Fig. 3a–c, we observe that the high frequency dipolar maximum which in the single wire case occur at
−μm0.205 1 is red shifted from −μm0.197 1 to −μm0.189 1 when the gap d2 is decreased from μm0.4 to μm0.1 . A similar behavior was found

in case of metallic nano–antennas where the dipolar plasmonic resonance of the dimer structure is shifted to longer wavelengths as
the gap between the two elements is decreased [15,41]. Fig. 3 also shows that the maximum value in the γs curve at the dipolar
resonance is increased when the gap d2 is decreased. Moreover, the quantum efficiency η at the resonant frequency which in the
single wire case is approximately 0.7, reach values slightly higher than 0.8 for a dimer graphene wire antenna. In particular, the
calculated values in Fig. 3 are =η 0.82, 0.836 and 0.847 for =d μm2 4 , μm2 , and μm1 respectively.

On the other hand, the non–radiating effect resulting from the destructive interference between the emitter and the antenna is
becoming less noticeable as the gap decreases, as clearly indicated in Fig. 3 by the fact that the minimum in the γs curve reaches a
value varying from −3 10 4 for =d μm2 0.4 to 0.55 for =d μm2 0.1 .

In Fig. 4 we plot the normalized radiative decay rate γs for an emitter vertically oriented, i.e., with its dipole moment perpen-
dicular to the connection line of both wires, for the same gap size values as in Fig. 3. Unlike the horizontally orientation case in which
the spectral position of the resonance peak is rather dependent on the gap size, in Fig. 4 we see that the frequency at which the low
frequency dipolar maximum occur almost does not shows any dependence on the gap size. We also see that the quantum efficiency η
at the resonance frequency reaches values close to 0.3, a negligible value when it is compared with the values of η obtained in the
horizontally orientation case.

An interesting result obtained in the vertical orientation is the strong reduction of the radiation decay rate at frequencies where
non–radiating states occur, as clearly indicated in Fig. 4 by the fact that the low frequency minimum in the γs curve is more pro-
nounced as the gap size is decreased. For instance, γs takes a minimum value ≈ −5 10 5 for a gap size =d μm2 4 (Fig. 4a), a value
≈ −2 10 6 for =d μm2 2 (Fig. 4b) and a value ≈ −10 7 for =d μm2 1 (this last does not shown in Fig. 4c). Moreover, on comparing
Fig. 4a–c we see that the minimum position is red shifted as the gap size is decreased. This behavior can be understood by taking into
account that in the single wire case the spectral position of the non–radiating states are red shifted as the distance between the
emitter, vertically oriented, and the wire is decreased [50].

To evaluate the dependence of the radiation properties with the location of the emitter, in Fig. 5Radiative decay rate and quantum
efficiency as a function of the emitter location for the dipole resonance frequency. In (a) the dipole trajectory is along the ŷ axis (see
inset), and in (b) the dipole trajectory is along the x̂ axis (see inset). The dipole moment is oriented along x̂ axis (horizontal
orientation) and the dimer gap size is =d μm2 0.1 . All other the parameters are the same as in Fig. 2. We plot the radiation decay rate
γs and the quantum efficiency η for an emitter as it moves away from the gap center of the micro–antenna (gap size =d μm2 1 ). Since

Fig. 3. Radiative decay rate (continuous line) and quantum efficiency (dashed line) of a micro–antenna composed by two graphene coated elliptical
wires ( =a b/ 2, =a 0.325). The emitter is localized on the x̂ axis (major ellipse semi–axis) at the center of the gap and the orientation angle =α 0
(horizontal orientation). Gap size =d μm2 0.4 (a), =d μm2 0.2 (b) and =d μm2 0.1 (c). The other parameters as the same as in Fig. 2.
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the quantum efficiency for vertically polarization is low, we only exemplify the case of horizontal polarization for which the achieved
efficiency is ≈ 80%. The emission frequency is chosen as the high dipolar plasmonic resonance = −ω c μm/ 0.18934 1 in Fig. 3c.

Firstly, the emitter is displaced vertically from the gap center as indicated in the inset in Fig. 5a. We observe that the decay rate
curve strongly decreases from its maximum value at the gap center to its minimum value from which the curve increases leading to an
oscillatory behavior whose period≈ = =λ π ω c μm/2 /( / ) 16.5 . This oscillatory behavior which occur for >y μm5 also found in case of
metallic dimer nano–antennas [41]. To appreciate the details at locations near the micro–antenna, in the inset of Fig. 5a we have
enlarged the horizontal scale, where it is clearly shown that a pronounced minimum is reached at a position slightly higher that the
end of the elliptical wire composing the micro–antenna. In addition, the quantum efficiency takes a value ≈ 0.8 for y values that are
lower than μm5 except in the neighborhood of =y μm0.43 where the η curve reaches a minimum value ≈ −3 10 2. For >y μm5 , this
curve presents the same oscillatory behavior as the γs curve.

We next consider that the emitter, with horizontally orientation, is displaced horizontally from the position placed at
= =x y μm0, 0.4 , as is indicated in the inset of Fig. 5b. We see that the radiative decay rate decreases from the maximum value,≈ 10,

at the gap center to a sharp minimum at approximately the position of the ellipse corner facing the gap (inset in Fig. 5b). Next, the γs
curve increases reaching a maximum value at the center of the elliptical wire and then it decreases to another sharp minimum at the
position of the far ellipse corner. On the other hand, the quantum efficiency takes a value ≈ 0.8 reaching sharp minima values
coinciding with that of the decay radiative curve. For x values larger than μm15 both the radiative decay rate and the quantum
efficiency take a value close to unity, suggesting that the emitter is uncoupled from the micro–antenna.

In Fig. 6a we plot the spatial distribution of the scattered near electric field for an emitter polarized along the x̂ axis ( =α 0) and
placed at the gap center of the micro–antenna ( =d μm2 1 ). The chosen emission frequency corresponds to the high dipolar resonance

= −ω c μm/ 0.189 1. We can see a strongly enhancement of the field in the gap region and, to a lesser extent, around each wire. We have
obtained a similar spatial field distribution for an emitter polarized along the ŷ axis (not shown in Fig. 6) but with a field en-
hancement that is near one order of magnitude less than the corresponding to the horizontal polarization. The strongly confinement
of the field in the gap region, where the emitter is located, is responsible of the emitted power enhancement observed in Figs. 3c and
4c at a frequency = −ω c μm/ 0.189 1 and = −ω c μm/ 0.142 1 respectively. However, the two configurations noticeably differ in the far
field emission, as can be seen in Fig. 6b where we have plotted the far field intensity as a function of the angle of radiation. We see
that the far field intensity for the horizontal polarization is markedly greater (near 50 times) than that corresponding to the vertical
polarization. This can be understood by taking into account that the quantum efficiency reach a value near to 0.85 for the horizontal
polarization and a value near to 0.2 for the vertical polarization and that the field enhancement in the gap region for the horizontal
polarization is near 10 times greater than that corresponding to the vertical polarization.

Finally, we investigate the tunability of the graphene micro–antenna by varying the chemical potential of the graphene sheets. We

Fig. 4. Radiative decay rate and quantum efficiency of a micro–antenna composed by two graphene coated elliptical wires ( =a b/ 2, =a 0.325). The
emitter is localized on the x̂ axis (major ellipse semi–axis) at the center of the gap and the orientation angle =α 90 (vertical orientation). Gap size

=d μm2 0.4 (a), =d μm2 0.2 (b) and =d μm2 0.1 (c). The other parameters as the same as in Fig. 2.

M. Cuevas Superlattices and Microstructures 122 (2018) 216–227

223



focused on the symmetric case where two wires are tuning at the same μc. By increasing the chemical potential, we are able to tune
the resonance frequency and we can define the sensitivity s to the chemical potential as,

= ∂
∂

s ω c
μ
/ .
c (24)

In Fig. 7 we plotted the frequency dependence of the radiative decay rate and the quantum efficiency for =μ 0.5, 0.75, and 1 eVc .
The emitter is localized at the gap center and with its dipole moment along the x̂ direction. On comparing Fig. 7a–c, we observe that
the dipolar resonance peak is blue shifted from −μm0.1893 1 to −μm0.2654 1 when the chemical potential μc is increased from 0.5eV to
1eV. This fact can be understood by the fact that an increase in the chemical potential leads to an increase in the surface charge
density on graphene sheets and, as a consequence, the plasmon resonance frequency increases.

Fig. 8a and b shows the resonance frequency and the sensitivity s as a function of the chemical potential μc. The values of the
resonance frequencies have been indirectly calculated estimating from the observation the positions of maxima of resonances in
radiative decay rate curve spectra obtained for different values of μc. We observe that the resonance frequency quadratically increases
with the chemical potential. As a consequence, and as it can be seen in Fig. 8b, the sensitivity s linearly decreases with the chemical
potential increase.

Another interesting results is the increment of the quantum efficiency at the dipolar resonance frequency with the chemical
potential. For example, ≈η 0.84 for =μ 0.5c eV whereas η reaches values ≈ 0.91 and ≈ 0.94 for =μ 0.75c eV and =μ 1eV, respectively.

Fig. 5. Radiative decay rate and quantum efficiency as a function of the emitter location for the dipole resonance frequency. In (a) the dipole
trajectory is along the ŷ axis (see inset), and in (b) the dipole trajectory is along the x̂ axis (see inset). The dipole moment is oriented along x̂ axis
(horizontal orientation) and the dimer gap size is =d μm2 0.1 . All other the parameters are the same as in Fig. 2.
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4. Conclusions

The emission and radiation properties of a dipole emitter source close to a dimer graphene plasmonic antenna have been studied
by applying an electromagnetically rigorous integral method based on the Green second identity. We considered the case of gra-
phene–coated wires of elliptical section. In comparison with the circular section case, and as it might be expected on symmetry
grounds, a frequency splitting of the dipolar plasmonic resonance is observed in the emission and radiation decay rate spectra. The
high dipolar resonance (the resonance corresponding to the horizontal polarization) is red shifted as the gap size between the two
wire components is decreases, whereas the spectral position of the low dipolar resonance (the resonance corresponding to the vertical
polarization) is almost independent from the gap size value.

Our results shown similar values of the Purcell factor for both polarizations. For instance, the emission decay rate takes a value
near 104 for the horizontal polarization and a value near 103 for the vertical polarization. However, the density of radiating states for
horizontal polarization is larger than that corresponding to the vertical polarization, as indicated by calculated quantum efficiency
values. For instance, the quantum efficiency is near 0.8 for horizontal polarization and near 0.3 for vertical polarization. This result
means that a desirable antenna feature is achieved when the dipole moment of the emitter is oriented along the line connecting both
elliptic wires. Moreover, we have calculated the far field intensity which have served as a further test to confirm the previous guess.

Another interesting result revealed in this study is the fact that the quantum efficiency is strongly depending of the chemical
potential of graphene coating. By increasing the chemical potential, the quantum efficiency is notably increased leding to an improve
in the antenna performance.
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Fig. 6. (a) Map of the scattered electric field modulus in logarithmic scale at a fixed time for a horizontal dipole at the gap center of the mi-
cro–antenna. (b) Far field intensities for the dipolar plasmon resonance of a horizontal (black line) and a vertical (red line) dipole placed at the gap
center. For comparison, the isolated dipole contribution is also shown for the horizontal polarization (green line). The frequencies

= −ω c μm/ 0.18934 1 (horizontal dipole) and = −ω c μm/ 0.1421 1 (vertical dipole) coincide with those of the dipolar plasmon resonances. The gap size of
the micro–antenna =d μm2 0.1 and all other parameters are the same as in Fig. 3. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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